Journal of Mathematics and Statistics 2 (3): 401-406, 2006 ISSN 1549-3644 © 2006 Science Publications

Behavior of the Dedekind's Function over First Order Theta Function **According to Conditions Modular Form**

İsmet Yıldız University of Bahcesehir Vocational School Beşiktaş-İstanbul/TURKEY

Abstract: The effect Dedekind's etha function on theta functions is analyzed according to the characteristics of theta functions under modular group conditions.

Key words: Theta functions, characteristic values, modular group, dedekind functions

INTRODUCTION

By SL_2 we mean the group of 2x2 matrices with determinant 1. We write $SL_2(R)$ for those elements of SL₂ having coefficients in a ring R. In practice, the ring R will be integers Z, rational numbers Q and real numbers R. We call $SL_2(Z)$ the modular group Γ .

If L is lattice in complex numbers-C, then we can always select a basis, L = (ω_1, ω_2) such that $\tau = \frac{\omega_2}{\omega}$ is an element of the upper half-plane \aleph , i.e. has $im\tau \succ 0$ which is not real. If D consist of all $u \in \mathbb{X}$ such that $-\frac{1}{2} \le \operatorname{Re} u \le \frac{1}{2}, \quad |u| \ge 1 \quad \text{and} \quad \operatorname{T} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \in \Gamma,$ $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in \Gamma$ then D is a fundamental domain for modular group Γ in \aleph , Then, $S,T \in \Gamma$ generate modular group $\Gamma^{[1]}$. We define characteristic $\begin{vmatrix} \varepsilon \\ \varepsilon \end{vmatrix}$ where $\mathcal{E}, \mathcal{E}'$ are integers according to characteristics $\begin{bmatrix} \mathcal{E} \\ \mathcal{E}' \end{bmatrix} \equiv \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \pmod{2}$ but $\theta \begin{bmatrix} 1 \\ 1 \end{bmatrix} (0, \tau) \equiv 0$ for theta function θ . If n is any positive integer we define $\Gamma_0(n)$ to be the set of all matrices $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ in modular group Γ with $\gamma \equiv (\mod n)$ and but

$$\Gamma_0(n) = \left\{ \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \Gamma(1) : \gamma \equiv (\text{mod } n) \right\}^{[2,3]}$$

It is easy to verify that $\Gamma_0(n)$ is a subgroup Γ . If We consider the congruence subgroup $\Gamma(2)$, Then $\Gamma_{X}(2) = \{ W \in \Gamma(1) : W \equiv I , W \equiv X \pmod{2} \}$ where I is the unit matrix and for matrices X = S, X = T, X = U the three subgroups $\Gamma_{s}(2)$,

 $\Gamma_{\tau}(2)$, $\Gamma_{\mu}(2)$ are conjugate subgroups of $\Gamma(1)$ for $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $U = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $V = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$.

We shall need to study such groups when we introduce theta functions.

We note that the above matrices, defined V = ST = $\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$ and $V^2 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix} = I$, U = TST form a set coset representatives of $\Gamma(1)$ modulo $\Gamma(2)^{[4]}$.

The subgroup $\wp(n)$ of $\Gamma(1)$ is generated by V^2 and S where k is an odd positive integer and the set of elements in $\wp(k)$ of the form $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$.

Theorem 1: Let n be any prime and $S\tau = -\frac{1}{\tau}$, $T\tau = \tau + 1$ be the generations of the full modular group Γ , then for every $W = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$, $W \notin \Gamma_0(n)$ there exists an element $K = \begin{pmatrix} p & r \\ s & t \end{pmatrix} \in \Gamma_0(n)$. **Proof:** If $W = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ where *c* is not $c \equiv 0 \pmod{n}$ then we wish to find $W = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$, with $s \equiv 0 \pmod{n}$ and an integer q, $0 \le q \le n$, such that $W = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} p & r \\ s & t \end{pmatrix} ST^{q}$ $= \begin{pmatrix} p & r \\ s & t \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & q \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} p & r \\ s & t \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & q \end{pmatrix}$

All matrices here are nonsingular so we can solve for $\begin{pmatrix} p & r \\ s & t \end{pmatrix}$ to get

$$\begin{pmatrix} p & r \\ s & t \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & w \end{pmatrix}^{-1}$$
$$= \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} w & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} qa-b & a \\ qc-d & c \end{pmatrix}^{-1}$$

Choose q to be that solution of the congruence $qc \equiv d \pmod{n}$ with $0 \le q \le n$. This is possible since c is not $c \equiv 0 \pmod{n}$, now take s = qs-t, p = wp-r, r = a, t = c, then $s \equiv 0 \pmod{n}$ so $K = \begin{pmatrix} p & r \\ s & t \end{pmatrix} \in \Gamma_0(n)$.

