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Abstract: In this study, we introduce the effect of the folding, conditional folding, retraction and 
conditional retraction on trefoil knot and its graph. We introduce the sheeted trefoil knot and the 
folding and retraction of this type and present the limit of foldings. We study how to obtain the types 
of link graph by adjacency matrix for any number of vertices and how to calculate Jones polynomial 
for this by its connection with Tutte polynomial. The link graph which represents a trefoil knot applied 
as an example. 
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INTRODUCTION 

 
 It is difficult to say who first showed a 
mathematical interest in what we now call knot theory 
and when. However, in modern times it is known that 
the famous C.F. Gauss (1777-1855) had some interest 
in this field, the American mathematician J.W. 
Alexander (1888-1971) was the first to show that knot 
theory is extremely important in the study of 3-
dimensional topology. the German mathematician H. 
Seifert from the late 1920s to the 1930s. 
 In the 1970s knot theory was shown, among other 
things, to be connected to algebraic number theory, by 
virtue of the solution of Smith's conjecture concerning 
periodic mappings. At the beginning of the 1980s, due 
to the discovery by V.F.R. Jones of his epochal knot 
invariant, knot theory moved from the realm of topol-
ogy to mathematical physics. This was further 
underlined when it was shown that knot theory is 
closely related to the solvable models of statistical 
mechanics. As knot theory grows and develops, its 
boundaries continue to shift[1]. 
 A knot is a subset of 3 - space that is homeomrphic 
to the circle, a link is a set of finitely many disjoint 
knots that are called its components, a singular knot is a 
knot with self-intersections. If K is a knot (or link), we 
shall say that P̂ ( )K = K̂  is the projection of 

K . P̂ The map that projects the point ˆ( , , )P x y z in E3 

onto the point P̂ ( . ,0)x y  in the xy - plane. However K̂  
is not a simple closed curve lying on the plane, since 
K̂  possesses several points of intersection. In fact K̂  
is a graph represents K and has some properties:- 
1. K̂  has at most a finite number of points of 

intersection. 

2. If Q is a point of intersection of K̂  then  
1( )P Q K−

�  in K has exactly two points, which 
make a cross in K[1]. 

 In general a graph not necessary represents a knot 
in E3 by embedding. Now we can impose some 
condition on a graph to represent a knot (or a link ) we 
call it a link graph. G is a link graph if 
1. G is finite connected graph. 
2. G is planer. 
3. G has the homogeneous vertex degree 4[2]. 
 For this every link graph G with n vertices has 2n 
edges and n + 2 countries. 
 Let f be a polygonal embedding of a link graph G 
into E3. We call the image f(G) a representation of G 
which is a knot ( in general a link ). 
 To obtain the types of link graphs we look for the 
adjacency matrix. 
 The adjacency matrix of the link graph is square 
matrix of size n x n which is symmetric has integer 
values and for every row and every column the sum is 4 
and the main diagonal are zeros. 
For n=2 we have only one adjacency matrix also for 
n=3we have only one adjacency matrix. For any n we 
get all possible adjacency matrices and draw the link 
graph for all of them and calculate Jones 
polynomial ( )lV t  to know which knot ( or link ) the link 
graph is represented it[2]. 
 
Definitions and background: In this section we will 
summarize some definitions and theorems which we 
will be used in the main results. 
1. An oriented knot is one with a chosen direction 

along the string[3,4]. 
2. Let K be an oriented knot (or link) diagram define 

the writhe of �(K)K    , , by the equation 

( ) ( )
P

K Pω ε=�  where P runs over all crossings in 

K and ( )Pε  is the sign of the crossing[1,3,4]. 

Fig. 1  
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3. Kauffman's braket polynomial: Let L, L̂  and 0L̂  
be the skein diagrams given below 

 
Fig. 2 
 
Then the following equality holds: 

LP ˆ( ) La aP=
0

1

ˆ( ) ( )La a P a
−

+ . 

if L is a trivial diagram O of a trivial knot, than 

0 ( ) 1P a =  
if ( )LP a is the Kauffman bracket polynomial of the " 
unoriented " diagram L and ( )Lω  is the writhe of L 
then define 

3
( )ˆ ( ) ( ) ( ).L

L LP a a p aω
−

= − Then ˆ ( )LP a  is an invariant of 

an oriented knot (or link ) denoted by ˆ ( )KP a [1,3,4]. 
 
4. Jones polynomial: Suppose L is an oriented link, 
then the Jones polynomial ( )LV t  can be defined 
(uniquely) from the following two axioms. 

