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Abstract: An expected utility model of asset choice, which takes into account asset pricing, is 
considered. The obtained portfolio selection problem under utility pricing is solved under several 
assumptions including quadratic utility, exponential utility and multivariate symmetric elliptical 
returns. The obtained unique solution, called optimal utility portfolio, is shown mean-variance efficient 
in the classical sense. Various questions, including conditions for complete diversification and the 
behavior of the optimal portfolio under univariate and multivariate ordering of risks as well as risk-
adjusted performance measurement, are discussed. 
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INTRODUCTION 

 
 The mean-variance model of asset choice by 
Markowitz[1] is one of the cornerstone of modern 
finance. Despite its shortcomings and restrictions 
(multivariate normal returns for arbitrary preferences or 
quadratic utility for arbitrary distributions) this 
fundamental model remains popular, mainly due to its 
analytical tractability and its rich empirical 
implications. 
 In the present study, we consider a model of 
portfolio selection, which takes into account asset 
pricing. As usual, the goal is maximization of expected 
utility of the investor’s terminal random wealth. 
However, as side constraint, we suppose that asset 
prices are determined by the utility principle, which 
expresses the indifference between the future random 
value and its certainty equivalent. The analysis is 
restricted to the case where all assets are risky. This 
assumption is most useful for strategic asset allocation, 
where even money markets are considered risky 
investments. 
 Our portfolio selection problem under utility 
pricing is defined in Section 2 and solved under several 
alternative assumptions. In Section 2.1, we assume 
quadratic utility functions but arbitrary returns and 
obtain the optimal quadratic utility portfolio. Assuming 
multivariate normally distributed returns and an 
exponential utility function in Section 2.2, the solution 
is called optimal exponential utility portfolio. The 
solution in Section 2.3, obtained for multivariate 
symmetric elliptical returns but arbitrary left truncated 
utility functions, is called optimal elliptical portfolio. 
As a remarkable main result, we show in Theorem 3.1 
that the three derived optimal utility portfolios define a 
unique optimal utility portfolio, which is mean-variance 
efficient in the classical sense. In Section 4, we study 
the behavior of this portfolio with respect to some 
typical situations. The conditions for complete 

diversification are stated. Then, we discuss the behavior 
of the optimal portfolio under univariate and 
multivariate ordering of risks as well as under risk-
adjusted performance measurement. 
 
2. Portfolio selection under utility pricing: Consider 
the portfolio selection over a static one-period in an 
economy with a finite set n of risky assets, which has 
the following characteristics: 
 
S  : initial investment amount 
Rj : random return on the j-th risky asset, j 1,..., n=  
Wj : proportion of initial amount invested in the j-th      

risky asset, j 1,..., n=  
Pj : initial price of the j-th risky asset, j 1,..., n=  
Let j jS w S= ⋅  be the initial amount invested in the j-th 

risky asset such that 
n

j
j 1

S S
=

=∑ . Define the proportion 

jλ of shares of the j-th risky asset by the condition 

j j jP S , j 1,..., n.λ = =  (2.1) 
 We suppose that the initial prices of the risky assets 
are utility prices. For this, let be given non-decreasing 
and concave utility functions ju (x), j 1,..., n= , one for 
each risky asset. The utility principle determines prices 
in such a way that there is indifference between 
receiving the future random value j jP (1 R )⋅ + and its 
corresponding certainty equivalent Pj, that is prices 
solve the system of equations 
( ) ( )j j ju P E u P (1 R ) , j 1,..., n. = ⋅ + =   (2.2) 

 Using these prices, the one-period increase in 
wealth or random gain of a portfolio choice 

1 n( ,..., )λ λ λ=  is given by 
n

j j j
j 1

G( ) P R .λ λ
=

= ∑  (2.3) 
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 Suppose an investor uses a non-decreasing and 
concave utility function u(x). Then, the portfolio 
selection problem of the investor consists to maximize 
the expected utility of the terminal random 
wealth ( )( ) E u S G( )ϕ λ λ= +    under the conditions 
(2.2). 
 In the next three Subsections three typical 
situations are considered. We begin with the two well-
known mean-variance legitimated cases of quadratic 
utility and multivariate normal returns and extend the 
latter to the case of multivariate symmetric elliptical 
returns. 
 
