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Abstract: In this work, Bayes estimation of the first order moving average model (MA(1)) were 
studied. Theoretical justification of the Bayes estimates based on the estimated innovations is given. 
The convergence of Bayes and maximum likelihood estimates are examined via simulation using 
different parameter values.  Also, Bayes estimates were determined when the model is invertible using 
the estimated innovations.   For long series lengths, it has been noted that the Bayes estimate of � of 
invertible MA(1) model assuming uniform prior on � and  inverted gamma prior on �2 equals the Bayes 
estimate of � for noninvertible MA(1) model. Generally, the simulation results showed that the 
performance of the Bayes estimates using estimated innovations depends on the values of � within the 
invertibility region. As expected, we note that the performance of the maximum likelihood and Bayes 
estimates are equally likely for long series lengths. 
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INTRODUCTION 

 
Bayesian inferences on autoregressive moving average 
(ARMA) models are limited due to the complicated 
form of the likelihood function which makes it difficult 
to get analytical tractable results. In addition, the 
Bayesian estimation of ARMA models is based on the 
causality and inevitability conditions of the model 
coefficients. The Bayesian inference on time series goes 
back to Zellner[14], when the posterior and predictive 
distributions were derived for the first and the second 
order AR models using vague priors and analysis of 
regression models with autocorrelated errors. Box and 
Jenkins[3] introduced Bayesian analysis for ARMA 
models without any restrictions on causality and 
inevitability conditions. Monahan[12], used numerical 
integration technique to implement Bayesian time 
series. Bromeling and Shaarawy[6] proposed an 
approximate Bayes estimates based on the estimated 
innovations for the analysis of MA and ARMA models 
without any restrictions on the causality and 
inevitability conditions. The estimated innovations were 
used later by Chen[9] in Bayesian inference of the 
bilinear models. Marriot et. al.[11] used Monte Carlo 
Markov Chain (MCMC) methods to implement the 
Bayesian inference on the ARMA models. Chen et. 
al[10], use MCMC methods for exploration of the joint 
posterior distribution of threshold autoregressive (TAR) 
models. Smadi[13] used MCMC methods for the 
Bayesian inference on the threshold autoregression 
moving average (TARMA) models using the estimated 
innovations.  

In this work, the Bayes estimation of the first order 
moving average model (MA(1)) has been investigated 
using the estimated innovations. Asymptotic 
justification of Bayes estimation of MA(1) model is 
provided. The convergence of the Bayes and the 
maximum likelihood estimates are examined via 
simulation using different parameter values.  Moreover, 
Bayes estimates of the first order invertible moving 
average model have been considered. 
Bayes theorem of estimation is described below[7]. 
Theorem (1)  
�(�) be a prior distribution of �. A sample X1, X2,…, Xn  
is then drawn from a population indexed by �. Let 

( | )f x θ  be the sampling distribution of X1,X2,…,Xn. 
The prior distribution is updated by the sample 
information. The updated prior is called the posterior 
distribution which is a conditional distribution of � for a 
given sample can be described as: 

( | ) ( | ) ( ) / ( ),x f x m xπ θ θ π θ=         (1) 
where m(x) is the marginal distribution of X which is 
given by: 

( ) ( | ) ( )m x f x dθ π θ θ= �   (2) 
The mean of the posterior distribution can be used as a 
point estimate of � by means of squared loss function. 
The first order moving average model (MA(1)) is given 
by: 

,...2,1,0            Z t1 ±±=+= − tZX tt θ       (3)      
  

where }{ tZ  are I.I.D ),0( 2σN  random variables. 
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 The first order moving average model given in 
(3) is always stationary.  According to Brockwell and 
Davis[4] a model is judged to be invertible if 

1 1θ− < < , i.e. 
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 For first order moving average model (MA(1)) 
given in (3), the joint probability density function of 

nXXX ,...,, 21     can be written as[3]: 
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  (5) 
where Z0 is non-observable random variable; assuming 
Z0  equals its unconditional expectation zero. The 
innovations Zt (t = 1,2,…,n) can be calculated 
recursively.  
The conditional likelihood function is given by 
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Bromeling[5] derived approximate marginal posterior 
distributions and posterior means for the parameters of 
the MA(q) model. Accordingly, the true innovations 

{ }tZ  are first estimated as { }tẐ  and calculated 

recursively using ),...,1(   ˆˆˆ
1 ntZXZ ttt =−= −θ , 

where 0ˆ
0 =Z , and θ̂  is the least squares estimate of 

�. Thus, the approximate conditional likelihood 
function is given by: 
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Bromeling[5] assumed multi-normal-gamma prior 
density on the model parameters of the MA(q) model. 
For the MA(1) model, the normal-gamma prior density 
on � and � is: 