Axiom (1): If L  is the trivial knot ,then ( )LV t 1= . 
Axiom (2): Suppose 0, ,L L L+ −  are skein diagram given 
bellow: 

 
Fig. 3 
Then the following skein relation holds, 

0

1 1
( ) ( ) ( )L L LV t tV t t V

t t+ −
− = − . 

The polynomial itself is a Laurent polynomial in t  i.e 
it may have terms in which t  has a negative 
exponent[1,5-7] . 
 
5. Tutte polynomial: let ( , )G V E=  be a given graph 
and e  any arbitrary one of its edges. The Tutte 
polynomial of G is a polynomial in two variables 

( ; , )T G x y which satisfies the following properties: 
1. ( ; , )T G x y 1=  for ( , )G V E= with .E φ=  
2. ( ; , )T G x y x=  if e  is a bridge. 
3. ( ; , )T G x y y=  if e  is a loop. 
4. ( ; , )T G x y ( \ ; , ) ( / ; , )T G e x y T G e x y= +  where \G e  
(respectively /G e ) denotes the graph obtained 
from G by deleting (resp. ,contracting) e . 

5. if G  has at least two edges and e  is a bridge (resp., 
loop) of G , ( ; , )T G x y = ( / ; , )xT G e x y (resp. 

( ; , )T G x y = ( \ ; , )yT G e x y . 
Not that properties (1),……,(5) allow the computation 
of ( ; , )T G x y  for any graph G [4,2,8]. 
 
6. Knot graph: Every planar graph gives a 
decomposition of the plane in connected regions the so 
called countries. By coloring these countries chessboard 
like manner with the two colors black and white such 
that the unbounded country is white. From the black 
countries (resp. white countries ) one gets the 
corresponding graph of these black countries (resp. 
white countries),which called knot graph[2,8]. 
Example: 

 
Fig. 4 
Link graph and graph of black countries (knot graph). 
 
7. Folding: Let ( , )X τ  be a topological space .A map 

: ( , ) ( , )f X Xτ τ→  is said to be folding of a 
topological space into itself if ( )f X X⊂ ,and either 
i. , ( ) , .G F G U G Uτ τ∀ ∈ = ⊂ ∈  
or ii. , ( )G f G Uτ τ∀ ∈ = ∈  [9]. Many types of foldings 
are discussed in[10-13]. 
 
8. Retraction: Let A be a subset of a topological space 
X .A continuous map :r X A→  is a retraction if 

( )r a a=  for all Aa ∈ [14]. 
 
3. Relation between polynomials 
Theorem (1-3): The Kuafman bracket polynomial can 
be computed from Tutte polynomial by 

4 4( ) ( , )V C
LP a a T a a− −= − − , where V is the number of 

vertices and C is the number of countries of the knot 
graph[2,5,7]. 
 
Corollary(1-3): The Kaufman bracket polynomial of 
oriented link diagram is computing by: 

3 ( )ˆ ( ) ( ) ( )L
L LP a a P aω−= − [2,3]. 

 
Theorem (2-3): The Jones polynomial is computed 
from kaufman brackt polynomial by: 

1
4ˆ( ) ( )L LV t P t

−
= [5,7]. 

 
Theorem (3-3): The Jones polynomial is computed 
from Tutte polynomial of knot graph by: 

3 ( )
14( ) ( , ).

c v L

LV t t T t t
ω− +

−= − − −  
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Appling to n=3, the only one adjacency matrix is: 
 

0 2 2 
2 0 2 
2 2 0 

The link graph corresponding of this adjacency matrix 
is: 

 
Fig. 5 
The corresponding graph of black countries (knot 
graph) is: 

 
Fig. 6 
And its Tutte polynomial is ( ; , )T G x y = 2x x y+ + . 

 By represent the link graph G  in 3E and take 
orientation . 

 
Fig. 7 
Hence ( ) 3Lω = . 

3 ( )
14( ) ( , ).

c v L

LV t t T t t
ω− +

−= − − −  
2 3 9

14 ( , )t T t t
− +

−= − − −  
 

3 4( )LV t t t t= + −  which is the Jones polynomial of 
trefoil knot. 
 

RESULTS 
 
Folding of trefoil knot and its graph 
1-4. Folding of trefoil knot: Let K  be a trefoil knot 
and f  be a folding from K  into itself . then we have 
some types of folding : 
(1) ( ) ( )f a f b c= =  

 
Fig. 8 

Theorem (1-1-4): The folding of a knot is not 
necessary a knot. 
 