2.1. Quadratic utility functions: Consider first 
quadratic utility functions 

21
j 2u (x) u(x) x x , j 1,..., nγ= = − = . The marginal 

utility u '(x) 1 xγ= − is non-negative provided 1x γ −≤ , 
hence satiation is reached when 1x γ −≥ . To avoid this, 
one assumes that rates of return and initial wealth are 
such that satiation will not be attained[2]. 
 Solving (2.2) yields the quadratic utility prices 

j 21
j j2

1 1P , j 1,..., n,
1 (1 k )γ µ

= ⋅ =
+ +

 (2.4) 

where j j, kµ  are the means and coefficients of 
variation of jR , j 1,..., n= . To maximize ( )ϕ λ  it 
suffices to solve the first order conditions 

( )i i
i

( ) P E R u ' S G( ) 0, i 1,...,n.ϕ λ λ
λ

∂
= ⋅  ⋅ +  = = ∂

 (2.5) 

 Under the assumption of a quadratic utility 
function, one obtains the equivalent conditions 

( )
n

j j i j i j i
j 1

P Cov R ,R , i 1,...,n
1 S
γ λ µ µ µ
γ =

 ⋅ ⋅ + = = − ∑  (2.6) 

 Let 1 ne ( ,..., )µ µ=  be the vector of expected returns 

and let ( ) ( )i j i j i jV Cov R ,R E R Rµ µ   = + =   
%  be the 

matrix of second order moments, whose inverse is 
assumed to exist. Then (2.6) has the solution 

( )1
j j j
P V e , j 1,...,n.

1 S
γ λ
γ

−⋅ = =
−

%  (2.7) 

 It follows that the optimal weight vector 
o

1 nw (w ,...,w )= , with 
o i i
i

j j

Pw , i 1,...,n
P

λ
λ

= =
∑

, (2.8) 

satisfies the simple relationship 
1

o V ew ,
A

−

=
%

%  with ( )T 1A 1 V e−= ⋅% % , (2.9) 

 Where 1 (1,...,1)=  denotes a vector of ones. The 
solution (2.9) defines the optimal quadratic utility 
portfolio. Furthermore, one has using (2.7) that 
 

j j
S P A

1 S 1 S
γ γ λ
γ γ

= ⋅ =
− − ∑ %, that is A 1

S1 A
γ = ⋅

+

%
%  (2.10) 

 Inserting (2.10) into (2.4) one obtains the quadratic 
utility prices 

j 21
j j2

1 1 AP S, j 1,...,n.
1 (1 k ) Aµ

+
= ⋅ ⋅ =

+ +

%
%  (2.11) 

 The optimal quadratic utility proportions defined 
in (2.1) are then given by 

( )
o 21
j j j2o 1

j j
j

w 1 (1 k )
S V e , j 1,...,n

P 1 A
µ

λ −+ +
= ⋅ = ⋅ =

+
%

%  (2.12) 

 
2.2. Multivariate normal returns and exponential 
utility: Another important situation, which allows for 
explicit analytical formulas, is a multivariate normal 
distribution of returns and exponential utility functions 

( )x1
ju (x) u(x) 1 e , j 1,...,nγ

γ
− ⋅= = − = , with γ the 

coefficient of risk aversion. Again, denote by j j, kµ the 
means and coefficients of variation of jR , j 1,...,n= . 
 Solving (2.2) yields the exponential utility prices 

j 21
j j2

1 1P , j 1,...,n.
kγ µ

= ⋅ =  (2.13) 

 Since ( )iR ,S G( )λ+ is bivariate normal, the 
application of Stein’s Lemma yields 

( )
( ) [ ]
i

i

Cov R ,u ' S G( )

E u '' S G( ) Cov R ,G( ) , i 1,...,n.

λ

λ λ

 +  
=  +  ⋅ = 

 

(as (A.6) in Appendix). It follows that (2.5) is 
equivalent to the conditions 

n

j j i j i
j 1

P Cov R ,R , i 1,...,n.γ λ µ
=

 ⋅ ⋅ = = ∑  (2.14) 

 Denote by ( )i jV Cov R ,R =    the covariance 
matrix, whose inverse is assumed to exist. Then (2.14) 
has the solution 

( )1
j j j
P V e , j 1,...,n.γ λ −⋅ = =  (2.15) 

 The optimal weight vector o
1 nw (w ,...,w )= is given 

by 
1

o V ew ,
A

−

=  with ( )T 1A 1 V e−= ⋅ , (2.16) 

and defines the optimal exponential utility portfolio. 
With (2.15) one has j jS P Aγ γ λ= ⋅ =∑ , hence 1A Sγ −= ⋅ . 
Inserted into (2.13) yields the exponential utility prices 

j 21
j j2

1 SP , j 1,...,n.
k Aµ

= ⋅ =  (2.17) 