RReeg
p

∈>>>∈=
−−−− µβατθττθ

µθτ
τβα ,0,0,0,    where,),(

2)(
21

     (8)  
Based on the above, Bromeling[5] concluded the 
following results: 
(i) The marginal posterior density of � has a 
t-distribution with n+2�-1  degrees of freedom. The 
mean and precision are given by 
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The marginal posterior density of � is a gamma 
distribution, where; 

2
2αα +=′ n

   (11) 

and; 
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Then, if ,0 and ,0,2/1 →→−→ pβα  the 
normal-gamma prior density given in (8) reduces to 
Jeffrey's prior described by: 

Rg ∈>∝ − µτττθ ,0   where,),( 1   
  (13) 

Therefore, the Bayes estimate of the precision 
parameter � is given by: 

2
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 Asymptotic justification of the estimated 
innovations in Bayes estimation of the MA(1) model is 
described below using  basic convergence results of the 
probability theory. The following theorem will be 
used[2]. 
 
Theorem (2) 
(i) If ,  then .P D

n nZ Z Z Z→ →  
(ii) If 

0  (a cnstant). Z D P
n nZ Z Z Z Z= → � →

. 
(iii) If

0 0 0 and  is continuous at Z , then ( ) ( )P P
n nZ Z g g Z g Z→ →

. 
(iv) If 

 and  is continuous, then ( ) ( )D D
n nZ Z g g Z g Z→ →

. 
(v) If 

0 and  (a constant), thenD P
n nZ Z U u→ →

 

             (a) 0
D

n nZ U Z u+ → +  

             (b) 0
D

n nU Z u Z→  

 
Theorem (3) 
Consider the first order MA (1) model 

),...,0(1 ntZZX ttt =+= −θ    
   (15) 

Let { }tẐ  be the estimated innovations which are 
calculated recursively, i.e. 

),...,1(ˆˆˆ
1 ntZXZ ttt =−= −θ , where 0ˆ

0 =Z  and 
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θ̂  is the least squares estimate of �. Then, the 
approximate conditional joint distribution 
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converges in distribution to 
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Proof: 

Let θ̂  be the least squares estimate of �, it has been 
shown  that[3] 

θθ →Pˆ  
Then, according to Theorem (2), part (v),  
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Finally, because of the continuity of the exponential 
function and Theorem (2), part (iv), the following 
approximate conditional distribution function   
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converges in distribution to 
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   (19) 
Similarly this result can be generalized to the MA(q) 
model. 
 The convergence of the approximate Bayes 
estimates using the estimated innovations and the 
maximum likelihood estimates will be examined via 
simulation using different parameters and series 
lengths. 
Bayes Estimation of the Invertible MA(1) Model 
 The first order invertible moving average 
model, where 1 1θ− < < , will be considered. Abu-
Salih and Abd-alla[1] obtained in a closed form the 
Bayes estimates of the parameters of the stationary 
AR(1) model using different informative and non-
informative priors. The AR(1) model is given by: 

),...,0(          Z t1 ntXX tt =+= −ϕ   
    (20) 

where { }tZ  ~IID N(0, �2), -1<�<1.  
 The following joint prior on � and �2 is used in 
the Bayesian estimation:  
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where � and �2 are independent, with inverted gamma 
prior on �2 with hyper parameters d and � and uniform 
prior on �. 
 Assuming squared loss function, Abu-Salih 
and Abd-alla[1] derived in a closed form the marginal 
posteriors of � and �2 for the stationary AR(1) model. 
The derivation for the above invertible MA(1) model is 
similar to the stationary AR(1) model; where Xt is 

regressed on 1
ˆ

−tZ  rather than Xt-1. The final 
expressions of the marginal posterior means will be 
followed, details of the derivations and integration 
results can be found in Abu-Salih and Abd-alla[1]. 
The Bayes estimates of � is given by 
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The Bayes estimator of �2 is given by: 
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For large n, 
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 It is noted that for long series lengths, the 
approximate Bayes estimate (Eq. 23)   of � in the 
invertible MA(1) model, assuming uniform prior on � 
and inverted gamma prior on �, equals the approximate 
Bayes estimate of � (Eq. 9) in the  noninvertible MA(1) 
model, assuming Jeffrey's prior. Thus, it can be 
concluded that both estimates of invertible and non-
invertible models are the same. In addition, there is no 
effect of the inverted gamma prior on � on the Bayes 
estimate of � for long record lengths. On the other hand, 
as one expects, there is an effect of the inverted gamma 
prior on � when the Bayes estimate of � when 
comparing the mean of the marginal posterior density 
of � derived by Bromeling (Eq. 14) and the asymptotic 
Bayes estimate of the invertible model (Eq. 25)  
 

 

