On Discrete Least Squares Polynomial Fit, Linear Spaces and Data Classification

François Dubeau and Youness Mir
Département de mathématiques,Université de Sherbrooke, 2500 Boul. de l'Université, Sherbrooke (Qc), Canada, J1K2R1

Abstract

The best discrete least squares polynomial fit to a data set is revisited. We point out some properties related to the best polynomial and precise the dimension of vector spaces encountered to solve the problem. Finally, we suggest a basic classification of data sets based on their increasing or decreasing trend, and on their convexity or concavity form.

Keywords: Polynomial data fitting, weighted least squares, orthogonal polynomials, linear spaces, data classification.

INTRODUCTION

Let $\left\{\left(\omega_{i}, t_{i}, f_{i}\right)\right\}_{i=1}^{m}$ be a set of m data points where the t_{i} 's represent the distinct values of the independent variable, the f_{i} 's are the values of the measured function, and each ω_{i} is the weight associated to the data $\left(t_{i}, f_{i}\right)$. The problem we consider is to find a polynomial p_{n} of degree at most n to fit the data. To measure how well the polynomial fit the data we use the weighted least squares deviation given by

$$
\begin{equation*}
F\left(p_{n}\right)=\sum_{i=1}^{m} \omega_{i}\left(f_{i}-p_{n}\left(t_{i}\right)\right)^{2} \tag{1}
\end{equation*}
$$

The best polynomial, called the weighted least squares estimate (WLSE), is given by

$$
\begin{equation*}
p_{n}^{*}=\operatorname{argmin}_{p_{n} \in P_{n}} F\left(p_{n}\right) . \tag{2}
\end{equation*}
$$

where P_{n} is the set of polynomials of degree at most n.
The motivation for this short note comes from a mistake in the proof of Theorem 1 in ${ }^{[5]}$ and explained in the Remark 2 below. The goal of this paper is to clarify the dimension of some vector spaces encountered in solving this problem, establish a property useful for proving the existence of a WLSE for exponential models ${ }^{[2]}$, and suggest a way to classify data using the best polynomial fits. For a standard presentation of the theory related to best (polynomial) least squares fit see ${ }^{[1,3,7,8,9]}$.

The best polynomial fit problem can be solved by considering an orthogonal projection onto P_{n} or, equivalently, by considering an orthogonal projection onto a subspace of $I R^{m}$. In Section 2 we briefly review the solution of the problem in P_{n} and specify the dimension of subspaces of polynomials. In the first part of the Section 3 we consider the subspaces of $I R^{m}$ that play a role in solving the problem in $I R^{m}$. In the second part of this Section 3 we solve the problem using a projection onto a subspace of $I R^{m}$. Finally in Section 4 we suggest a way to classify data which will be useful in the problem of finding existence results for weighted least squares estimator ${ }^{[2]}$.

POLYNOMIAL WEIGHTED LEAST SQUARES FITTING IN P_{n}

In the first part of this section we present the underlying subspaces of $P=\operatorname{Lin}\left\{t^{j} \mid j=0,1,2, \ldots\right\}$ related to the polynomial weighted least squares problem. In the second part we solve the problem using a projection onto a subspace of P.

Vector spaces: Let us recall that $P_{n}=\operatorname{Lin}\left\{t^{j} \mid j=0,1, \ldots n\right\}$. We consider also the following two other polynomial subspaces

$$
\begin{equation*}
P V_{k}^{+}=\operatorname{Lin}\left\{v_{k i}^{+}(t)=\left(t+t_{i}\right)^{k} \mid i=1, \ldots m\right\} \subseteq P_{k}, \tag{3}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
P V_{k}^{-}=\operatorname{Lin}\left\{v_{k j}^{-}(t)=\left(t-t_{i}\right)^{k} \mid i=1, \ldots m\right\} \subseteq P_{k}, \tag{4}
\end{equation*}
$$

\]

for any nonnegative integer $k=0,1,2, \ldots$ The next two results specify the dimension of these subspaces.

Theorem 1: Let $P_{n}=\operatorname{Lin}\left\{t^{j} \mid j=0, \ldots, n\right\} \subseteq P$, then $\operatorname{dim} P_{n}=n+1$.