 The optimal exponential utility proportions (2.1) 
are then given by 

( )
o
jo 2 11

j j j2 j
j

w
S k V e , j 1,...,n

P
λ µ −= ⋅ = ⋅ =  (2.18) 

 
2.3. Multivariate elliptical returns and left truncated 
utility: Suppose that the random vector of returns 

1 n(R ,...,R )  follows a multivariate symmetric elliptical 
density of returns with mean e and positive definite 
covariance matrix V given by 
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T 11f (x) g (x e) V (x e)
det(V)

− = ⋅ − −   (2.19) 

 Where [ ) [ )g : 0, 0,∞ → ∞ is some appropriate 
generator function. The non-decreasing almost 
everywhere differentiable concave utility function of 
the investor is assumed to take non-negative values 
such that u(x) 0= for all λ≤x . The constant l is chosen 
such that the utility associated to undesirable negative 
portfolio returns vanishes (see the examples below for 
illustration). Applying Fang et al. [3], Theorem 2.16, p. 
43 and Theorem 2.18, p. 45, one notes that 
( )iR ,S G( )λ+  is bivariate elliptical and satisfies the 
linear regression property required in Theorem A.1 of 
the Appendix. Since u(x)=0 for x ≤ l , the variant (A.1) 
of Stein’s Lemma yields the relationship 

( )
( )

[ ] [ ]

i

i

Cov R ,u ' S G( )

Cov G( ),u ' S G( )
Cov R ,G( ) ,i 1,...,n.

Var G( )

λ

λ λ
λ

λ

 +  
 +  = ⋅ =

(2.20) 

 It follows that (2.5) is equivalent to the system of 
equations 

( )
[ ] [ ]

n

j j i j i
j 1

Cov G( ),u ' S G( )
Var G( ) E u '(S G( ))

P Cov R ,R , i 1,...,n

λ λ
λ λ

λ µ
=

 +  − ⋅
⋅ +

  = = ∑
 (2.21) 

which has the solution 
[ ] ( )

( ) ( )1
j j j

Var G( ) E u ' S G( )
P V e , j 1,..., n

Cov G( ), u ' S G( )
λ λ

λ
λ λ

−⋅ +  = − ⋅ =
+  

 (2.22) 

The optimal weight vector (2.8) is given by 
1

o V ew ,
A

−

= with ( )T 1A 1 V e−= ⋅ , (2.23) 

and defines the optimal elliptical portfolio. By (2.16) 
this coincides with the optimal exponential utility 
portfolio. 
 To illustrate, we assume in the examples below left 
truncated exponential utility functions such that for 
j 1,..., n=  one sets 

ju (x)


= 
 { }( )

j j

1
j j j j

0, x P (1 ),

1 exp x P (1 ) , x P (1 ),

µ

γ γ µ µ−

≤ +

 ⋅ − − − + ≥ + 
 (2.24) 

and 

u(x)


= 
 [ ]{ }( )1

0, x S(1 ),

1 exp x S(1 ) , x S(1 ),

µ

γ γ µ µ−

≤ +

⋅ − − − + ≥ +
 (2.25) 

where 1E S G( )µ λ− =   is the mean expected return of the 
portfolio. The special choice of the left truncation 
models the fact that returns below average are 
associated a zero utility. This might be appropriate for 
the design of optimal portfolios, whose goal is to “beat 
the market”. In this situation, the pricing equations (2.2) 
are equivalent to 

{ }j j
j j R

j j

E exp( P R ) 1

11 exp( P ), j 1,..., n
2

µ
γ

γ µ

≥
 − ⋅  

= − − =
 (2.26) 

where use has been made of 1
j j 2Pr(R )µ≤ =  (symmetric 

margins). 
 
Example 2.1: Normal inverted gamma returns 
 It appears instructive to illustrate our results with a 
non-trivial but tractable multivariate elliptical 
distribution, which finds wide interest in both Insurance 
and Finance. The mixture of a normal with inverted 
gamma variance yields the Pearson type VII 
distribution or generalised Student t[4-6]. It has been 
proposed to model financial returns by Praetz[7], 
Blattberg and Gonedes[8], Kon[9], Taylor[10], 
Hürlimann[11,12]. An actuarial application is found in 
Hürlimann[13]. The multivariate density 

( )

( )

( )

n
2

n
2

T 1

n
2

n
2 n

2

1 (x e) C (x e)
f (x) ,

B , det(C)

( )B , , 0,
( )

