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Abstract: The best discrete least squares polynomial fit to a data set is revisited. We point out some 
properties related to the best polynomial and precise the dimension of vector spaces encountered to 
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decreasing trend, and on their convexity or concavity form. 
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INTRODUCTION 
 
 Let ( ){ }m

iiii ft 1,, =ω  be a set of m  data  points 

where the it ’s represent the distinct values of the 
independent variable, the if ’s are the values of the 
measured function, and each iω  is the weight 
associated to the data ( )ii ft , . The problem we consider 
is to find a polynomial np of degree at most n  to fit 
the data. To measure how well the polynomial fit the 
data we use the weighted least squares deviation given 
by 

           .))(()(
1

2�
=

−=
m

i
iniin tpfpF ω                          (1)            

The best polynomial, called the weighted  least squares 
estimate (WLSE), is given by 
             

             )(minarg*
nPpn pFp

nn∈= .                                    (2)              

where nP  is the set of polynomials of degree at most n . 
The motivation for this short note comes from 

a mistake in the proof of Theorem 1 in [5] and explained 
in the Remark 2 below. The goal of this paper is to 
clarify the dimension of some vector spaces 
encountered in solving this problem, establish a 
property useful for proving the existence of a WLSE for 
exponential models [2], and suggest a way to classify 
data using the best polynomial fits. For a standard 
presentation of the theory related to best (polynomial) 
least squares fit see [1, 3, 7, 8, 9]. 

The best polynomial fit problem can be solved 
by considering an orthogonal projection onto nP  or, 
equivalently, by considering an orthogonal projection 
onto a subspace of mIR . In Section 2 we briefly review 
the solution of the problem in nP  and specify the 
dimension of subspaces of polynomials. In the first part 
of the Section 3 we consider the subspaces of mIR  that 
play a role in solving the problem in mIR . In the 
second part of this Section 3 we solve the problem 
using a projection onto a subspace of mIR . Finally in 
Section 4 we suggest a way to classify data which will 
be useful in the problem of finding existence results for 
weighted least squares estimator [2]. 
    

POLYNOMIAL WEIGHTED LEAST SQUARES 
FITTING IN nP   

 
In the first part of this section we present the 

underlying subspaces of { }�,2,1,0== jtLinP j    
related to the polynomial weighted least squares 
problem. In the second part we solve the problem using 
a projection onto a subspace of P .  
 
Vector spaces: Let us recall that   

{ }njtLinP j
n �,1,0== . We consider also the 

following two other polynomial subspaces 
      { } ,,1)()(, k

k
iikk PmitttvLinPV ⊆=+== ++

�            (3)       
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    { } ,,1)()(, k
k

iikk PmitttvLinPV ⊆=−== −−
�               (4)      

for any nonnegative integer �,2,1,0=k  The next two 
results specify the dimension of these subspaces. 
 
Theorem 1: Let { } PnjtLinP j

n ⊆== ,,0 � , then  

1dim += nPn  .         
 
Theorem 2: Let k  be any nonnegative integer and let  

+
kPV   and  −

kPV   be defined  by (3) and (4). 

(a) If 1−≤ mk  then  ,−+ == kkk PVPPV   and     

.dim1dim −+ =+= kk PVkPV   

(b) If mk ≥  then kk PPV ⊂+
 , kk PPV ⊂−

  and  

.dimdim −+ == kk PVmPV  

Proof: We prove the result for +
kPV  only, the proof for 

−
kPV   is identical. Since   
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1 , =� =

+m
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µ . From Theorem 1, the set  

{ }k
j

jt 0=  is linearly independent, it follows that  

0
1

=� =

m

i
j

iitµ  for .,0 kj �=  The matrix associated to 

this system is a Vandermonde type matrix. The rank of 
this matrix in { }mk ,1min +  and the result follows.  
 
 Polynomial weighted least squares fitting: Under the 
condition that mn < , we introduce the scalar product 
on nP  defined by 

�
=

=
m

i
iii tqtpqp

1

)()(, ω  

for any pair of polynomials p  and q  in nP . In this 
case (1) becomes 

2)( nn pfpF −=  

where .  is the norm on nP  induced by the scalar 

product. For the if ’s we use the notation 

),,1()( mitff ii �== .  It is well known that *
np  is 

unique and is  characterized by the normal equations 

0,* =− nn ppf  for all  nn Pp ∈ . 