Theorem 2: Let k be any nonnegative integer and let $P V_{k}^{+}$and $P V_{k}^{-}$be defined by (3) and (4).
(a) If $k \leq m-1$ then $P V_{k}^{+}=P_{k}=P V_{k}^{-}$, and $\operatorname{dim} P V_{k}^{+}=k+1=\operatorname{dim} P V_{k}^{-}$.
(b) If $k \geq m$ then $P V_{k}^{+} \subset P_{k} \quad, \quad P V_{k} \subset P_{k} \quad$ and $\operatorname{dim} P V_{k}^{+}=m=\operatorname{dim} P V_{k}^{-}$.

Proof: We prove the result for $P V_{k}^{+}$only, the proof for $P V_{k}^{-}$is identical. Since

$$
\sum_{i=1}^{m} \mu_{i} v_{k, i}^{+}(t)=\sum_{i=1}^{m} \mu_{i}\left(\sum_{j=0}^{k}\binom{k}{j} t_{i}^{j} t^{k-j}\right)=\sum_{j=0}^{k}\binom{k}{j}\left(\sum_{i=1}^{m} \mu_{i} t_{i}^{j}\right) t^{k-j},
$$

then $\quad \sum_{i=1}^{m} \mu_{i} v_{k, i}^{+}(t)=0 \quad$ if \quad and only if $\sum_{j=0}^{k}\binom{k}{j}\left(\sum_{i=1}^{m} \mu_{i} t_{i}^{j}\right) t^{k-j}=0$. From Theorem 1, the set $\left\{t^{j}\right\}_{j=0}^{k}$ is linearly independent, it follows that $\sum_{i=1}^{m} \mu_{i} t_{i}^{j}=0$ for $j=0, \ldots k$. The matrix associated to this system is a Vandermonde type matrix. The rank of this matrix in $\min \{k+1, m\}$ and the result follows.

Polynomial weighted least squares fitting: Under the condition that $n<m$, we introduce the scalar product on P_{n} defined by

$$
\langle p, q\rangle=\sum_{i=1}^{m} \omega_{i} p\left(t_{i}\right) q\left(t_{i}\right)
$$

for any pair of polynomials p and q in P_{n}. In this case (1) becomes

$$
F\left(p_{n}\right)=\left\|f-p_{n}\right\|^{2}
$$

where $\|\cdot\|$ is the norm on P_{n} induced by the scalar product. For the f_{i} 's we use the notation $f_{i}=f\left(t_{i}\right)(i=1, \ldots, m)$. It is well known that p_{n}^{*} is unique and is characterized by the normal equations $\left\langle f-p_{n}^{*}, p_{n}\right\rangle=0$ for all $p_{n} \in P_{n}$.

In this setting, to simplify the computation of p_{n}^{*}, we can find a sequence of orthogonal polynomials by applying the Gram-Schmidt orthogonalization process to the standard basis $\left\{1, t, t^{2}, \ldots, t^{n}\right\}$ of P_{n}. These orthogonal polynomials are given by

$$
q_{0}(t)=1, \quad q_{1}(t)=t-\alpha_{1}
$$

and for $j=2, \ldots, n$,

$$
q_{j}(t)=\left(t-\alpha_{j}\right) q_{j-1}(t)-\beta_{j} q_{j-2}(t)
$$

where

$$
\alpha_{j}=\frac{\left\langle t q_{j-1}, q_{j-1}\right\rangle}{\left\langle q_{j-1}, q_{j-1}\right\rangle} \quad(j=1,2, \ldots, n),
$$

and

$$
\beta_{j}=\frac{\left\langle t q_{j-1}, q_{j-2}\right\rangle}{\left\langle q_{j-2}, q_{j-2}\right\rangle} \quad(j=2,3, \ldots, n)
$$

Hence the best n-degree least squares polynomial p_{n}^{*} can be written as

$$
\begin{equation*}
p_{n}^{*}(t)=\sum_{j=0}^{n} \gamma_{j}^{*} q_{j}(t) \tag{5}
\end{equation*}
$$

where

$$
\gamma_{j}^{*}=\frac{\left\langle f, q_{j}\right\rangle}{\left\langle q_{j}, q_{j}\right\rangle} \quad(j=0,1, \ldots, n)
$$

The next two results will be useful for finding sufficient conditions for the existence of the WLSE for a 3-parametric exponential model ${ }^{[2]}$.