We define the first order theta function with characteristic $\begin{bmatrix} \varepsilon \\ c \end{bmatrix}$, $u \in C$ and theta period τ by

$$\theta \begin{bmatrix} \varepsilon \\ \varepsilon' \end{bmatrix} (u, \tau)$$

= $\sum_{N=-\infty}^{\infty} \exp\left\{ (N + \frac{\varepsilon}{2})^2 \pi i \tau + 2\pi i (N + \frac{\varepsilon}{2})(u + \frac{\varepsilon'}{2}) \right\}$

where N is a integer^[5].</sup>

It has been seen at several points that the theta functions whose characteristics are pair of integers $\begin{bmatrix} \boldsymbol{\varepsilon} \\ \boldsymbol{\varepsilon}' \end{bmatrix}$ satisfy simpler identities than those for which $\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon}'$ are general real numbers. As $\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon}'$ are residue classes (mod2) it is natural to concentrate attention on the four functions $\boldsymbol{\theta} \begin{bmatrix} 1 \\ 1 \end{bmatrix} (u,q), \boldsymbol{\theta} \begin{bmatrix} 0 \\ 1 \end{bmatrix} (u,q), \boldsymbol{\theta} \begin{bmatrix} 1 \\ 0 \end{bmatrix} (u,q)$ and $\boldsymbol{\theta} \begin{bmatrix} 0 \\ 0 \end{bmatrix} (u,q)$ which we shall call the four principal thata

 $\theta \begin{bmatrix} 0\\0 \end{bmatrix} (u,q)$ which we shall call the four principal theta functions. For any integers may when $\xi \xi'$ are

functions. For any integers m,n, when $\mathcal{E}, \mathcal{E}'$ are integers, we have

$$\theta \begin{bmatrix} \varepsilon + 2m \\ \varepsilon' + 2n \end{bmatrix} (u, q) = (-1)^{n\varepsilon} \theta \begin{bmatrix} \varepsilon \\ \varepsilon' \end{bmatrix} (u, q) \, .$$

When $\mathcal{E}, \mathcal{E}'$ are integers, the theta series defined by

$$\theta \begin{bmatrix} \varepsilon \\ \varepsilon' \end{bmatrix} (u,q) = \sum_{n=-\infty}^{\infty} q^{(n+\frac{1}{2})^2} e^{2i(n+\frac{1}{2})(u-\frac{\varepsilon}{2})}$$

can be converted into fourier series by pairing off the terms which $n + \frac{\varepsilon}{2}$ has equal and opposite values, n with -n if $\varepsilon = 0$ and n with -(n+1), leaving in the former case an unpaired term for n= 0, whose values is 1. The terms so paired have a common factor $q^{(n+\frac{\varepsilon}{2})^2}$ and the sum of their remaining factors is $2Cos(2n+\varepsilon)(u-\frac{\varepsilon'\pi}{2})$. Thus we have the four series $\theta \begin{bmatrix} 1\\1 \end{bmatrix} (u,q) = 2\sum_{n=-\infty}^{\infty} (-1)^n q^{(n+\frac{1}{2})^2} Sin(2n+1)u$

$$\begin{split} \theta \begin{bmatrix} 1 \\ 0 \end{bmatrix} & (u,q) = 2 \sum_{n=-\infty}^{\infty} q^{(n+\frac{1}{2})^2} \cos(2n+1)u \\ \theta \begin{bmatrix} 0 \\ 1 \end{bmatrix} & (u,q) = 1 + 2 \sum_{n=-\infty}^{\infty} (-1)^n q^{n^2} \cos 2nu \\ \theta \begin{bmatrix} 0 \\ 0 \end{bmatrix} & (u,q) = 1 + 2 \sum_{n=-\infty}^{\infty} q^{n^2} \cos 2nu . \end{split}$$

Moreover,

$$\theta \begin{bmatrix} 1\\0 \end{bmatrix} (u) = \theta \begin{bmatrix} 1\\1 \end{bmatrix} (u + \frac{\pi}{2})$$

$$\theta \begin{bmatrix} 0\\1 \end{bmatrix} (u) = -iq^{\frac{1}{4}}e^{iu}\theta \begin{bmatrix} 1\\1 \end{bmatrix} (u + \frac{\pi\tau}{2})$$

$$\theta \begin{bmatrix} 0\\0 \end{bmatrix} (u) = q^{\frac{1}{4}}e^{iu}\theta \begin{bmatrix} 1\\1 \end{bmatrix} (u + \frac{\pi+\pi\tau}{2})$$

If N is a positive integer then theta function order n or n^{th} is defined by

$$\theta^{n} \begin{bmatrix} \mu \\ \mu' \end{bmatrix} (u, \tau) = \sum_{M = -\infty}^{\infty} C_{M} \theta \left[\frac{2(M + \frac{\mu}{2})}{N} \right] (Nu, N\tau)$$

where $0 \le M \le N - 1$.