In this setting, to simplify the computation of 
*
np , we can find a sequence of orthogonal polynomials 

by applying the Gram-Schmidt orthogonalization 
process to the standard basis { }nttt ,,,,1 2

�  of nP . 
These orthogonal polynomials are given by 

,)(,1)( 110 α−== ttqtq  

and for  ,,,2 nj �=  

)()()()( 21 tqtqttq jjjjj −− −−= βα  

where   
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,

,

22

21
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jj

jj
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−−

−−β  

Hence the best n -degree least squares polynomial *
np  

can be written as 

                          �
=

=
n

j
jjn tqtp

0

** )()( γ                              (5)                       

where    

),,1,0(
,

,
* nj

qq

qf

jj

j
j �==γ . 

The next two results will be useful for finding 
sufficient conditions for the existence of the WLSE for 
a 3-parametric exponential model [2]. 

 

Theorem 3:  2**
1, nn

n
n qtpf γ=− −  for 

1,,0 −= mn � .  

Proof.   For 0=n  it is obvious because 0*
1 =−np .          

For 0>n , since )()( 1 tpttq n
n

n −+=  where )(1 tpn−  is 
a polynomial of degree 1−≤ n ,  and 

),()()( *
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Theorem 4: If the jq ’s are the orthogonal polynomials 

associated to ( ){ }m
iii t 1, =ω ,   the orthogonal polynomials 

jq~ ’s associated to ( ){ }m
iiii tt 1

~, =−=ω  are given by     

)()1()(~ tqtq j
j

j −−= .                              

 
 POLYNOMIAL WEIGHTED LEAST SQUARES 

FITTING IN mIR  
 

In the first part of this section we present the 
underlying subspaces of mIR  related to the polynomial 
weighted least squares problem. In the second part we 
solve the problem using a projection onto a subspace of  

mIR . 

Vector spaces: Let { }m
iit 1=  be a set of m  distinct real 

numbers.  For any  positive integer j  let us define the 

vectors  m
j IRt ∈
�

  by 
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For any positive integer k , we also define the vectors 
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for  mi ,,1 �= . 
In this section we clarify the properties of the 

following vector spaces, in particular the dimension of 
the vector spaces, 
                  { },,,0 njtLinT jn

�
�

==            (6)               
                 { },,,1, mivLinV ikk �

�
== ++          (7)               

                    { },,,1, mivLinV ikk �
�

== −−           (8)                
for any integers n  and k  such that 0≥n  and  

.10 −≤≤ mk  
 
Theorem 5: Let { } mjn IRnjtLinT ⊆== ,,0 �

�
   

(a)  If  mn < ,  the set  { }n
j

jt 0=
�

  is linearly independent 

and  1dim += nT n . 

(b)  If mn ≥ ,  the set   { }n
j

jt 0=
�

  is linearly dependent 

and  mT n =dim . 

Proof: We consider� =
=

n

j
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j t0
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λ . But the 

Vandermonde matrix ( )n
nm tttA

�
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�� 10
1, =+   is of 

rank 1+n  as long as mn < , and hence 0=jλ  for 

nj ,,0 �= . If mn ≥   its rank is m  and there exits 
non zero solutions to the system.  Hence the result 
follows  because  mn IRT ⊆ .      
 
Remark 1: For any positive integer l , since  
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Theorem 6: Let k  be any integer such that 

,10 −≤≤ mk  and let  +
kV  and  −

kV  be defined by (7) 
and (8), then   

−+ == k
k

k VTV , 
and 

.dim1dim −+ =+= kk VkV  
 
Proof.   We prove the result for +

kV only,  the proof  for 
−

kV is identical. Since 
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then 0
1 , =� =