2. Crossing folding: A folding which folds a point of 
upper arc crossing on a point of lower crossing is said 
to be crossing folding. 
In this case we have: 
a) 

 
Fig. 9 

( )f c c′= . 
b) 

 
Fig. 10 
c)   ( )f b b′=  , ( )f c c′=  

 
Fig. 11 

( ) , ( ) , ( )f a a f b b f c c′ ′ ′= = = . 
 
Theorem (2-1-4): Every crossing folding of a knot into 
itself gives a singular knot. 
 
Proof: Let K be a knot and f  be a crossing folding 
from K into itself, then f(K) is not a simple closed curve 
in 3E (Fig. 9-11)),since f(K) possesses at lest one point 
of intersection .i.e. f(K) is a singular knot 
 
Theorem (3-1-4): A folding of a singular knot not 
necessary a singular knot. The following examples 
show that: 
1) 

 
Fig. 12 

(2) (3) 1f f= = . 
2) 

 
Fig. 13 
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( )f c b′ ′= . 
3) 

 
Fig. 14 

(1) 2f = . 
4) 

 
Fig. 15 
 
3. Topological folding: Appling topological folding in 
a successive steps (Fig. 16) on a trefoil knot getting an 
equivalent knots until reaching the null knot which 
different of the successive knots ,it represents a limit 
folding . 

 
Fig. 16 
 
Theorem (4-1-4): The limit of a topological foldings of 
any knot into itself is a point. 
 
Proof 

Let 1 2 1 1

1 2 1 2

: , : ( ) ( ),....... :

( ...( )) ( ....( ))
i

i i i i

f K K f f K f K f

f f K f f K− − − −

→ →
→

 

We see that 1 2lim ( ( (....( ).....))i i i
i

f f f K p− −→∞
=  is a point. 

4. Special contraction folding  
Definition: The folding which contracts the distance 
between the crossing is called contracting folding. In 
this type we fix one arc and contract the other arcs ,by 
successive steps (Fig. 17) getting an equivalent knots. 
The limit of this process the null knot ,which is exactly 
the limit of foldings. 

 
Fig. 17 
 
Theorem (5-1-4): A limit of special contraction 
foldings of any knot is a loop. 
 
Proof: Let K be a knot of m- crossings, then K has m 
arcs 1 2, ,....., ma a a ,and let L be the distance between 
crossings ,if we are fixed an arc 1a and contracted 
another by sequence of foldings , 1,2,.....,if i n=  

whenever n → ∞ then L zero→  i.e. The arc 1a is a 
loop which exactly a limit of the special contraction 
foldings. See Fig. 17 as special case. 
 
Corollary (1-1-4): If we fix two arcs of a knot, then the 
limit of special contraction folding of a knot is two 
loops common in a vertex. 
 
Proof: The proof comes directly from theorem (5-1-4). 
 
Theorem (6-1-4): The retraction of any knot by 
removing a point is a point. 
 
Proof: Let : i ir K p K p− → − be a retraction, 
if dim ( ) dimir k p K− = , then it is not the minimum 
retraction. and ( )  ir K p− ≡ some topological folding 

f r≡ , but if dim ( ) dimir K p K f− ≠ �
≡r .the 

minimum retraction 
 
Theorem (7- 1- 4): The limit of topological foldings of 
a knot is equivalent to the retraction of a knot by 
removing a point. 
 
Proof: Let :if K K→  be a sequence of topological 
folding of the knot into itself then 
lim ( )i
i

f K p
→∞

= theorem (4-1-4). 

Assume :r K q K q− → −  a retraction by removing a 
point, ( )r K q p− = theorem (6 -1-7). i.e. 

( ) lim ( ).i
i

r K q f K
→∞

− =  

 
2-4. Folding of a link graph: Let L be a link graph 
which represent a trefoil knot (Fig. 5) and let fa folding 
from L into itself ,then we have some types of folding: 
(1) 

 
Fig. 18 

( ) , ( ) , ( )f d a f e b f g c= = = . 
 This folding gives a complete graph K3, which is a 
knot graph of a trefoil knot ,but not represent a knot. 
 
Theorem (1-2-4): A folding of a link graph is not 
necessary a link graph. 
(2) (a) 

 
Fig. 19 
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( ) , (1) 3f g c f= =  
(b) 

 
Fig. 20 

(1) 3.f =  
 
3. Topological folding: Appling topological folding in 
a successive steps (Fig. 21) of a link graph , represent a 
trefoil knot getting an equivalent link graph until 
reaching the null link graph which different of the 
successive link graph ,it represents the limit of foldings. 
 