Theorem 3: $\quad\left\langle f-p_{n-1}^{*}, t^{n}\right\rangle=\gamma_{n}^{*}\left\|q_{n}\right\|^{2} \quad$ for $n=0, \ldots, m-1$.
Proof. For $n=0$ it is obvious because $p_{n-1}^{*}=0$. For $n>0$, since $q_{n}(t)=t^{n}+p_{n-1}(t)$ where $p_{n-1}(t)$ is a polynomial of degree $\leq n-1$, and

$$
p_{n}^{*}(t)=\gamma_{n}^{*} q_{n}(t)+p_{n-1}^{*}(t)
$$

we have

$$
\begin{aligned}
\gamma_{n}^{*}\left\|q_{n}\right\|^{2} & =\left\langle\gamma_{n}^{*} q_{n}, q_{n}\right\rangle \\
& =\left\langle p_{n}^{*}-p_{n-1}^{*}, q_{n}\right\rangle \\
& =\left\langle p_{n}^{*}-f, q_{n}\right\rangle+\left\langle f-p_{n-1}^{*}, q_{n}\right\rangle \\
& =\left\langle f-p_{n-1}^{*}, t^{n}+p_{n-1}\right\rangle \\
& =\left\langle f-p_{n-1}^{*}, t^{n}\right\rangle
\end{aligned}
$$

Theorem 4: If the q_{j} 's are the orthogonal polynomials associated to $\left\{\left(\omega_{i}, t_{i}\right)\right\}_{i=1}^{m}$, the orthogonal polynomials \tilde{q}_{j} 's associated to $\left\{\left(\omega_{i}, \tilde{t}_{i}=-t_{i}\right)\right\}_{i=1}^{m}$ are given by $\tilde{q}_{j}(t)=(-1)^{j} q_{j}(-t)$.

POLYNOMIAL WEIGHTED LEAST SQUARES

FITTING IN $I R^{m}$

In the first part of this section we present the underlying subspaces of $I R^{m}$ related to the polynomial weighted least squares problem. In the second part we solve the problem using a projection onto a subspace of $I R^{m}$.
Vector spaces: Let $\left\{t_{i}\right\}_{i=1}^{m}$ be a set of m distinct real numbers. For any positive integer j let us define the vectors $\vec{t}_{j} \in I R^{m}$ by

$$
\vec{t}_{j}=\left(\begin{array}{c}
t_{1}^{j} \\
t_{2}^{j} \\
\vdots \\
t_{m}^{j}
\end{array}\right) \in I R^{m}
$$

For any positive integer k, we also define the vectors

$$
\vec{v}_{k, i}^{+}=\left(\vec{t}+t_{i} \overrightarrow{1}\right)^{k}=\sum_{j=0}^{k}\binom{k}{j} t_{i}^{j} \vec{t}^{k-j}
$$

for $i=1, \ldots, m$, and

$$
\vec{v}_{k, i}^{-}=\left(\vec{t}-t_{i} \overrightarrow{1}\right)^{k}=\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} t_{i}^{j} \vec{t}^{k-j}
$$

for $i=1, \ldots, m$.
In this section we clarify the properties of the following vector spaces, in particular the dimension of the vector spaces,

$$
\begin{align*}
T^{n} & =\operatorname{Lin}\left\{\vec{t}^{j} \mid j=0, \ldots, n\right\} \tag{6}\\
V_{k}^{+} & =\operatorname{Lin}\left\{\vec{v}_{k, i}^{+} \mid i=1, \ldots, m\right\} \tag{7}\\
V_{k}^{-} & =\operatorname{Lin}\left\{\vec{v}_{k, i}^{-} \mid i=1, \ldots, m\right\} \tag{8}
\end{align*}
$$

for any integers n and k such that $n \geq 0$ and $0 \leq k \leq m-1$.

Theorem 5: Let $T^{n}=\operatorname{Lin}\left\{\vec{t}^{j} \mid j=0, \ldots, n\right\} \subseteq I R^{m}$
(a) If $n<m$, the set $\left\{\vec{t}^{j}\right\}_{j=0}^{n}$ is linearly independent and $\operatorname{dim} T^{n}=n+1$.
(b) If $n \geq m$, the set $\left\{\vec{t}^{j}\right\}_{j=0}^{n}$ is linearly dependent and $\operatorname{dim} T^{n}=m$.

