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INTRODUCTION 
 
   Let nXXX ,...,2,1  be independent random 

Variables having cumulative distribution functions  i.e. 
)(,...,)(2,)(1 xnFxFxF  and probability density 

function , respectively.  
 
 Let nnXnXnX :...:2:1 ≤≤≤ denote the order 

Statistics obtained by arranging the n siX ′  in 

increasing order of magnitude . Bapat and Beg [1] have 
shown that the CDF of  the rth order Statistics 

)(: nrlX nr ≤≤  is conveniently expressed in terms 

of permanents as follows 
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where )(xF  and  )(1 xF−  denote the column 

vectors ( ) ′)(,...,)(2,)(1 xnFxFxF  

and ( )′−−− )(1,...,)(21,)(11 xnFxFxF  respectively.  

Moreover if ...,2,1 aa are column vectors, then  
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 will denote the matrix obtained by 

taking 1i copies of 2,1 ia  copies of 2a  and so on. 

Also, in (1) , Per (A) denotes the permanent of a square 
matrix A ; which is defined similarly as the determinant 
of A  except that all terms in the expansion have a 
positive sign, i.e.  
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where nS  is the set of permutations of 1,2,...,n[2,3,4] . 
In the last few years much attention had been paid to 
order statistics from independent  nonidentically 
distributed variables i.ni.d[5,6,7,8] . 
    Derivation of recurrence relations for single moments 
of order statistics from 
i.ni.d available samples found in the literature have 
taken two directions, the work initiated by Balakrishnan 
[5,6] and that of Barakat and Abdelkader [9]    In 
Balakrishnan 's work[5,6] , a linear relation between the 
PDF and CDF of the distribution , if exists, is exploited 
and then one has to go through messy calculations 
using integration by parts to get the result. Application 
of this method was done on many distributions such as: 
exponential[5],  right-truncated exponential[6] doubly-
truncated exponential and logistic distribution[10,11] , 
power function distribution[7] , Pareto and doubly- 
truncated Pareto distributions [12]. All of these results 
were obtained by exploiting a basic differential 
equation satisfied by the distribution under 
consideration. For example: the differential equation 
satisfied by the PDF and CDF of exponential 
distribution is 
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for Pareto distributions it is 
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and for power function distributions it is 
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However, most of these recurrence relations show that 
it is enough to evaluate the kth moment of a single 
order statistics in a sample of size n, if these moments 
in samples of size less than n are already available. The 
kth moments of the remaining n – 1 order statistics can 
then be determined by repeated use of these recurrence 
relations. 

Barakat and Abdelkader[9] generalized their 
procedure initiated in (2000)[13] to any d.f. and 
expressed the kth moment of the rth order statistics 

....),2,1()(
: =kk
nrµ , ( )nr ≤≤1  of a sample of 

size n purely in terms of the kth moments of the 
maximum order statistics or of the minimum order 
statistics from samples of size up to n of all possible 
subsamples of the given samples. This in fact simplifies 
the recursive computation of the single moments of 
(i.nid) order statistics. 
   

Application of Barakat and Abdelkader 's 
method[9] started in fact in (2000)[13] 
when they first applied it to calculate single moments of 
non-identically distributed Weibull random and in the 
year (2004) to Erlang distribution by[14]. 
The advantages of their procedure can be simply 
described as follows: first there is no conditions 
imposed on the CDF. and PDF. of the underlying 
distribution, i.e. whether they are related on not ; 

secondly ( )nrk
nr ≤≤1)(

:µ  obtained by their method 

is purely expressed in terms of the kth moments of 
maximums and the minimums of all possible 
subsamples of the given sample. 
 
       In this paper we consider the case where the r.v.s 

niiX ,...,2,1, =  are independent and non identical 

having Burr type XII distribution with CDF. 
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For ni ,...,2,1= , where c and im  are shape 

parameters[15,16,17,18,19] . We consider Burr type XII 
distribution since it is widely used in approximation, 
and as failure rate model[20] and also in predication[21,22],  
and in many other fields [23,24,25,26] . It has the advantage 
of being used in approximating distributions of rather 
complicated PDF's (i.e. intractable 
distributions)[27,28,29,30,31]. Burr distribution, also known 
as Lomax at c = 1 or compound Weibull or Weibull 
Gamma distribution[32]. At m = 1, the Burr distribution 
reduces to loglogistic or Weibull- Exponential 
distribution Al–shboul and Khan[33,34,35].        
          

         In the next section we derive the kth moment of 

the largest order statistics �
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Moreover, a recurrence relation is introduced which 
will enable one to compute the kth moments of all order 

statistics �
�
�

�
�
	 ≤ nrallfork

nr ,)(
:µ  in a simple 

manner by using only the kth moments of the 
maximum. 
 
 Relations for single moments:  We shall present some 
recurrence relations for the single moments of order 
statistics obtained from Burr type XII distributions. 
 
Relation 2.1: For .....,2.1...,2,1 == kandn    
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and B (c,k) is the regular beta function define by    
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Proof  
      Since 

nixFxx ii ,...,2,1,0}0)(:inf{0 =≥= � , then by 
definition of moments we have: 
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Integrating by part gives 
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This equation was obtained by Galambos[36]. Then 
the kth moment of the smallest is  
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where )(:1 xnF  is the CDF of the smallest order 

statistics from independent not identically distributed 
random variables defined by 
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substituting (10) in (8) we get  
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Now substituting (2) in (11) we get 
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where ( )kcB ,   is the regular beta function 
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which can be written as 
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which can also be written as  
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where the symbol � � �

≤ ≤�� �211 ....