 
Fig. 21 
 
Theorem (2-2-4): The limit of topological foldings for 
any link graph of n vertices is a graph with only one 
vertex having n loops. 
 
Proof: The proof is clear from the above discussion. 
 
Theorem (3-2-4): There are some types of foldings of a 
link graph decrease the degree of Y in Tutte 
polynomials and there is another types increase the 
degree of Y  in Tutte polynomials. 
 
Proof: Let L be a link graph Fig. 20 The Tutte 
polynomial of L is 

4 3 2 2( ; , ) 2 3 (1 3 )T L x y y y y x y x x= + + + + + +  The 
degree of Y is 4 and the Tutte polynomial of ( )f L is 

5 4 3 2( ( ); , )T f L x y y y y xy= + + +  The degree of Y is 5, 
i.e. degree of y was increased. 
 Look Fig. 18 The Tutte polynomial of ( )f L is 

2( ( ); , )T f L x y y x x= + +  the degree of Y is 1,i.e. 
degree of y was decreased. We have two types of 
retractions of a link graph: 
The first types: 

 
Fig. 22 

: { } , , 1, 3r K v K v g v v− → ∈ ≠ ≠  
the second types: 

 
Fig. 23 

: {1}r K K− → . 
 
Corollary (1-2-4): Every retraction of a link graph 
decreases the degree of y in Tutte polynomials. 
 
Theorem (4-2-4): For any foldings of link graph which 
decrease the degree of y in Tutte polynomials there 
exist a retraction is equivalent to it. 
 
Proof: Let L be a link graph and f be a folding from L 
into itself s.t. f decreases the degree of y in Tutte 
polynomials, this means one edge or more was folded 
to another this equivalent to remove this edge hence 
there is a retraction r equivalent to f. 
 

 
Fig. 24 
 
 Now we see the foldings and retraction with Tutte 
polynomials: 

 
Fig. 25 
 
 From the chin of foldings and retractions we get 

1i i i ir f f r+=� �  and 

1 1

1; 2 2

2 3 3

4 4 4

( ; , ) ( ; , ) ( ; , )

( ; , ) ( ; , ) ( ; , )

( ; , ) ( ; , ) ( ; , )

( ; , ) ( ; , ) ( ; , )

T K x y T K x y T K x y

T K x y T K x y T K x y

T K x y T K x y T K x y

T K x y T K x y T K x y

= +
= +

= +

= +

 

this means 

1 2

3 4 4

( ; , ) ( ; , ) ( ; , )

( ; , ) ( ; , ) ( ; , )

T K x y T K x y T K x y

T K x y T K x y T K x y

= +

+ + +
 

 
 3-4. Folding of sheeted trefoil knot: Suppose R be a 
sheeted in 3E , Fig. 25, so that we form a trefoil knot 

( )V R  

 
  Fig. 25   Fig. 26 
 
by it, Fig. 26, called the sheeted trefoil knot ,hence 

( )V R  takes four cases: 
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Case 1: ( )V R  with two boundaries ∂ ( )V R ={L,M}, 
which  is  exactly  a  sheeted  bound knots in normal 
case 

 
Fig. 27 
 
Case 2: ( )V R  with no boundaries ∂ ( )V R =0 ,we call a 
sheeted stripe trefoil knot. 

 
Fig. 28 
 
Case 3: ( )V R with external boundary ∂ ( )V R =L.. 

 
Fig. 29 
 
Case 4: ( )V R  with internal boundary ∂ ( )V R =M. 

 
Fig. 30 
 
 Now we introduce some types of foldings for all 
above cases: 
 
For case 1 
a. Let 1K  be a sheeted trefoil knot with boundaries 
∂ 1K ={L,M} and f  be a folding from 1K  into itself 
such that f twists L on itself in a successive steps until 
reaching a boundary M so that we get a trefoil knot 
which is the limit of folding. Fig. 31, i.e. 

1 1 1 2 1 1 1 1

3 2 1 1 2 1 1

1 2 1 1

1 2 3 1 1

: , : ( ) ( ),

: ( ( )) ( ( )),........,

( ( (.......( ( ))...)

( ( (.......( ( )).....)
n n n

n n n

f K K f f K f K

f f f K f f K

f f f f K

f f f f K
− −

− − −

→ →
→

→
 

such that ( )if L L=  and lim n
n

f M
→∞

=  which is a trefoil 

knot of one dimension. 