β

β

π ββ β
β

− +− + − ⋅ ⋅ − =
⋅

⋅ Γ
= >
Γ +

 (2.27) 

has location-scaled transformed Pearson VII marginal 
densities 

( )
1
2

11
i 2

ii
( )2

i

ii

1f (x) B ,
c

x1 , i 1,...,n
c

β

β

µ

−

− +

= ⋅

  − + = 
   

 (2.28) 

 If ß>1 the variance [ ]2
i iVar Rσ =  exists and one has 

ii ic 2( 1)β σ= − ⋅ . If , 1,2,3,...
2
υβ υ= = , one recovers a 

location-scale transformed Student t with υ  degrees of 

freedom. In particular 1
2

β =  is a Cauchy and ß=1 is a 

Bowers distribution. If β →∞  the random 
variable ( ) 1

i i ii2( 1) R cβ µ −− ⋅ − ⋅ converges to a standard 
normal random variable. On the other hand, any linear 
combination ( )T

1 nR w R ,...,R= ⋅  has density 

( )
1
2( )2

11
R 2

1 xf (x) B , 1 ,
c c

β
µβ

− +
−  − = ⋅ +  

   
 (2.29) 

with Tw eµ = ⋅  and Tc w C w= ⋅ ⋅ [3], Theorem 2.16). The 
analytical formulas below use the special integral 
function 

2 a bx

0

I(a,b) (1 x ) e dx
∞

− −= +∫ , (2.30) 

whose computational evaluation is discussed in the 
Appendix B. 
 Under the assumption ß>1 (variances are finite), 
one obtains after some calculation the formulas 
[ ]
[ ] [ ]

11 1
2 2

11 1
2 2

E u '(S G( )) B( ; ) I( , Sc),
Cov G( ),u '(S G( )) Var G( )

2 2 B( ; ) I( , Sc),
2 1

λ β β γ
λ λ γ λ

β β β γ
β

−

−

+ = ⋅ +
+ = − ⋅ ⋅

 −
⋅ ⋅ − − 

 (2.31) 

which inserted into (2.22) yield the relationships 
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( )

1
2

j j 1
2

1

j

I( , Sc)1 2 1P
2 2 I( , Sc)

V e , j 1,...,n

β γβλ
γ β β γ

−

  +−
= ⋅ ⋅ − − 

=
 (2.32) 

 A similar calculation shows that the utility pricing 
equations (2.26) are equivalent to 

11 1
j j2 2

1
j j2

B( ; ) exp( P ) I( , Sc)
1 exp( P ), j 1,...,n
β γ µ β γ

γ µ

− ⋅ − ⋅ +
= − − =

 (2.33) 

 Using (2.32) and j jS Pλ=∑  one sees that 
1
2
1
2

I( , Sc)2 1S A
2 2 I( , Sc)

β γβγ
β β γ

  +−
= ⋅ ⋅ − − 

 (2.34) 

 Which is an implicit equation for the parameter γ . 
Inserting its numerical value into (2.33) it is possible to 
determine numerically the corresponding truncated 
exponential utility prices and the optimal proportions 
defined in (2.1). 
 
Example 2.2: Symmetric Kotz type returns 
 Another tractable family of symmetric elliptical 
distributions has the density 

[ ] [ ]{ }
,02,0,

,)()(exp)()(
)det(

)( 111

>+>

−−−⋅−−= −−−

nNsr

exCexrexCex
C

K
xf sTNTn  (2.35) 

 
with the normalizing constant 

( )
( )

2 N n 2
2s

n
2

n
2

n 2N n 2
2s

s
K r

π

+ −

+ −

⋅Γ
= ⋅

⋅Γ
 (2.36) 

 This family, introduced by Kotz[14], is called 
symmetric Kotz type distribution in Fang et al.[3]. It 
reduces to the multivariate normal distribution in case 

1
2N s 1, r= = = . The marginal densities take the form 

2(N 1) 2s

1 i i
i

i i i

K x x
f (x) exp r

c c c
µ µ

−     − − = ⋅ ⋅ −    
     

 (2.37) 

and the portfolio return is again of symmetric Kotz type 
such that 

2(N 1) 2s
1

R
K x xf (x) exp r
c c c

µ µ−  − −    = ⋅ ⋅ −    
     

 (2.38) 

 Analytical evaluation requires the following special 
integral function 

2sa rx bx

0

1J(a, b, r,s) x e dx
b

∞
− −= ⋅ ∫  (2.39) 

whose computational evaluation is provided in the 
Appendix B. A straightforward calculation yields the 
formulas 
[ ]
[ ]

1
2

1

E u '(S G( )) K Sc J(2(N 1), Sc, r,s),
Cov G( ), u '(S G( )) K (Sc) J(2(N 1)

1, Sc, r,s).