In fact, An theta function order n my be found by taking the product of n first theta functions. Its characteristic $\begin{bmatrix} \mu \\ \mu' \end{bmatrix}$ is given by the matrix sum of the n characteristic $\begin{bmatrix} \varepsilon \\ \varepsilon' \end{bmatrix}$. The C_M is indepent on u put my depent on τ .

 $C_{\rm M}$ satisfy $C_{\rm NK+M} = C_{\rm M} . \exp(\pi i) . \Phi(K)$

where

$$\Phi(K) = N\tau \left(K + \frac{(M + \frac{\varepsilon}{2})}{N} \right)^2 + N \left(K + \frac{(M + \frac{\varepsilon}{2})}{N} \right) \frac{\varepsilon'}{N}.$$

Functions $\theta \begin{bmatrix} 0 \\ 0 \end{bmatrix} (u, \tau)$ has zeros at the points

 $u = \frac{1}{2} - \frac{1}{2}\tau + r_1 + r_2\tau$. These points form a lattice, that 1-exp[(2k-1)\tau+2u] has zeros at points u where (2k-1)\tau = 1(mod 2) or equivalently. Hence function theta order n defined by

$$\Phi(u,\tau) = \prod_{1}^{\infty} \{1 + \exp \pi i [(2k-1)\tau - 2u]\}$$
$$\prod_{1}^{\infty} \{1 + \exp \pi i [(2k-1)\tau + 2u]\}$$

has precisely the same zeros as first order theta $\theta \begin{bmatrix} 0\\0 \end{bmatrix} (u, \tau)$ provided the product converges. Thus we have absolute and uniform convergence of the first infinite product for $im\tau \succ 0$. For periods 1 and τ , we have

$$\Phi(u+1,\tau) = \prod_{1} \{1 + \exp \pi i [(2k-1)\tau + 2u + 2]\}$$

$$\prod_{1}^{\infty} \{1 + \exp \pi i [(2k-1)\tau - 2u - 2]\} = \Phi(u,\tau)$$

$$\Phi(u+\tau,\tau) = \prod_{1}^{\infty} \{1 + \exp \pi i [(2k-1)\tau + 2u]\}$$

$$\prod_{1}^{\infty} \{1 + \exp \pi i [(2k-1)\tau - 2u]\}$$

Setting $q = \exp \pi i \tau$ we may write
$$\Phi(u,\tau) = \prod_{1}^{\infty} [1 + q^{2k-1} \exp 2\pi i u]$$

$$\prod_{1}^{\infty} [1 + q^{2k-1} \exp(-2\pi i u)]$$

It was introduced by Dedekind function $\eta(\tau)$ and is defined by the equation

$$\eta((\tau) = e^{\frac{\pi i \tau}{12}} \prod_{n=1}^{\infty} \left(1 - e^{2\pi i n \tau}\right).$$

The Dedekind function $\eta(\tau)$ is cups form of weight $\frac{1}{2}$ on $\Gamma(1)$ and satisfy

$$\eta(A\tau) = v_{\eta}(A)(\gamma\tau + \delta)^2 \eta(\tau)$$

for all $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \Gamma(1)^{[6]}.$

Dedekind proved the following law oh transformation of $\log \eta(\tau)$ under the action of the elliptic modular group. If $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \Gamma$ then we have $\log \eta (A(\tau)) = \log \eta(\tau) + \frac{1}{12} \pi i \beta$ for $\gamma = 0$ and $\log \eta (A(\tau)) = \log \eta(\tau) + \frac{1}{12} \log (\gamma \tau + \delta)$

$$\log \eta (A(\tau)) = \log \eta(\tau) + \frac{1}{2} \log \left(\frac{\gamma}{i}\right)$$
$$\frac{1}{12\gamma} \pi i(\alpha + \delta) - \pi i g(\gamma, \delta), \quad for \quad c > 0$$

where $A(\tau) = \frac{\alpha \tau + \beta}{\gamma \tau + \delta}$, all logarithms are taken with respect to the principal branch and $g(\gamma, \delta)$ is a Dedekind sum^[7].

An important connection between $\theta \begin{bmatrix} 0\\0 \end{bmatrix} (0,\tau)$ and

 $\eta(\tau)$ is given by

$$\theta \begin{bmatrix} 0\\ 0 \end{bmatrix} (0,\tau) \equiv \eta^2 (\frac{\tau+1}{2}) / \eta(\tau+1)$$

The infinite product has the form $\prod (1-u^n)$ where $u = e^{2\pi i \tau}$. If $\tau \in \mathbb{X}$ then $|u| \prec 1$ so the product converges absolutely and non-zero.