 
Fig. 31 
 
b. Let 2K  be a sheeted trefoil knot with boundaries 
∂ 2K ={L,M} and f  be a folding from 2K  into itself 
such that f twists M on itself in a successive steps until 
reaching a boundary L so that we getting a trefoil knot 
which is the limit of folding . Fig. 32, i.e. 

1 2 2 2 1 2 1 2

3 2 1 2 2 1 2

1 2 1 2

1 2 3 1 2

: , : ( ) ( ),

: ( ( )) ( ( )),........,

( ( (.......( ( ))...)

( ( (.......( ( )).....)
n n n

n n n

f K K f f K f K

f f f K f f K

f f f f K

f f f f K
− −

− − −

→ →
→

→
 

such that ( )if M M=  and lim n
n

f L
→∞

=  which is a 

trefoil knot of one dimension. 

 
Fig. 32 
 
c. Let 3K  be a sheeted trefoil knot with boundaries 
∂ 3K ={L,M} and f  be a folding from 3K  into itself 
such that f (L)= M we getting a tubular trefoil knot, 
which in fact is a hollow torus. Fig. 
33, 3 3: , . . ( )f K K s t f L M→ =  and any generator 

, ( )i i iL f L L=  and iL homeomorphic or diffeomorphic 
to iL . Any sequence of foldings 

1 2 3, , ,......, lim torusn n
n

f f f f f
→∞

� = . Also the unfoldings 

1 2 3, , ,...... lim torusn n
n

unf unf unf unf unf
→∞

� =  

 
Fig. 33 
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For case 2: Let V be a sheeted trefoil knot with out 
boundaries ∂ V =0 and b is a rim line, Fig. 34 and 
f be a folding from V  into itself such that f  twists a 

sheeted around the rim line, so we getting a trefoil knot 
which exactly the limit of foldings (Fig. 35) 

1 2 1 1

3 2 1 2 1

1 2 1

1 2 3 1

: , : ( ) ( ),

: ( ( )) ( ( )),........,

( ( (.......( ( ))...)

( ( (.......( ( )).....)
n n n

n n n

f V V f f V f V

f f f V f f V

f f f f V

f f f f V
− −

− − −

→ →
→

→

 

(rim) rim, lim rimi n
n

f f
→∞

= =  which is a trefoil knot of 

one dimension, 

 
Fig. 34 

 
Fig. 35 
 
For case 3: Let V(R) be a sheeted trefoil knot with 
boundaries ∂  V(R) = L and f be a folding from V(R) 
into itself such that f twists L on itself in a successive 
steps, so that we getting a trefoil knot which is the limit 
of foldings (Fig. 35). 
 In this case the limit of this conditional folding 
equivalent to the retraction of V(R) into L. 
 

 
Fig. 36 
 
For case 4: Let V(R) be a sheeted trefoil knot with 
boundaries ∂ ( )V R = M and f be a folding from V(R) 
into itself such that f twists M on itself in a successive 
steps, so that we getting a trefoil knot which is the limit 
of foldings. Fig. 36. 
 In this case the limit of this conditional folding 
equivalent to the retraction of V(R) into M. 
 

 
Fig. 37 
 

Theorem (1- 3 - 4): The limit of foldings of a sheeted 
trefoil knot which twist a boundary on itself is a trefoil 
knot. 
 
Proof:  The proof is clear. 
 For all cases, if we apply the folding f from 

( )V R into itself such that f (1)= f (2)= 3 we getting a 
sheeted unknot hereditary case of boundary, (Fig. 38) 
 

 
Fig. 38 
 
Theorem (2-3-4): The limit of foldings of a sheeted 
knot ( )V R is equivalent to the retraction if ( )V R is 
open. 
 
Proof: If 

1 2 1 1

3 2 1 2 1

1 2 1

1 2 3 1

: ( ) ( ) , : (( ( ) ) ( ( ) ),

: ( ( ( ) )) ( ( ( ) ))

,........, ( ( (.......( ( ( ) ))...)

( ( (.......( ( ( ) )).....)
n n n

n n n

f V R V R f f V R f V R

f f f V R f f V R

f f f f V R

f f f f V R
− −

− − −

→ →
→

→

 and 

lim rim linen
n

f
→∞

= Fig. 34 

by take a retraction 
: ( ) rim line   s.t. r(V(R))  rim liner V R → =  

 
Fig. 39 
hence we get lim rim linen

n
f

→∞
= = ( ( ))r V R  
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