Proof: We consider $\sum_{j=0}^{n} \lambda_{j} \vec{t}^{j}=0$. But the Vandermonde matrix $A_{m, n+1}=\left(\begin{array}{llll}\vec{t}^{0} & \vec{t}^{1} & \ldots & \vec{t}^{n}\end{array}\right)$ is of rank $n+1$ as long as $n<m$, and hence $\lambda_{j}=0$ for
$j=0, \ldots, n$. If $n \geq m$ its rank is m and there exits non zero solutions to the system. Hence the result follows because $T^{n} \subseteq I R^{m}$.

Remark 1: For any positive integer l, since $\vec{t}^{m+l} \in T^{m-1}=I R^{m}$, we have

$$
\vec{t}^{m+l}=\sum_{j=0}^{m-1} \lambda_{j}(l) \vec{t}^{j}
$$

where

$$
\vec{\lambda}(l)=\left(\begin{array}{c}
\lambda_{0}(l) \\
\lambda_{1}(l) \\
\vdots \\
\lambda_{m-1}(l)
\end{array}\right)=A_{m, m}^{-1} \vec{t}^{m+l}=A_{m, m}^{-1} \operatorname{diag}\left(\vec{t}^{m}\right) \vec{t}^{l},
$$

and

$$
\operatorname{diag}\left(\vec{t}^{m}\right)=\left(\begin{array}{cccc}
t_{1}^{m} & 0 & \ldots & 0 \\
0 & t_{2}^{m} & \ddots & \vdots \\
\ldots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & t_{m}^{m}
\end{array}\right)
$$

Theorem 6: Let k be any integer such that $0 \leq k \leq m-1$, and let V_{k}^{+}and V_{k}^{-}be defined by (7) and (8), then

$$
V_{k}^{+}=T^{k}=V_{k}^{-},
$$

and

$$
\operatorname{dim} V_{k}^{+}=k+1=\operatorname{dim} V_{k}^{-}
$$

Proof. We prove the result for V_{k}^{+}only, the proof for V_{k}^{-}is identical. Since

$$
\begin{aligned}
\sum_{i=1}^{m} \mu_{i} \vec{v}_{k, i}^{+} & =\sum_{i=1}^{m} \mu_{i}\left(\sum_{j=0}^{k}\binom{k}{j} t_{i}^{j} \vec{t}^{k-j}\right) \\
& =\sum_{j=0}^{k}\binom{k}{j}\left(\sum_{i=1}^{m} \mu_{i} t_{i}^{j}\right) \vec{t}^{k-j}
\end{aligned}
$$

then $\quad \sum_{i=1}^{m} \mu_{i} \vec{v}_{k, i}^{+}=0 \quad$ if and only if $\sum_{j=0}^{k}\binom{k}{j}\left(\sum_{i=1}^{m} \mu_{i} t_{i}^{j}\right) \vec{t}^{k-j}=0$. From Theorem 5, the set $\left\{\vec{t}^{k-j}\right\}_{j=0}^{k}$ is linearly independent for $k<m$, it follows that $\sum_{i=1}^{m} \mu_{i} t_{i}^{j}=0$ for $j=0, \ldots k$. But this system of $k+1$ equations and m unknowns has a unique solution only for $k=m-1$. Moreover the matrix associated to this system, $A_{m, k+1}^{T}$, is of rank $k+1$ for $k<m$. Hence $\operatorname{dim} V_{k}^{+}=k+1$.

For $k \geq m$ we have no clear result about the dimension of V_{k}^{-}and V_{k}^{+}as illustrated by the following example for $m=3$.