λ γ γ
λ λ γ

γ

+ = ⋅ −
+ = ⋅ −

+
 (2.40) 

 Proceeding now as in Example 2.1, it is possible to 
determine numerically the corresponding truncated 
exponential utility prices and the optimal proportions in 
(2.1). 

3. Mean-variance efficiency of the optimal utility 
portfolios: It is worthwhile and instructive to compare 
portfolio selection under utility pricing with the 
classical mean-variance portfolio selection. Let the set 

n

j
j 1

W w w 1
=

  = = 
  
∑  describe all portfolio choices. 

Recall that a portfolio Ww ∈  belongs to the mean-
variance boundary if and only if, for some µ , the 

portfolio w  solves the problem { }2 T
ww W

min w Vwσ
∈

=  

subject to T
w w eµ µ= ⋅ = . A portfolio w W∈  belongs 

to the mean-variance efficient frontier if and only if no 
portfolio Wv∈  exists such that v wµ µ≥  and 

v wσ σ≤ , where at least one of the inequalities is strict. 
 From Merton[15] or Huang and Litzenberger[2], one 
knows that a portfolio w  belongs to the mean-variance 
boundary if and only if 

µ⋅+= hgw , (3.1) 
where g and h are the vectors defined by 

( ) ( )
( ) ( )

1 T 1 T

1 T 1 T

1g B V e A V ,
D
1h C V A V e
D

µ

µ

− −

− −

 = − 

 = − 

 (3.2) 

with 
T 1 T 1

T 1 2
A 1 (V e), B e (V e),
C 1 (V 1), D BC A .

− −

−
= ⋅ = ⋅
= ⋅ = −

 (3.3) 

 The mean-variance efficient frontier consists of 

those weight vectors (3.1) for which A
C

µ ≥ . It is 

remarkable that the optimal portfolios (2.9), (2.16) and 
(2.23) are all equal and belong to the mean-variance 
efficient frontier. 
 
Theorem 3.1: The optimal quadratic utility portfolio, 
the optimal exponential utility portfolio and the optimal 
elliptical portfolio coincide and are mean-variance 
efficient. 
 
Proof: The expected return of the optimal exponential 

utility portfolio is 
T 1

o T o e (V e) Be w
A A

µ
−⋅

= ⋅ = = . 

Using (3.1) and (3.2) one obtains immediately 

that
1

o V eg h
A

µ
−

+ ⋅ = , which by (3.1) shows that ow  

belongs to the mean-variance boundary. Since 
o B A

A C
µ = >  (because 2D BC A 0= − > ) the portfolio 

is mean-variance efficient. Since (2.23) is identical to 
(2.16), it remains to show that (2.9) and (2.16) yield the 
same optimal portfolios. Let w%  and w denote the 
optimal portfolios defined by (2.9) and (2.16). To 
obtain them, one solves the linear systems Vx e=%% , 
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Vx e=  and set T

xw
1 x

=
⋅

%%
%

, T

xw
1 x

=
⋅

. Since 

V V M= +%  with ( )i jM µ µ= , one sees immediately 

that the equation exV =~~
 is equivalent to the equation 

( )TVx 1 e x e= − ⋅% % . But ( )T T 1e x e V e B−= =% %%  is a 
constant. It follows that 

( )( )
( )( )

1 1

T T 1

1 B V ex V ew w
A1 x 1 1 B V e

− −

−

−
= = = =

⋅ ⋅ −

%%%
%%

, which shows 

the assertion.  
 In view of the present unification result, the 

portfolio defined by the weight vector 
1

o V ew
A

−

=  will 

simply be called optimal utility portfolio. As an 
additional property, it is important to observe that any 
mean-variance efficient portfolio oww ≠  is non-
optimal in the following sense. For any such w, 
investing the amount S yields by construction a terminal 
random wealth, whose corresponding expected utility 
satisfies the inequality 

( ) ( )oE u S G( ) E u S G( )λ λ + ≤ +     , where oλ  is the 

optimal proportion vector defined in (2.1). In the very 
narrow sense of maximizing this expected utility, the 
optimal utility portfolio is the preferred mean-variance 
efficient portfolio choice. 
 
4. Some properties of the optimal utility portfolio: 

Given the optimal utility portfolio 
A

eVw
1−

= , which 

maximizes the expected utility of the terminal random 
wealth under various assumptions, it appears useful to 
study the behavior of this particular solution with 
respect to some typical situations. 
 In the special case n = 2, often used as illustration, 
we use the notations X YR , R for the random returns 
instead of 1 2R , R . Assume that the bivariate distributed 
returns have means X Y,µ µ , standard 
deviations X Y,σ σ and correlation coefficient ρ . The 
coefficients of variation are denoted 

Y

Y
Y

X

X
X kk

µ
σ

µ
σ

== , . 

 
Question 1: When is complete diversification optimal? 
 In case some of each risky asset is purchased, that 
is iw 0>  for all { }i 1,..., n∈ , one speaks of complete 
diversification[16-18]. This situation occurs if and only if 

1V e 0− >  (each vector component is strictly positive). 
For example, if n=2 one has 

2
1 Y X X Y Y

22 2 2
X Y X Y XX Y

1V e 0
(1 )

σ µ ρσ σ µ
σ µ ρσ σ µρ σ σ

−  −= ⋅ > −−  
 (4.1) 

if and only if Y X

X Y

k k
min ,

k k
ρ

 
<  

 
or equivalently 

X Y X Y

X Y X Y

R R R R
Cov , min Var , Var .

µ µ µ µ
       <       
       

 (4.2) 

 In particular, this situation allows for positively 
correlated returns, which are typically observed in 
financial markets and whose financial risk cannot be 
eliminated through diversification[19].  
 
Question 2: How does the optimal portfolio behave 
under univariate ordering of risks? 
In general, let (i) (i) (i)

1 nR (R ,..., R ), i 1,2,= =  be two 
vectors of multivariate normally distributed returns and 
let (i)w , i 1,2= , the corresponding optimal portfolios. 
The random returns of the optimal portfolios are 
denoted here 

T(i) (i)
iR w R , i 1, 2 = ⋅ =  . Comparing 

their expected exponential utilities, one knows from 
standard ordering of risks theory[20] that 
[ ] [ ]1 2E u(R ) E u(R )≤  (4.3) 

if and only if 
,21 RR sl≤  (4.4) 

where sl≤  denotes the stop-loss order or equivalently 
the increasing convex order. Under normally distributed 
returns, the relation (4.4) holds if and only if the means 
and standard deviations are ordered as follows: 

1 2 1 2, .µ µ σ σ≤ ≤  (4.5) 
 From the proof of Theorem 3.1, one knows 

that 2,1, == i
A
B

i

i
iµ , where the constants i iA , B are 

defined as in (3.3). Using Huang and Litzenberger[2], 
formula (3.11.2b), one obtains further 

( )2 2 i
i i i i i i 2

i i

B1 C 2A B , i 1, 2.
D A

σ µ µ= ⋅ − ⋅ + = =  (4.6) 

 These results allow for a numerical evaluation of 
the criterion (4.5), which is left to the interested reader. 
 
Question 3: How does the optimal portfolio behave 
under multivariate ordering of risks? 
 Given some multivariate ordering of relative 
riskiness between the two vectors R(1) and R(2), how do 
the corresponding optimal weight vectors W(1) and W(2) 
behave? This difficult question has only been scarcely 
discussed in the literature. For similar but different 
portfolio selection problems, one finds some results in 
the studies by Fishburn and Porter[21], Landsberger and 
Meilijson[22], Eeckhoudt and Gollier[24], Hürlimann[18]. 
To illustrate, let us restrict our attention to the bivariate 
situation n=2 and let us assume that the normally 
distributed pairs (1) (1)

X Y(R ,R ) and (2) (2)
X Y(R ,R )  have equal 

margins, in particular equal means X Y,µ µ , equal 
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standard deviations X Y,σ σ , but different correlation 
coefficients p(1) and p(2). We assume that the second 
return is more risky than the first in the sense that the 
coefficients of variation satisfy the inequality Y Xk k> . 
What happens under the correlation order of riskiness 

(1) (1) (2) (2)
X Y c X Y(R ,R ) (R ,R )≤ ? This main bivariate ordering 

of risks has been considered among others in 
Yanagimoto and Okamoto[23], Cambanis et al.[25], 
Tchen[26], Dhaene and Goovaerts[27]. In our special 
bivariate situation, the above relation holds exactly 
when (1) (2)ρ ρ≤ . Now, the weights in the more risky 
asset are given by 

(i)
Y 2 (i)

Y X Y Y
2 (i)

XX X Y

1w , i 1,2.
k k k1
k k k

ρ µ
µρ

= =
−

+ ⋅
−

 (4.7) 

 It is immediate that (1) (2)ρ ρ≤ and Y Xk k> implies 
(2) (1)
Y Yw w≤ . This means that a decision maker will 

proportionally invest more in the riskier asset of the less 
correlated risky pair. This induces a preference relation 
for low dependence between returns, which seems to be 
in accordance with the usual standards in modern 
finance. 
 
Question 4: How does the optimal portfolio behave 
under risk-adjusted performance measurement? 
 A modern investor decides upon investment by 
looking at the tradeoff between expected return and 
risk, where risk is measured using a so-called coherent 
measure of risk[28]. A simple and popular coherent 
measure of risk, at least since Rockafellar and 
Uryasev[29], is conditional value-at-risk to some 
confidence level α, which for a normally distributed 
random return R equals 

[ ] [ ]
1

CVaR R E R R VaR R
1 ( ) ,

1

α α

ϕ α σ µ
α

−

 − = − − > − 

 = Φ ⋅ − −

 (4.8) 

where [ ] { }VaR R inf x Pr(R x)α α− = ≥ − ≥ is the value-at-

risk, (x)Φ is the standard normal distribution, 
(x) '(x)ϕ = Φ  and ,µ σ  are the mean and standard 

deviation of R. For risk-adjusted performance 
measurement, one looks at the random return per unit of 
conditional value-at-risk to a fixed confidence level α, 
called CVaR return ratio, which is defined by 

[ ]
R

CVaR Rα −
 (4.9) 

 The expected value of the CVaR return ratio 
measures the risk-adjusted return on capital. This way 
of computing the return is commonly called RAROC[30] 
and is defined by 

[ ] [ ]
[ ]

E R
RAROC R

CVaR Rα
α

=
−

 (4.10) 

 Now, if an investor has to decide upon the more 
profitable of two optimal portfolios with random 
returns R1 and R2, a decision in favor of the second 
return is taken if and only if one has 

[ ] [ ]2 1RAROC R RAROC Rα α≥  at given confidence 
levels a. This preference criterion tells us that a return 
is preferred to another if its expected value per unit of 
economic risk capital is greater. By (4.8) and the results 
for Question 2, one obtains the chain of equivalent 
inequalities 

[ ] [ ]2 1

2 1
2 1

2 12 1

1 2

RAROC R RAROC R
1 1k k
B B

B B .

α α

σ σ
µ µ

≥ ⇔

= = ≤ = = ⇔

≤

 (4.11) 

 
Appendix A: A variant of Stein’s Lemma 
Theorem A.1: Let (X,Y) be a bivariate real random 
vector with distribution (X,Y)F (x, y)  and let g(x) be a 
real differentiable function such that 

x
lim g(x) 0
→−∞

= . 

Suppose (X,Y ) satisfies the linear regression property 
(LR) [ ] [ ]( )E X Y y E X y E Y ,β =  = + ⋅ −   
Where ß=ß[X,Y] is some constant depending on (X,Y). 
Then one has the identity 

[ ] [ ]Cov X,g(Y) Cov Y,g(Y)β= ⋅  (A.1) 
 
Proof: First, integrate both sides of (LR) with respect to 
the conditional distribution YF ( Y y)⋅ ≤  to get the 
identity 
[ ] [ ]{ }E X E X Y y E Y E Y Y yβ−  ≤  = ⋅ −  ≤      (A.2) 

The covariance formula by Hoeffding[31] (or 
Lehmann[32], Lemma 2) yields 

[ ] { }

{ }

[ ]

[ ]{ }

X,Y X Y

X X Y

0

X X
0

Y0

X X
0

Y

Cov X,g(Y) F (x, y) F (x)F (y) g '(y)dxdy

F (x Y y) F (x) F (y)g '(y)dxdy

1 F (x) dx F (x)dx
F (y)g '(y)dy

1 F (x Y y) dx F (x Y y)dx

E X E X Y y F (y)g '(y)dy

∞ ∞

−∞ −∞
∞ ∞

−∞ −∞
∞

∞
−∞

∞
−∞

−∞

= −

= ≤ −

 
− − − 

 =  
  − ≤ + ≤   

 = − ≤ 

∫ ∫

∫ ∫

∫ ∫
∫
∫ ∫

∫ .