RESULTS AND DISCUSSION 
 

 A simulation was carried out to examine the 
convergence of the Bayes estimates based on the 
estimated innovations. The results were compared with 
the maximum likelihood estimates. The means and root 
mean square errors (RMSE) of the maximum likelihood 

estimates θ̂  and 2σ�  and the Bayes estimates Bθ̂ and 
2
Bσ�  of � and �2 were calculated using different 

combinations of parameter values (�, �2); namely,  (�=-
0.3, �2 =1), (�=0.3, �2 =1), (�=-0.6, �2 =1), (�=0.6, �2 
=1) and (�2 =1, �=-0.3). The results are displayed in 
Tables 1-5. The simulation results were based on 1000 
replicates for series lengths of 30, 50, 100, 200, 400, 
700 and 1000. 
 

Table 1: MLE and Bayes estimates with RMSE of � (� = 0.3, �2 =1) 
n θ̂  RMSE(θ̂ ) Bθ̂  RMSE( Bθ̂ ) 

30 0.3978 0.3192 0.2248 0.2849 
50 0.3490 0.1938 0.2934 0.2162 

100 0.3148 0.1092 0.2943 0.1487 
200 0.3089 0.0714 0.2993 0.1051 
400 0.3056 0.0497 0.3006 0.0510 
700 0.3027 0.0362 0.2996 0.0371 

1000 0.3019 0.0313 0.3001 0.0322 
 

Table 2: MLE and Bayes estimates with RMSE of � (� = 0.6, �2 =1) 
n θ̂  RMSE(θ̂ ) Bθ̂  RMSE( Bθ̂ ) 

30 0.7902 0.3254 0.5696 0.2223 
50 0.7202 0.2362 0.5875 0.1552 

100 0.6737 0.1700 0.5956 0.1035 
200 0.6373 0.1210 0.5971 0.0734 
400 0.6176 0.0807 0.5977 0.0505 
700 0.6070 0.0478 0.5988 0.0373 

1000 0.6026 0.0311 0.5983 0.0322 
 

Table 3: MLE and Bayes estimates with RMSE of � (� = -0.3, �2 =1) 
n θ̂  RMSE(θ̂ ) Bθ̂  RMSE( Bθ̂ ) 

30 -0.2832 0.2512 -0.2903 0.2249 
50 -0.2906 0.1639 -0.2927 0.1599 

100 -0.2976 0.1078 -0.2993 0.1079 
200 -0.2970 0.0725 -0.2975 0.0730 
400 -0.2974 0.0481 -0.2979 0.0511 
700 -0.2995 0.0355 -0.2995 0.0371 

1000 -0.2991 0.0305 -0.2993 0.0323 
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  Table 4: MLE and Bayes estimates with RMSE of � (� = -0.6, �2 =1) 

N θ̂  RMSE(θ̂ ) Bθ̂  RMSE( Bθ̂ ) 
30 -0.6089 0.2216 -0.5679 0.2152 
50 -0.6220 0.1820 -0.5787 0.1610 

100 -0.6221 0.1340 -0.5890 0.1045 
200 -0.6217 0.1150 -0.5940 0.0735 
400 -0.6110 0.0800 -0.5970 0.0504 
700 -0.6036 0.0509 -0.5977 0.0379 

1000 -0.6005 0.0287 -0.5985 0.0322 
 

   Table 5: MLE and Bayes estimates with RMSE of �2 (�2 =1, � = 0.3) 
n 2σ�  RMSE( 2σ� ) 2

Bσ�  RMSE( 2
Bσ� ) 

30 0.9145 0.2835 0.8420 0.2849 
50 0.9600 0.2041 0.9103 0.2162 

100 0.9821 0.1092 0.9574 0.1487 
200 0.9866 0.1022 0.9750 0.1051 
400 0.9948 0.0720 0.9891 0.0738 
700 0.9978 0.0552 0.9947 0.0556 

1000 0.9990 0.0463 0.9966 0.0464 
 

Generally, the simulation results showed that the 
performance of the Bayes estimates using the estimated 
innovations depends on the values of � within the 
invertibility region. As we expect, we note that the 
performance of the maximum likelihood and the Bayes 
estimates are equally likely for long series lengths.  
 
 

CONCLUSION 
 

It can be concluded that  for long series lengths, the 
approximate Bayes estimate of � of invertible MA(1) 
model assuming uniform prior on � and inverted 
gamma prior on �, equals the Bayes estimate of � of 
noninvertible MA(1) model, assuming Jeffrey's prior. 
The simulation results showed that the performance of 
the Bayes estimates using the estimated innovations 
depends on the values of � within the invertibility 
region. For long series lengths, we note that both 
maximum likelihood and Bayes estimates performs 
equally likely. 
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