...
ii i n

i
n

n
l denote to the 

sum of the nl from all possible subsamples of size n ( 
which is one sample in this case ) of the given sample .   
The proof of (4) follows: 
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where )(: xnnF  the CDF of the largest order 

statistics from independent not identically distributed 
random variable defined by  
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Using (13) we get 
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expanding the summation on the first term, then  

( ) ( ) �
�


�
�

�

+−−
−

+−−
+=− 11

)(1)(

!1!1
1

)(:)(:1 rnr

xFxF
Per

rnr
xnrFxnrF

  

 
which is equivalent to 

)17(
1

1
)(

1
1)()(:)(:1 � ∏

−

=
∏
= �

�

�

�

�
�

�

	

+−
−+=−

p

r

j

n

rj
x

jni
FxijFxnrFxnrF

 
where the summation P extends over all permutation ( )niii ,....,2,1  of  ( )n,.....,2,1  for which 

nniii ≤−���≤ 1....211  and 

nririri ≤−��+�≤ 1.....11  . Now since 

{ } ,00)(:inf0 ≥�= xiFxix for all i , then  

( ) )18(
0

)(:11)(
:

)(
: dxxnrFkxkk

nrXEk
nr 


∞
−−=�

�
�

�
�
	=µ

 
 
substituting (17) in (18) 
 

( )

)(
:

)(
:1

)(
:

0

1

1
)(

1
1)(1

0
)(:111

0 )(
1

1.

1

1
.)()(:11

1)(
:

k
nrJk

nr
k

nr

dx
p

r

j

n

rj
x

jni
FxijFkxk

dxxnrFkxk

n

rj
dxx

jni
F

p

r

j
x

jiFxnrF

kxkk
nr

+−=∴

� 

∞

∏
−

=
∏
= �

�

�

�

�
�

�

	

+−
−−+

+

∞

−−−=



∞

�
�
�
�
�
�

�



�
�
�
�
�
�

�

�

∏
= �

�

�

�

�
�

�

	

+−
−

� ∏
−

=
+−−

−=

µµ

µ  

 
where 

 

)19(
0

1

1
)(

1
1)(1)(

: dx
p

r

j

n

rj
x

jni
FxijFkxkk

nrJ � 

∞

∏
−

=
∏
= �

�

�

�

�
�

�

	

+−
−−=

 

 
Now consider  
 



J. Math. & Stat., 2 (3): 432-438, 2006 

 436

0,11)( ≥
−
�
�
��

�
	 +−= ximcxxiF , it follows 

 
 

( )

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�



�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
−

=
−
�
�
��

�
	 +−−++

�
≤

�
�

�
−≤�

++−
�
�
��

�
	 +−

∏
−

=
�
≤

�
−≤�

+−
�
�
��

�
	 ++

−
�
�
��

�
	 +−

�
=

−
�
�
��

�
	 +=

�
=

−
�
�
��

�
	 +∏

−

= �
�
�



�
�
�

� −
�
�
��

�
	 +−=

∏
=

−
�
�
��

�
	 +∏

−

=
∏
=

∏
−

= �
�
�



�
�
�

� −
�
�
��

�
	 +−=

�
�

�

�

�
�

�

	

+−
−

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

	

�
�
�
�

�

�

�
�
�
�

�

	

1

1111....

11 2 13
321

1

1

11 11 12

211111

1

1
1

1
11

1
1

1

1

1
11)(

1
1)(

r

j
jmcxr

j j rj
jim

jim
jimcx

r

j j rj

imimcxjmcx

n

rj jimcx

n

rj jimcx
r

j

imcx

n

rj
jimcx

r

j

n

rj

r

j
jimcxx

jni
Fx

jiF

 

( )

( ) )20(,

1

1111

2

...

21
1

11 2 12...3

21

...............
11 2 13

321
1

21
11 12

1

1

11
1

11
1

1
)(

1
1)(

�
�
�
�
�

�

�

�
�
�
�
�

�

	

�
�
�
�
�
�

�



�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

	

�
�
�
�
�
�

�



�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

	

�
�
�
�
�
�

�



�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

	

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

	

�
−

=
−
�
�
��

�
	 +−−+

�
=

+

−

+++−
�
�
��

�
	 +�

≤
�
�

�
−≤−���

−−+

+

�
≤

�
�

�
−≤�

�
=

+++−
�
�
��

�
	 +−

�
=

++−
�
≤

�
−≤�

�
�
��

�
	 ++

�
−

=

�
=

+−
�
�
��

�
	 +−

�
=

−
�
�
��

�
	 +=∏

−

=
∏
= �

�

�

�

�
�

�

	

+−
−

n

j jimcxr

n

rj jim

rj
im

jim
jimcx

j j rrjj

r

j j rj

n

rj jim
jim

jim
jimcx

n

rj jim
jim

jim

j rj

cx

r

j

n

rj jim
jimcx

n

rj jimcx
r

j

n

rj
x

jni
Fx

jiF

 
 
 
Substituting (20) in (19) and after simple calculation we 
get 
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Upon using the integration (13) we get 
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which completes the proof. 
 

CONCLUSION 
          By recursively applying equation (5) starting with 

the maximum )(
:
k
nnµ  in (4) one can deduct all moments 

of all order statistics nrk
nr ≤,)(

:µ from Burr type XII 
distributions. One only needs to compute the sequence 

{ }n

jjI
1=

 which is given by (5). This sequence is very 

simple to evaluate . For example if n=3, we get  
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These results can be put in the following table  
 

The moments nrk
nr ≤,)(

:µ  of order statistics arising 
from non-identically Burr type XII random variables 

with n=3 
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____________________________________________ 
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ck
nr µµ = . Generalization of this table is 

mentioned in [13] .  
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