Moreover, since the convergence is uniform on compact subsets of \aleph , $\eta(\tau)$ is analytic on \aleph . This result and other properties of $\eta(\tau)$ following from transformation formulas which describe the behavior of $\eta(\tau)$ under elements of the modular group Γ .

i. For the generator $T\tau = \tau + 1$ we have

$$\eta(\tau+1) = e^{\frac{\pi i(\tau+1)}{12}} \prod_{n=1}^{\infty} \left(1 - e^{2\pi i n(\tau+1)}\right)$$

ii. For the other generator $S\tau = -\frac{1}{\tau}$ we have the

$$\eta(-\frac{1}{\tau}) = \left(-i\tau\right)^{\frac{1}{2}} . \eta(\tau) .$$

For proof, let $\tau = iy$ where y >0 and then extend the results to all $\tau \in \aleph$ by analytic continuation. The transformation formula becomes $\eta(i/y) = y^{\frac{1}{2}} \eta(iy)$ for $\tau = iy$ and this is equivalent to $\log(i/y) - \log \eta(iy) = \frac{1}{2} \log y$. and

and $\log \eta(iy) = -\frac{1}{12}\pi y + \log \prod_{n=1}^{\infty} (1 - e^{-2\pi ny})$ $= -\frac{1}{12}\pi y + \sum_{n=1}^{\infty} (1 - e^{-2\pi ny}) = -\frac{1}{12}\pi y - \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{e^{-2\pi nny}}{m}$ $= -\frac{1}{12}\pi y - \sum_{m=1}^{\infty} \frac{1}{m} \left(\frac{e^{-2\pi my}}{1 - e^{2\pi my}}\right)$ we obtained $\eta(-\frac{1}{\tau}) = (-i\tau)^{\frac{1}{2}}\eta(\tau)$ since $\sum_{m=1}^{\infty} \frac{1}{m} \left(\frac{1}{1 - e^{2\pi my}}\right) - \sum_{m=1}^{\infty} \frac{1}{m} \left(\frac{1}{1 - e^{2\pi m/y}}\right)_{[2]}$

$$-\frac{1}{12}\pi(y-\frac{1}{y}) = -\frac{1}{2}\log y$$

Lemma 1: Let Γ be a subgroup of $\Gamma(1)$. If $\varphi(\tau)$ is a modular form of weight for Γ with multiplier system t then we write $\varphi(\tau) \in A(\Gamma, n, t)$. If $\varphi(\tau) \in A(\Gamma, n, t)$ then the

 ψ -transform φ_{ψ} of φ is defined by

$$\varphi_{\psi}(\tau) = \varphi(\tau) / \psi = \left\{ \xi(\psi, \tau) \right\}^{-1} \varphi(\psi, \tau)$$

Here, $\xi(\psi, \tau) = (\gamma \tau + \delta)^n$ where $A = \begin{pmatrix} * & * \\ \gamma & \delta \end{pmatrix}$

If $\varphi_1(\tau) \in A(\Gamma, n_1, t_1)$ and $\varphi_2(\tau) \in A(\Gamma, n_2, t_2)$ then we have

$$\begin{split} \varphi_1(\tau).\varphi_2(\tau) &\in A(\Gamma, n_1 + n_2, t_1.t_2) \\ \frac{\varphi_1(\tau)}{\varphi_2(\tau)} &\in A(\Gamma, n_1 - n_2, \frac{t_1}{t_2}) \end{split}$$

Let *k* be a prime number greater than 3. If σ is a even integer such that $\sigma(k-1) \equiv 0(Mod\,24)$, then $\Theta(\tau) = \left[\frac{\eta(k,\tau)}{\eta(\tau)}\right]^{\rho}$ is a modular function on the group $\Gamma_0(k)$. The multiplier system ρ of $\Theta(\tau)$ is given by $\rho(A) = \left[\frac{\delta}{k}\right]^{\rho}$ where $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \Gamma_0(k)$ and $\left[\frac{\delta}{k}\right]$ is Legendre's symbol.

Lemma 2: The functions $\theta \begin{bmatrix} 0 \\ 1 \end{bmatrix} (0, \tau)$, $\theta \begin{bmatrix} 0 \\ 0 \end{bmatrix} (0, \tau)$ and

 $\theta \begin{bmatrix} 1 \\ 0 \end{bmatrix} (0, \tau)$ are entire modular form of weight $\frac{1}{2}$ for the groups $\Gamma_s(2), \Gamma_T(2)$ and $\Gamma_U(2)$, respectively. Further,

$$\theta \begin{bmatrix} 0\\0 \end{bmatrix} (0,\tau) \mid \mathbf{K} = e^{-\frac{\pi i}{4}} \theta \begin{bmatrix} 0\\1 \end{bmatrix} (0,\tau)$$
$$\theta \begin{bmatrix} 0\\0 \end{bmatrix} (0,\tau) \mid \mathbf{K}^2 = e^{-\frac{\pi i}{2}} \theta \begin{bmatrix} 1\\0 \end{bmatrix} (0,\tau)$$