 

Inserting (A.2) one gets 

[ ]Cov X,g(Y) I(y)g '(y)dyβ
∞

−∞

= ⋅ ∫ , with (A.3) 

[ ]{ }
[ ]( ) [ ]( )

Y

y

y

I(y) E Y E Y Y y F (y)

E Y t dy t E Y dy
∞

−∞

 = − ≤ 

= − = −∫ ∫
 (A.4) 

 Inserting (A.4) into (A.3) and applying Fubini’s 
theorem as well as the assumption

x
lim g(x) 0
→−∞

= , one 

obtains furthermore 
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[ ]( )

[ ]( ) [ ]( )

[ ]( ) [ ]

Y
y

t

Y Y

I(y)g '(y)dy t E Y dF (t) g '(y)dy

g '(y)dy t E Y dF (t) t E Y g(t)dF (t)

E Y E Y g(Y) Cov Y,g(Y) ,

∞ ∞ ∞

−∞ −∞

∞ ∞

−∞ −∞ −∞

  = − 
  

  = − = − 
  
 = − ⋅ = 

∫ ∫ ∫

∫ ∫ ∫  

Which shows the desired identity. 
 In the special case of a bivariate normal random 

vector,  one  has [ ]
[ ]

Cov X, Y
Var Y

β =  and the 

identity[33]Lemma 2.2 
[ ] [ ] [ ]Cov Y,g(Y) E g '(Y) Var Y= ⋅ , (A.5) 

which implies the relationship 
[ ] [ ] [ ]Cov X,g(Y) E g '(Y) Cov X, Y= ⋅ , (A.6) 

In the literature this is attributed to Stein[34,35], Huang 
and Litzenberger[2]. Since a lot of bivariate random 
models satisfy the required linear regression property, 
the displayed covariance identity has a wide 
application. Among the many multivariate models 
satisfying linear regression properties, let us mention 
the following few but important classes and families of 
multivariate distributions: 
* The class of symmetric elliptical distributions[3] 
* Bivariate and multivariate distributions of Pearson 

type[36,37] 
* Bivariate and multivariate Pareto distributions of 

the first kind[38] 
* Bivariate and multivariate distributions constructed 

from linear Spearman or Fréchet copulas with 
margins from location-scale families[11,12,37,39] 

 
Appendix B: Numerical evaluation of two special 
integral functions 
 First, we show how to compute the integral (2.30), 
that is 

2 a bx

0

I I(a, b) (1 x ) e dx
∞

− −= = +∫  (B.1) 

 Divide the integral into two parts such that 1 2I I I= +  
with 

1
2 a bx

1
0

I (1 x ) e dx− −= +∫  (B.2) 

2 a bx
2

1

I (1 x ) e dx
∞

− −= +∫  (B.3) 

 Recall the binomial series expansion 
k

k 0
(1 z) z , z 1,

k k
( 1)...( k 1)

k!

α α α

α α α

∞

=

   
+ = <   

   
− − +

=

∑
 (B.4) 

which is valid for all real numbers α. Inserted into (B.2) 
one obtains 

1
2k bx

1
k 0 0

2k 1
k 0

a
I x e dx

k
a (2k 1) G(b;2k 1)

k b

∞
−

=

∞

+
=

− 
= ⋅ 

 
−  Γ +

= ⋅ + 
 

∑ ∫

∑
 (B.5) 

where 
x

1 1 t

0

G(x; ) ( ) t e dtαα α − − −= Γ ⋅ ∫ denotes the incomplete 

gamma function. For (B.3) note that 
2 a 2a 2 a(1 x ) x (1 x )− − −+ = ⋅ +  and apply (B.4) on the second 

term. One obtains 
2a 2k bx

2 k k
k 0 1

a
I J , J x e dx

k

∞∞
− −

=

− 
= ⋅ = 

 
∑ ∫ , (B.6) 

where the integrals can be calculated recursively as 
follows (use partial integration) : 

( )

[ ]

b b
k k 1

0 2a 1

1 bJ bJ e e ,
2a 2k 1 2a 2k 2

(2a 1)k 1,J 1 G(b;2a 1) .
b

− −
−

+

 = − − − + − + 
Γ +

≥ = − +
 (B.7) 

 The evaluation of the second special integral (2.39) 
is simpler. Using the exponential series 

k k
2s 2ks

k 0

( 1) rexp( rz ) z
k!

∞

=

−
− =∑ , one obtains the Gamma 

function series expansion 
2sa rx bx

0
k k

a 2ks 1
k 0

1J(a,b, r,s) x e dx
b

( 1) r (a 2ks 1).
k! b

∞
− −

∞

+ +
=

= ⋅

− Γ + +
= ⋅

∫

∑
 (B.8) 
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