+m

i ikiv
�µ  if and only if 
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set { }k
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jkt 0=
−�

is linearly independent for mk < ,    it  

follows  that 0
1

=� =

m

i

j
iitµ  for  .,0 kj �=  But this 

system of 1+k  equations and m  unknowns has a 
unique solution only for .1−= mk  Moreover the 
matrix associated to this system, T

kmA 1, + , is of rank 

1+k  for  mk < . Hence 1dim +=+ kVk .         
For mk ≥  we have no clear result about the 

dimension of  −
kV   and  +

kV  as illustrated by the 
following example for .3=m  

 
 

Example: Let .3=m  
(a) For −
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(b)  For  +
kV , we have  
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This determinant can be 0 . Indeed for 031 =+ tt and 

02 =t  the determinant is 0  for odd k . It follows that 
+

kVdim is 2  or 3  depending on the values of 1t ,  2t  

and  3t .                         
 
Remark 2: In [5] it is asserted that −

2V  is of dimension 
m  which is clearly false except for 3=m . As a 
consequence the proof given in [5] for the existence of a 
WLSE for a 3-parametric exponential function is not 

correct. There are also errors in the proof of the 
existence of a WLSE in [6].       
 
Polynomial weighted least squares fitting: We 
introduce the scalar product  on mIR  defined by 
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The norm on mIR  induced by the scalar product is 
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The problem is to find the orthogonal projection of f
�

 

on nT .  This projection is completely  characterized by 

the normal equations 0,* =− nn ppf
���

 for all  

n
n Tp ∈

� . 
Again, to simplify the computation of *

np
�

, we 

can determine an orthogonal basis { }n
jjq
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�

for nT  by 

applying the Gram-Schmidt process to its basis 
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In these identities, vu
��

.  is the coordinatewise 

multiplication of two vectors of   mIR defined by   
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Let us observe that j
j Tq ∈
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It follows that the projection is given by 
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The next theorem is equivalent to Theorem 2.3. 
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CLASSIFICATION OF DATA 

 
Let ( ){ }m

iiii ft 1,, =ω  be a set of m  data points. If we use a 

discrete least squares polynomial to fit the data with the 

orthogonal basis { }n
jjq

0=
, the coefficients of *

np   with 

respect to its expansion (5) or (9) suggest the following 
classification  of  the data. 
 
Definition 1: The data ( ){ }m

iiii ft 1,, =ω   are said to be: 

(i)  essentially stationary  if 0*
1 =γ ; 

(ii) essentially increasing, respectively decreasing, if     
0*

1 >γ , respectively 0*
1 <γ ; 

(iii)    essentially  linear  if  0*
2 =γ ; 

(iv) essentially convex, respectively concave, if 
0*

2 >γ , respectively  0*
2 <γ .         

  
Let us note that we could continue the 

classification with the higher order coefficients *
nγ  for 

.1,,3 −= mn �  this basic classification could help to 
find more realistic or complex fitting to the data with 
nonlinear function (see [ 4, 5, 6 ,2] for an exponential 
functions). 

Finally if we apply symmetric transformations 
to the data we obtain the following result. 
 
Theorem 8: Effect of symmetric transformations on the 
data. 

(a) If the ( ){ }m
iiii ft 1,, =ω  are essentially increasing, 

resp. decreasing, then the data ( ){ }m
iiii ft 1,, =−ω  are 

essentially decreasing, resp. increasing. The 
stationarity, linearity, and concavity or convexity 
properties are not modified by this transform. 

(b)  If the data ( ){ }m
iiii ft 1,, =ω  are essentially 

increasing, resp. decreasing, and essentially 
convex, resp. concave, then the data 

( ){ }m
iiii ft 1,, =−ω  are essentially decreasing, resp. 

increasing, and essentially concave, resp. convex. 
The stationarity and linearity properties are not 
modified by this transform.                 

 
CONCLUSION 

 
We have revisited the polynomial weighted least 
squares analysis. Doing so we have specified the 
dimension of three vector subspaces of P  (Theorem 1 
and Theorem 2) and of mIR  (Theorem 5 and Theorem 
6) used for solving this problem. We also have 
established a property (Theorem 3 and Theorem 7) and 
suggested a classification of data (Definition 1) which 
will play a role in finding sufficient conditions for the 
existence of a WLSE for a 3-parametric exponential 
model [2]. 
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