Example: Let $m=3$.
(a) For V_{k}^{-}, since we have

$$
\begin{aligned}
& \operatorname{Det}\left(\vec{v}_{k, 1}^{-}, \vec{v}_{k, 2}^{-}, \vec{v}_{k, 3}^{-}\right)=\left|\begin{array}{ccc}
0 & \left(t_{1}-t_{2}\right)^{k} & \left(t_{1}-t_{3}\right)^{k} \\
\left(t_{2}-t_{1}\right)^{k} & 0 & \left(t_{2}-t_{3}\right)^{k} \\
\left(t_{3}-t_{1}\right)^{k} & \left(t_{3}-t_{2}\right)^{k} & 0
\end{array}\right| \\
& =\left[1+(-1)^{k}\right]\left(t_{1}-t_{2}\right)^{k}\left(t_{2}-t_{3}\right)^{k}\left(t_{3}-t_{1}\right)^{k} \\
& =\left\{\begin{array}{cc}
0 & \text { if } k \text { is odd, }, \\
2\left(t_{1}-t_{2}\right)^{k}\left(t_{2}-t_{3}\right)^{k}\left(t_{3}-t_{1}\right)^{k} & \text { if } k \text { is even, }
\end{array}\right.
\end{aligned}
$$

it follows that

$$
\operatorname{dim} V_{k}^{-}= \begin{cases}2 & \text { if } k \text { is odd } \\ 3 & \text { if } k \text { is even }\end{cases}
$$

(b) For V_{k}^{+}, we have

$$
\begin{aligned}
\operatorname{Det}\left(\vec{v}_{k, 1}^{+}, \vec{v}_{k, 2}^{+}, \vec{v}_{k, 3}^{+}\right)= & \left|\begin{array}{cc}
\left(2 t_{1}\right)^{k} & \left(t_{1}+t_{2}\right)^{k} \\
\left(t_{1}+t_{3}\right)^{k} \\
\left(t_{2}+t_{1}\right)^{k} & \left(2 t_{2}\right)^{k} \\
\left(t_{3}+t_{1}\right)^{k} & \left.\left(t_{3}+t_{3}\right)^{k} t_{2}\right)^{k} \\
\left(2 t_{3}\right)^{k}
\end{array}\right| \\
& =\left(8 t_{1} t_{2} t_{3}\right)^{k}+2\left(t_{1}+t_{2}\right)^{k}\left(t_{2}+t_{3}\right)^{k}\left(t_{3}+t_{1}\right)^{k} \\
& =-2^{k}\left[t_{1}^{k}\left(t_{2}+t_{3}\right)^{2 k}+t_{2}^{k}\left(t_{3}+t_{1}\right)^{2 k}+t_{3}^{k}\left(t_{1}+t_{2}\right)^{2 k}\right]
\end{aligned}
$$

This determinant can be 0 . Indeed for $t_{1}+t_{3}=0$ and $t_{2}=0$ the determinant is 0 for odd k. It follows that $\operatorname{dim} V_{k}^{+}$is 2 or 3 depending on the values of t_{1}, t_{2} and t_{3}.

Remark 2: In ${ }^{[5]}$ it is asserted that V_{2}^{-}is of dimension m which is clearly false except for $m=3$. As a consequence the proof given in ${ }^{[5]}$ for the existence of a WLSE for a 3-parametric exponential function is not
correct. There are also errors in the proof of the existence of a WLSE in ${ }^{[6]}$.

Polynomial weighted least squares fitting: We introduce the scalar product on $I R^{m}$ defined by

$$
\langle\vec{u}, \vec{v}\rangle=\sum_{i=1}^{m} \omega_{i} u_{i} v_{i}
$$

for any pair of vectors \vec{u} and \vec{v} in $I R^{m}$

$$
\vec{u}=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{m}
\end{array}\right) \text { and } \vec{v}=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{m}
\end{array}\right)
$$

The norm on $I R^{m}$ induced by the scalar product is $\|\vec{u}\|=\langle\vec{u}, \vec{u}\rangle^{2}$. Then (1) becomes

$$
F\left(p_{n}\right)=\left\|\vec{f}-\vec{p}_{n}\right\|^{2}
$$

where

$$
\vec{p}_{n}=\sum_{j=0}^{n} \alpha_{j} \vec{t}^{j}, \quad \vec{t}^{j}=\left(\begin{array}{c}
t_{1}^{j} \\
t_{2}^{j} \\
\vdots \\
t_{m}^{j}
\end{array}\right), \quad \text { and } \quad \vec{f}=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{m}
\end{array}\right) .
$$

The problem is to find the orthogonal projection of \vec{f} on T^{n}. This projection is completely characterized by the normal equations $\left\langle\vec{f}-\vec{p}_{n}^{*}, \vec{p}_{n}\right\rangle=0$ for all $\vec{p}_{n} \in T^{n}$.