Also , for $n \ge 0$

The functions $\theta^n \begin{bmatrix} 0 \\ 1 \end{bmatrix} (0, \tau)$, $\theta^n \begin{bmatrix} 0 \\ 0 \end{bmatrix} (0, \tau)$ and $\theta^n \begin{bmatrix} 1 \\ 0 \end{bmatrix} (0, \tau)$ are entire modular form of weight $\frac{n}{2}$ for the groups $\Gamma_s(2)$, $\Gamma_T(2)$ and $\Gamma_U(2)$, respectively.

Theorem 2: Let k be a prime number greater than 3 and σ is a even integer such that $\sigma(k-1) \equiv 0(Mod\,24)$ and put $r = n\rho$ where n is a positive integer. If the characteristics $\begin{bmatrix} \varepsilon \\ \varepsilon' \end{bmatrix}$ and $\begin{bmatrix} \mu \\ \mu' \end{bmatrix}$ are $\begin{bmatrix} \varepsilon \\ \varepsilon' \end{bmatrix}, \begin{bmatrix} \mu \\ \mu' \end{bmatrix} \equiv \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \pmod{2}$, the $\phi_{kr}(\tau)$ is a modular function on the group $\Gamma_0(k)$. The multiplier system ρ of $\Theta(\tau)$ is given by $\rho(A) = \begin{bmatrix} \delta \\ k \end{bmatrix}^{\rho}$ where $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \Gamma_0(k)$ and $\begin{bmatrix} \delta \\ k \end{bmatrix}$ is Legendre's symbol. **Proof:** $\phi_{kr}(\tau) \neq 0$ is regular in \aleph . If each positive integers σ , n and even positive integer $r = n\rho$. Therefore, the characteristics r^{th} order theta functions are $\begin{bmatrix} r\varepsilon \\ r\varepsilon' \end{bmatrix}, \begin{bmatrix} r\mu \\ r\mu' \end{bmatrix} \equiv \begin{bmatrix} 0 \\ 0 \end{bmatrix} \pmod{2}$, then we have $\phi_{kr}(\tau) = \frac{\theta^{n\rho} \begin{bmatrix} \varepsilon \\ \varepsilon' \end{bmatrix} (0, k\tau)}{\theta^{n\rho} \begin{bmatrix} \mu \\ \mu' \end{bmatrix} (0, \tau)} = \frac{\theta^{n\rho} \begin{bmatrix} 0 \\ 0 \end{bmatrix} (0, k\tau)}{\theta^{n\rho} \begin{bmatrix} 0 \\ 0 \end{bmatrix} (0, \tau)} = \frac{\left(\frac{\eta^2 \left(\frac{k\tau + k}{2}\right)}{\eta^2 \left(\frac{\tau + 1}{2}\right)}\right)^{n\rho}}{\eta^2 \left(\frac{\tau + 1}{2}\right) \eta(\tau + 1)} = \left[\frac{\eta^2 \left(\frac{k\tau + k}{2}\right)}{\eta^2 (k\rho) / \eta(\tau + 1)}\right]^{n\rho}$

Setting $\lambda = \frac{\tau + 1}{2}$ and observing that

$$\Phi(\lambda) = \left[\frac{\eta(k\lambda)}{\eta(\lambda)}\right]^{\rho}, \text{ we obtained } \phi_{kr}(\tau) = \left[\frac{\Phi^2(\lambda)}{\Phi^2(2\lambda)}\right]^{n}$$

By Lemma1 and from the equation

$$\Phi(A\tau) = \left[\frac{\delta}{k}\right]^{\rho} \cdot \Phi(\tau), \text{ we have}$$

$$\phi_{kr}(A\tau) = \left[\frac{\Phi^2(A\lambda)}{\Phi^2(2\lambda)}\right]^{\rho} = \left[\frac{\left(\frac{\delta}{k}\right)^{2\rho}\Phi^2(\lambda)}{\left(\frac{\delta}{k}\right)^{\rho}\Phi(2\lambda)}\right]^n = \left(\frac{\delta}{k}\right)^{\rho}\phi_{kr}(\tau)$$

Finally, we consider the expansions of $\phi_{kr}(\tau)$ at the parabolic cusp ∞ and 0. Hence, We have

$$\Phi(\tau) = \exp\left[\frac{\pi i (k-1)\rho}{12}\right] \left[1 + \sum_{N=1}^{\infty} C_N \cdot e^{-2\pi i N \tau}\right] \quad \text{as} \quad \text{the}$$

Fourier expansion of $\Phi(\lambda)$ function at ∞ . $\phi_{kr}(\tau)$ has the Fourier expansion at ∞ of the form

$$\phi(\tau) = 1 + \sum_{N=1}^{\infty} C_N \cdot e^{2\pi i N \tau}$$

$$\Phi(\tau) = k^{-\frac{\rho}{2}} \exp\left[\frac{\pi i (k-1)\rho}{12k\tau}\right] \left[1 + \sum_{N=1}^{\infty} H_N \cdot e^{-2\pi i N/k\tau}\right]$$
as the Fourier expansion at 0. Hence

$$\phi_{kr}(\tau) = \exp\left[\frac{r\pi i(k-1)}{8k\tau}\right] \left[1 + \sum_{N=1}^{\infty} R_N \cdot e^{-2\pi iN/k\tau}\right].$$

It follows that $\phi_{kr}(\tau)$ is a modular function on $\Gamma_0(k)$.

Theorem 3:
$$\eta \left(\frac{\alpha \tau + \beta}{\gamma \tau + \delta} \right) = P(\alpha, \beta, \gamma, \delta) \left[-i(\gamma \tau + \delta) \right]^{\frac{1}{2}} \eta(\tau)$$

where $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \Gamma$, $\gamma > 0$ and
 $P(\alpha, \beta, \gamma, \delta) = \exp \left\{ \pi i \left[\frac{\alpha + \delta}{12\gamma} + q(-\delta, \gamma) \right] \right\}$

and

$$q(h,k) = \sum_{r=1}^{k-1} \frac{r}{k} \left[\frac{hr}{k} - \left(\frac{hr}{k}\right) - \frac{1}{2} \right]$$

Note: The sum q(h,k) is called a Dedekind sum.

Theorem 4: The set of modular forms, the entire modular forms and the cups forms each of same dimension for $\Gamma(1)$, form vector space over the complex field.

Let g be a homogeneous modular form of dimension -k for the group Γ in the variables ω_1, ω_2 . We write this in the form $g\left[\begin{pmatrix}\omega_1\\\omega_2\end{pmatrix}\right]$ and consider $\begin{pmatrix}\omega_1\\\omega_2\end{pmatrix}$

as a matrix. We define the function g_B by

$$g_{B}\left[\begin{pmatrix}\omega_{1}\\\omega_{2}\end{pmatrix}\right] = g\left[B\begin{pmatrix}\omega_{1}\\\omega_{2}\end{pmatrix}\right]$$

where $M = \begin{pmatrix} \alpha & \beta \\ 0 & \delta \end{pmatrix}$, $\alpha > 0$, $\alpha \gamma = n$ and $im \frac{\omega_1}{\omega_2} > 0$ and call it a transform of g of order n. It satisfies the following equations

$$g_{B}\left[\lambda\begin{pmatrix}\omega_{1}\\\omega_{2}\end{pmatrix}\right] = \lambda^{-k} \quad g_{B}\left[\begin{pmatrix}\omega_{1}\\\omega_{2}\end{pmatrix}\right] \text{ for } \lambda \in C \quad , \quad \lambda \neq 0$$

$$g_{B}\left[M\begin{pmatrix}\omega_{1}\\\omega_{2}\end{pmatrix}\right] = g_{B}\left[\begin{pmatrix}\omega_{1}\\\omega_{2}\end{pmatrix}\right] \text{ for } M = \begin{pmatrix}\alpha & -\beta\\-\lambda & \delta\end{pmatrix} \in \Gamma_{B}$$

$$g_{MB}\left[M\begin{pmatrix}\omega_{1}\\\omega_{2}\end{pmatrix}\right] = g_{B}\left[\begin{pmatrix}\omega_{1}\\\omega_{2}\end{pmatrix}\right] \text{ for } M = \begin{pmatrix}\alpha & -\beta\\-\lambda & \delta\end{pmatrix} \in \Gamma_{B}$$

Therem 5: $\Delta(\tau) = (2\pi)^{12} \eta^{24}(\tau) = (2\pi)^{12} x \prod_{n=1}^{\infty} (1-x^n)^{24}$

Proof: Let $f(\tau) = \Delta(\tau)/\eta^{24}(\tau)$. Then $f(\tau+1) = f(\tau)$ and $f(-\frac{1}{\tau}) = f(\tau)$, so f is invariant under every transformation in Γ . Also, f is analytic and non-zero in \aleph because $\Delta(\tau)$ is analytic and non-zero and $\eta(\tau)$ never vanishes in \aleph . Next we examine the behavior of at $i\infty$. We have

$$\eta^{24}(\tau) = e^{2\pi i \tau} \prod_{n=1}^{\infty} \left(1 - e^{2\pi i n \tau} \right)^{24}$$
$$= x \prod_{n=1}^{\infty} \left(1 - x^n \right)^{24} = x \left(1 + I(x) \right)$$

where I(x) denotes a power series in x with integer coefficients. Thus, $\eta^{24}(\tau)$ has a first order zero at $x = 0^{[8]}$.

At first we see the infinite products

$$\begin{aligned} \theta \begin{bmatrix} 0\\ 0 \end{bmatrix} (u,\tau) \\ &= \prod_{n=1}^{\infty} (1 - e^{2n\pi i\tau}) \cdot \prod_{n=1}^{\infty} (1 + e^{(2n-1)\pi i\tau + 2\pi iu}) \cdot \prod_{n=1}^{\infty} (1 + e^{(2n-1)\pi i\tau - 2\pi iu}). \end{aligned}$$
which it converges absolutely.

Theorem 6: We have the relations

$$\eta(u) = e^{\frac{\pi i u}{12}} \cdot \theta \begin{bmatrix} 0 \\ 0 \end{bmatrix} (\frac{u+1}{2}, 3u+2k)$$
$$\theta \begin{bmatrix} 0 \\ 1 \end{bmatrix} (\frac{u+4}{4}, \frac{3}{2}u) = e^{-\frac{\pi i u}{12}} \eta(u) \cdot \prod_{n=1}^{\infty} (1-e^{(2n-1)\pi i u})$$

between the functions $\theta \begin{bmatrix} 0 \\ 0 \end{bmatrix} (u, \tau)$, $\theta \begin{bmatrix} 0 \\ 1 \end{bmatrix} (u, \tau)$ and

Dedekind's η -function which defined by the infinite product

$$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \cdot \prod_{n=1}^{\infty} (1 - e^{2n\pi i \tau})$$

where $\operatorname{Im} \tau > 0$ and k is a integer.

Proof

a. Let us recall the formula

$$\theta \begin{bmatrix} 0\\ 0 \end{bmatrix} (u, \tau)$$

$$= \prod_{n=1}^{\infty} (1 - e^{2n\pi i \tau}) \cdot \prod_{n=1}^{\infty} (1 + e^{(2n-1)\pi i \tau + 2\pi i u}) \cdot \prod_{n=1}^{\infty} (1 + e^{(2n-1)\pi i \tau - 2\pi i u}).$$
If k integer, then we have

$$\theta \begin{bmatrix} 0\\ 0 \end{bmatrix} (\frac{u+1}{2}, 3u + 2k)$$

$$= \prod_{n=1}^{\infty} (1 - e^{2n\pi i (3u+2k)}) \cdot \prod_{n=1}^{\infty} (1 + e^{(2n-1)\pi i (3u+2k) + 2\pi i (\frac{u+1}{2})}) \cdot \prod_{n=1}^{\infty} (1 + e^{(2n-1)\pi i (3u+2k) - 2\pi i (\frac{u+1}{2})})$$

$$= \prod_{n=1}^{\infty} (1 - e^{6n\pi i u}) \cdot \prod_{n=1}^{\infty} (1 + e^{6n\pi i u - 2\pi i u - (2k-1)\pi i}) \cdot \prod_{n=1}^{\infty} (1 + e^{6n\pi i u - 4\pi i u - (2k+1)\pi i})$$

$$= \prod_{n=1}^{\infty} (1 - e^{6n\pi i u}) \cdot \prod_{n=1}^{\infty} (1 - e^{6n\pi i u - 2\pi i u}) \cdot \prod_{n=1}^{\infty} (1 - e^{6n\pi i u - 4\pi i u}) \cdot \prod_{n=1}^{\infty} (1 - e^{6n\pi i u - 4\pi i u})$$
If we set R= $e^{2\pi i u}$, then we obtain

$$\theta \begin{bmatrix} 0\\ 0\\ 0\end{bmatrix} (\frac{u+1}{2}, 3u + 2k) = \prod_{n=1}^{\infty} (1 - R^{3n}) \cdot \prod_{n=1}^{\infty} (1 - R^{3n-1}) \cdot \prod_{n=1}^{\infty} (1 - R^{3n-2}) \cdot$$
On the other hand, we may set $n = n' + 1$, then

$$\theta \begin{bmatrix} 0\\ 0\\ 0\end{bmatrix} (\frac{u+1}{2}, 3u + 2k) = \prod_{n=1}^{\infty} (1 - R^{3n'+3}) \cdot \prod_{n=1}^{\infty} (1 - R^{3n'+2}) \cdot \prod_{n=1}^{\infty} (1 - R^{3n'+1})$$

$$= (1 - R)(1 - R^{2})(1 - R^{3})(1 - R^{4}) \dots =$$

$$\prod_{m=1}^{\infty} (1 - R^{m}) = \prod_{m=1}^{\infty} (1 - e^{2m\pi i u})$$
According to above, we have

$$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \cdot \theta \begin{bmatrix} 0\\ 0\end{bmatrix} (\frac{u+1}{2}, 3u + 2k)$$

from the Dedekind's η -function defined by the infinite product

$$\eta(\tau) = e^{\frac{\pi i \tau}{12}} \cdot \prod_{n=1}^{\infty} (1 - e^{2n\pi i \tau})$$

where m = n'.

b. According to the equation,

$$\theta \begin{bmatrix} 0\\1 \end{bmatrix} (u,\tau) = \sum_{n=-\infty}^{\infty} (-1)^n \exp(n^2 \pi i \tau + 2n \pi i u)$$

we have

$$\theta \begin{bmatrix} 0\\1 \end{bmatrix} (\frac{u+4}{4}, \frac{3}{2}u) = \sum_{n=-\infty}^{\infty} (-1)^n \exp\left[\frac{1}{2}n(3n+1)\pi iu\right]$$

=1+ $\sum_{n=1}^{\infty} (-1)^n \left\{ \exp\left[\frac{1}{2}n(3n-1)\pi iu\right] + \exp\left[\frac{1}{2}n(3n+1)\pi iu\right] \right\}$
=1+ $\sum_{n=1}^{\infty} (-1)^n \left[x^{\frac{1}{2}n(3n-1)} + x^{\frac{1}{2}n(3n+1)} \right]$ =1-
 $x - x^2 + x^5 + x^7 - x^{12} - x^{15} + \dots$
 $\theta \begin{bmatrix} 0\\1 \end{bmatrix} (\frac{u+4}{4}, \frac{3}{2}u) = (1-x)(1-x^2)(1-x^3) \dots = \prod_{n=1}^{\infty} (1-x^n)$

where $x = e^{\pi i u}$ for |x| < 1, and $\frac{1}{2}n(3n+1)$ are known as the pentagonal numbers n = -1, -2, ...

This results play a role of key stone in the forthcoming work concerning relation between the θ theta function and Dedekind's η -function. In fact, if the application of theorem(6-b) on the relation obtained with the theorem(-a) which known as the equation between Dedekind's η -function and L.Euler's theorem on pentagonal numbers is done, we obtain

$$\frac{\theta \begin{bmatrix} 0\\1 \end{bmatrix} (\frac{u+4}{4}, \frac{3}{2}u)}{\prod_{n=1}^{\infty} \begin{bmatrix} 1-e^{(2n-1)\pi i\tau} \end{bmatrix}} = \frac{\sum_{n=-\infty}^{\infty} (-1)^n \exp \left[\frac{1}{2}n(3n+1)\pi iu\right]}{\prod_{n=1}^{\infty} \begin{bmatrix} 1-e^{(2n-1)\pi i\tau} \end{bmatrix}}$$
$$= \frac{\prod_{n=1}^{\infty} \begin{bmatrix} 1-e^{n\pi i\tau} \end{bmatrix}}{\prod_{n=1}^{\infty} \begin{bmatrix} 1-e^{2n\pi i\tau} \end{bmatrix}} = \prod_{n=1}^{\infty} \begin{bmatrix} 1-e^{2n\pi i\tau} \end{bmatrix} = e^{-\frac{\pi i\tau}{12}}.\eta(\tau)$$

As a result, the relation has been obtained between theta and Dedkind's $-\eta(\tau)$ functions by using the characteristic $\begin{bmatrix} 0\\1 \end{bmatrix}$ and the variable $\frac{u+4}{4}$ instead of the characteristic $\begin{bmatrix} 0\\0 \end{bmatrix}$ and the variable $\frac{u+1}{2}$ which were previously used by Jaccobi.

REFERENCES

- 1. İsmet, Y., 2004. On extension of the modular transformations over the modular group by reflection. Appl. Math. Com., 153: 111-116.
- 2. Kohnen, W., 1985. Fourier coefficients of modular forms of half integral weight. J. Math. Ann., 271: 237-268.
- 3. Kojima, H., 1980. Cusp forms of weight $\frac{3}{2}$. J. Nagoya Math., 79: 111-122.
- Brenner, J.L. and R.C. Lyndon, 1983. Maximal 4. nonparabolic subgroups of the modular group. Math. Ann., 263: 1-11.
- 5. İsmet, Y., 1999. The quadratic relation satisfied by first order theta functions according to quarter periods. J. India Acad. Math., 2: 1.
- Atiyah, M., 1987. The logarithm of the Dedekind -6. η -function. J. Math. Ann., 278: 335- 380.
- Iseki, S., 1957. The transformation formula for the 7. Dedekind modular function and related functional equations. J. Duke Math., 24: 653-662.
- 8. Van Asch, A.G., 1976. Modular form and root systems. Math.Ann., 222: 145-170.