Again, to simplify the computation of \vec{p}_{n}^{*}, we can determine an orthogonal basis $\left\{\vec{q}_{j}\right\}_{j=0}^{n}$ for T^{n} by applying the Gram-Schmidt process to its basis $\left\{\vec{t}^{j}\right\}_{j=0}^{n}$. We obtain

$$
\vec{q}_{0}=\overrightarrow{1}, \quad \vec{q}_{1}=\vec{t}-\alpha_{1} \overrightarrow{1}
$$

and for $j=2, \ldots, n$,

$$
\vec{q}_{j}=\left(\vec{t}-\alpha_{j} \overrightarrow{1}\right) \cdot \vec{q}_{j-1}-\beta_{j} \vec{q}_{j-2}
$$

where

$$
\alpha_{j}=\frac{\left\langle\vec{t} \cdot \vec{q}_{j-1}, \vec{q}_{j-1}\right\rangle}{\left\langle\vec{q}_{j-1}, \vec{q}_{j-1}\right\rangle} \quad(j=1,2,3, \ldots),
$$

and

$$
\beta_{j}=\frac{\left\langle\vec{t} \cdot \vec{q}_{j-1}, \vec{q}_{j-2}\right\rangle}{\left\langle\vec{q}_{j-2}, \vec{q}_{j-2}\right\rangle} \quad(j=2,3,4, \ldots)
$$

In these identities, $\vec{u} \cdot \vec{v}$ is the coordinatewise multiplication of two vectors of $I R^{m}$ defined by

$$
\vec{u} \cdot \vec{v}=\left(\begin{array}{c}
u_{1} v_{1} \\
u_{2} v_{2} \\
\vdots \\
u_{m} v_{m}
\end{array}\right) .
$$

Let us observe that $\vec{q}_{j} \in T^{j}$ for $j=0, \ldots n$.
It follows that the projection is given by

$$
\begin{equation*}
\vec{p}_{n}^{*}=\sum_{j=0}^{n} \gamma_{j}^{*} \vec{q}_{j} \tag{9}
\end{equation*}
$$

where

$$
\gamma_{j}^{*}=\frac{\left\langle\vec{f}, \vec{q}_{j}\right\rangle}{\left\langle\vec{q}_{j}, \vec{q}_{j}\right\rangle} \quad(j=0,1, \ldots, n)
$$

The next theorem is equivalent to Theorem 2.3.
Theorem 7: $\left\langle\vec{f}-\vec{p}_{n-1}^{*}, \vec{t}^{n}\right\rangle=\gamma_{n}^{*}\left\|\vec{q}_{n}\right\|^{2}$ for $n=0, \ldots, m-1$.
Proof. For $n=0$ we have $\vec{p}_{n-1}^{*}=\overrightarrow{0}$ and the result follows. For $n>0$, since $\vec{q}_{n}=\vec{t}^{n}+\vec{p}_{n-1}$ where \vec{p}_{n-1} is a vector in T^{n-1}, and $\vec{p}_{n}^{*}=\gamma_{n}^{*} \vec{q}_{n}+\vec{p}_{n-1}^{*}$, we have

$$
\begin{aligned}
\gamma_{n}^{*}\left\|\vec{q}_{n}\right\|^{2} & =\left\langle\gamma_{n}^{*} \vec{q}_{n}, \vec{q}_{n}\right\rangle \\
& =\left\langle\vec{p}_{n}^{*}-\vec{p}_{n-1}^{*}, \vec{q}_{n}\right\rangle \\
& =\left\langle\vec{p}_{n}^{*}-\vec{f}, \vec{q}_{n}\right\rangle+\left\langle\vec{f}-\vec{p}_{n-1}^{*}, \vec{q}_{n}\right\rangle \\
& =\left\langle\vec{f}-\vec{p}_{n-1}^{*}, \vec{t}^{n}+\vec{p}_{n-1}\right\rangle \\
& =\left\langle\vec{f}-\vec{p}_{n-1}^{*}, \vec{t}^{n}\right\rangle
\end{aligned}
$$

CLASSIFICATION OF DATA

Let $\left\{\left(\omega_{i}, t_{i}, f_{i}\right)\right\}_{i=1}^{m}$ be a set of m data points. If we use a discrete least squares polynomial to fit the data with the orthogonal basis $\left\{q_{j}\right\}_{j=0}^{n}$, the coefficients of p_{n}^{*} with respect to its expansion (5) or (9) suggest the following classification of the data.

Definition 1: The data $\left\{\left(\omega_{i}, t_{i}, f_{i}\right)\right\}_{i=1}^{m}$ are said to be:
(i) essentially stationary if $\gamma_{1}^{*}=0$;
(ii) essentially increasing, respectively decreasing, if $\gamma_{1}^{*}>0$, respectively $\gamma_{1}^{*}<0 ;$
(iii) essentially linear if $\gamma_{2}^{*}=0$;
(iv) essentially convex, respectively concave, if $\gamma_{2}^{*}>0$, respectively $\gamma_{2}^{*}<0$.

Let us note that we could continue the classification with the higher order coefficients γ_{n}^{*} for $n=3, \ldots, m-1$. this basic classification could help to find more realistic or complex fitting to the data with nonlinear function (see ${ }^{[4,5,6,2]}$ for an exponential functions).

Finally if we apply symmetric transformations to the data we obtain the following result.

Theorem 8: Effect of symmetric transformations on the data.
(a) If the $\left\{\left(\omega_{i}, t_{i}, f_{i}\right)\right\}_{i=1}^{m}$ are essentially increasing, resp. decreasing, then the data $\left\{\left(\omega_{i},-t_{i}, f_{i}\right)\right\}_{i=1}^{m}$ are essentially decreasing, resp. increasing. The stationarity, linearity, and concavity or convexity properties are not modified by this transform.
(b) If the data $\left\{\left(\omega_{i}, t_{i}, f_{i}\right)\right\}_{i=1}^{m}$ are essentially increasing, resp. decreasing, and essentially convex, resp. concave, then the data $\left\{\left(\omega_{i}, t_{i},-f_{i}\right)\right\}_{i=1}^{m}$ are essentially decreasing, resp. increasing, and essentially concave, resp. convex. The stationarity and linearity properties are not modified by this transform.

CONCLUSION

We have revisited the polynomial weighted least squares analysis. Doing so we have specified the dimension of three vector subspaces of P (Theorem 1 and Theorem 2) and of $I R^{m}$ (Theorem 5 and Theorem 6) used for solving this problem. We also have established a property (Theorem 3 and Theorem 7) and suggested a classification of data (Definition 1) which will play a role in finding sufficient conditions for the existence of a WLSE for a 3-parametric exponential model ${ }^{[2]}$.

ACKNOWLEDGMENTS

This work has been supported by a NSERC (Natural Sciences and Engineering Research Council of Canada) individual discovery grant for the first author

REFERENCES

1. S.D. Conte and C. de Boor, 1980. Elementary Numerical Analysis: An Algorithmic Approach, McGraw-Hill, New York.
2. F. Dubeau and Y. Mir, 2007. Existence of optimal weighted least squares estimate for 3-parametric exponential model, Communications in Statistics Theory and Methods, to appear.
3. G.E. Forsythe, 1956. Generation and use of orthogonal polynomials for data-fitting with digital computer, J. SIAM, 5, 74-78.
4. D. Jukic and R. Scitovski, 1997. Existence of optimal solution for exponential model by least squares, Journal of Computational and Applied Mathematics, 78, 317-328.
5. D. Jukic and R. Scitovski, 2000. The best least squares approximation problem for a 3-parametric exponential regression model, ANZIAM J., 42, 254-266.
6. D. Jukic, 2004 A necessary and sufficient criteria for the existence of the least squares estimate for a 3-parametric exponential function, Applied Mathematics and Computation, 147, 1-17.
7. C.L. Lawson and R.J. Hanson, 1995. Solving Least Squares Problems, SIAM, Philadelphia.
8. L.F. Shampine, 1975. Discrete least squares polynomial fits, Communications of the ACM, 18, 179-180.
9. L.F. Shampine and R.C. Allen, 1973. Numerical Computing: An introduction, Saunders, Philadelphia.

[^0]: Corresponding Author:

