Some Stability Results on Krasnolslseskij and Ishikawa Fixed Point Iteration Procedures

M. O. Olatinwo, O. O. Owojori and C. O. Imoru Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria

Abstract: In this study, we establish some stability results for the Krasnoselskij and the Ishikawa iteration procedures. We employ the same method as in Berinde^[1], but using a more general contractive definition than those of $Berinde^{[1]}$, Rhoades^[2], Harder and Hicks^[3] and Osilike^[4,5].

Key words: Krasnolslseskij, Ishikawa, iteration procedures, contractive definitions

INTRODUCTION

Let (E,d) be a complete metric space and T:E \rightarrow E a selfmap of E. Let F(T) = {p \in E | T_{p=p}} denote the set of fixed points of T. Let {x_n}^{∞}_{n=o} be the sequence generated by an iteration procedure

$$x_{n+1} = f(T, x_n), n = 0, 1, 2,...$$
 (1)

Where, $x_o \in E$ is the initial approximation and f is some function. Suppose that $\{x_n\}_{n=o}^{\infty}$ converges to a fixed point p of T.

Let $\{y_n\}_{n=o}^{\infty} \subset E$ and set $\epsilon_n = d(y_{n+1}, f(T, y_n))$, n = 0, 1, 2,... Then, the iteration procedure (I) is said to be T-stable with respect to T, if and only if, $\lim_{n\to\infty} \epsilon_n = 0$

implies $\lim_{n \to \infty} y_n = p$

Harder and Hicks^[3] employed the concept above in proving several stability results under various contractive definitions. Rhoades^[2,6] extended the results of Harder and Hicks^[3] to other classes of contractive mappings. Specifically, Rhoades^[2] extended the results of Harder and Hicks^[3] to the following contractive definition: there exists a constant c, $0 \le c < 1$ such that, for each x,y \in E,

$$\| T_{x} T_{y} \| \leq c \max\{ \| x - y \|, \frac{1}{2} (\| x - Tx \| + \| y - T_{y} \|), \| x - T_{y} \|, \| y - T_{x} \| \}.$$
 (2)

Using (2), Rhoades^[2] established several stability results which are generalizations of the results of Harder and Hicks^[3]. It was shown in Rhoades^[2] that

$$d(Tx, Ty) \le \frac{c}{1-c} d(x, Tx) + cd(x, y).$$
 (3)

Osilike^[4] extended the results of Rhoades^[2] to the following contractive definition: there exist constants L ≥ 0 , $a \in [0,1)$ such that, for each x, y $\in E$

$$d(Tx,Ty) \le Ld(x,Tx) + ad(x,y).$$
(4)

Osilike^[4] proved several stability results using (4). Most of the results of Osilike^[4] are generalizations of the results of Rhoades^[2] which are themselves generalizations of the results of Harder and Hicks^[3]. Berinde^[1] using a different method, proved the same results as Harder and Hicks^[3] for the same iteration procedures, using the contractive definition (4) above.

In this study, we present some stability results for Krasnoselskij and Ishikawa iteration processes using a more general contractive definition than those of Harder and Hicks^[3], Osilike^[4], Rhoades^[2,6] and Berinde^[1]. We shall however employ the method of Berinde^[1] in our proofs.

Preliminaries: Let $\{x_n\}_{n=0}^{\infty}$ be the sequence generated by the iteration procedure (1). Then, the Krasnoselskij iteration procedure is obtained from (1) when $f(T,x_n) = \frac{1}{2}(x_n + Tx_n)$, $n \ge 0$, while the Ishikawa iteration process is obtained from (1) when $f(T,x_n) = (1 - \alpha_n)x_n + \alpha_nTz_n$,

$$z_n = (1-\beta_n)x_n + \beta_n Tx_n, n \ge 0.$$

We shall employ the following contractive definition: there exist a constant $b \in [0,1)$ and a monotone increasing function $\varphi : \Re_+ \to \Re_+$ with $\varphi(0) = 0$, such that, for each x, y $\in E$,

$$\|Tx - Ty\| \le \phi \|x - Tx\| + b \|x - y\|.$$
 (5)

Corresponding Author: M. O. Olatinwo, Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria

The contractive definition (5) is more general in the following sense: If $\varphi(u) = Lu$, $L \ge 0$ in (5), then we obtain the contractive mapping of Osilike^[4]. If $\varphi(u)$ $= \frac{c}{1-c} u$ in (5), then we have the contractive mapping of Rhoades^[2]. Also, if $L = 2\delta$ and $a = \delta$ in^[3] where $\delta =$ max{ $\alpha, \frac{\beta}{1-\beta}, \frac{\gamma}{1-\gamma}$ }, $0 \le \alpha < 1, 0 \le \beta < 0.5, 0 \le \gamma \le 0.5$, then we obtain the Zamfirescu's contraction in Harder and Hicks^[3] and Berinde^[1]. When $\varphi(u) = 0$, then (5) reduces to

$$\| Tx-Ty \| \le b \| x-y \|, b \in [0,1),$$
 (6)

which is a contractive definition in Harder and Hicks^[3], Berinde^[1].

In the sequel, we shall require the following Lemma due to Berinde^[1].

Lemma 1 (Berinde^[1]): If δ is a real number such that $0 \le \delta < 1$, and $\{\in_n\}_{n=0}^{\infty}$ is a sequence of positive numbers such that $\lim_{n\to\infty} \epsilon_n = 0$, then for any sequence of positive numbers $\{u_n\}_{n=0}^{\infty}$ satisfying $u_{n+1} \le \delta u_n + \epsilon_n$, n = 0, 1... we have $\lim_{n\to\infty} u_n = 0$

MAIN RESULTS

We first establish a stability result for the Krasnolseskij iteration procedure as follows.

Theorem 1: Let $\{y_n\}_{n=o}^{\infty} \subset E$ and $\in_n = \|y_{n+1} - \frac{1}{2}(y_n + Ty_n)\|$. Let $(E, \|.\|)$ be a normed linear space and T: E $\rightarrow E$ a selfmap of E satisfying (5). Suppose T has a fixed point p. For arbitrary $x_0, \in E$, define sequence $\{x_n\}_{n=o}^{\infty}$ iteratively by; $x_{n+1}=f(T,x_n)=\frac{1}{2}(x_n+Tx_n), n \ge 0$. Let $\varphi: \Re_+ \to \Re_+$ be monotone increasing with $\varphi(0)=0$. Then, the Krasnolseskij iteration process is T-stable.

Proof: Let $\lim_{n \to \infty} \epsilon_n = 0$. We shall establish that $\lim_{n \to \infty} y_n = p$. Using (5) and the triangle inequality:

$$\begin{split} \left\| y_{n+1} - p \right\| &\leq \left\| y_{n+1} - \frac{1}{2} (y_n + Ty_n) \right\| + \left\| \frac{1}{2} (Ty_n - p) \right\| \\ &= \varepsilon_n + \frac{1}{2} \left\| (y_n - p) + (Ty_n - p) \right\| \\ &\leq \frac{1}{2} \left\{ \left\| y_n - p \right\| + \left\| Ty_n - p \right\| \right\} + \varepsilon_n \end{split}$$

$$= \frac{1}{2} \{ \| y_{n} - p \| + \| p - Ty_{n} \| \} + \epsilon_{n}$$

$$= \frac{1}{2} \{ \| y_{n} - p \| + \| Tp - Ty_{n} \| \} + \epsilon_{n}$$

$$\leq \frac{1}{2} \{ \| y_{n} - p \| + \phi(\| p - Tp \|) + b \| p - y_{n} \| \} + \epsilon_{n}$$

$$(\frac{1+b}{2}) \| y_{n} - p \| + \epsilon_{n}$$
(8)

Since $0 \le (\frac{1+b}{2}) < 1$, then by Lemma 1, (8) yields $\lim_{n \to \infty} ||y_n - p|| = 0.$

This implies that $\lim_{n \to \infty} y_n = p$

Conversely, suppose $\lim_{n\to\infty} y_n = p$. Then, from our hypothesis

$$\begin{split} &\in {}_{n} = \left\| \left\| y_{n+1} - \frac{1}{2} \left(y_{n} + Ty_{n} \right) \right\| \\ &\leq \left\| y_{n+1} - p \right\| + \left\| p - \frac{1}{2} \left(y_{n} + Ty_{n} \right) \right\| \\ &= \left\| y_{n+1} - p \right\| + \left\| \frac{1}{2} \left(p - y_{n} + p - Ty_{n} \right) \right\| \\ &\leq \left\| y_{n+1} - p \right\| + \frac{1}{2} \right\| \left\| y_{n} - p \right\| + \frac{1}{2} \left\| p - Ty_{n} \right) \right\| \\ &= \left\| y_{n+1} - p \right\| + \frac{1}{2} \left\| y_{n} - p \right\| + \frac{1}{2} \left\| Tp - Ty_{n} \right) \right\| \\ &\leq \left\| y_{n+1} - p \right\| + \frac{1}{2} \left[\phi(\left\| p - Tp \right\|) + b \right\| p - y_{n} \right\|] + \frac{1}{2} \left\| y_{n} - p \right\| \\ &= \left\| y_{n+1} - p \right\| + (\frac{1+b}{2}) \left\| y_{n} - p \right\| \to 0 \text{ as } n \to \infty. \end{split}$$

This completes the proof.

Remark 1: By similar argument as above, it is easy to establish a more general case of Theorem 1, which is

stated as follows:

Theorem 2: Let $\{y_n\}_{n=o}^{\infty} \subset E$ and $\in_n = \|y_{n+1} - (1-a)y_n - aTy_n\|$, $n \ge 0$. Let $(E, \|.\|)$ be a normed linear space and T: $E \to E$ a selfmap of E satisfying (5). Suppose T has a fixed point p. For arbitrary x_o , $\in E$, define sequence $\{x_n\}_{n=o}^{\infty}$ iteratively by: $x_{n+1} = f(T,x_n) = (1-a)x_n + aTx_n)$, $n \ge 0$, $a \in [0,1]$. Let $\varphi: \Re_+ \to \Re_+$ be monotone increasing and $\varphi(0)=0$. Then, the Schaefer's iteration process(or the Krasnolseskij iteration in the general form) is T-stable.

Remark 2: Specifically, if a = 1 in Theorem 2, we obtain the stability result for the Picard iteration process, (Imoru and Olatinwu^[7] and if $a=\frac{1}{2}$ in Theorem above, we obtain Theorem 1.

We now establish stability result for the Ishikawa iteration process.

Theorem 3: Let $\{y_n\}_{n=o}^{\infty} \subset E$ and define $s_n = (1 - \beta_n)y_n + \beta_n Ty_n$, $n \ge 0$, let $\in_n = \|y_{n+1} - (1 - \alpha)y_n - \alpha Ts_n\|$. Let (E, $\|.\|$) be a normed linear space and T: $E \to E$ a selfmap of E satisfying (5). Suppose T has a fixed point p and φ : $\Re_+ \to \Re_+$ is monotone increasing and $\varphi(0)=0$. For arbitrary x_o , $\in E$, define sequence $\{x_n\}_{n=o}^{\infty}$ iteratively by:

 $\begin{array}{c} x_{n+1} = (1 - \alpha_n) x_n + \alpha_n T z_n \\ z_n = (1 - \beta_n) x_n + \beta_n T x_n \end{array} \right) \quad n \geq 0 \\ \end{array}$

Where, $\{\alpha_n\}_{n=o}^{\infty}$ and $\{\beta_n\}_{n=o}^{\infty}$ are real sequences satisfying:

 $\begin{array}{ll} (i) & \alpha_o=1 \\ (ii) & 0\leq\alpha_n, \ \beta_n\leq 1, \ n\geq 0 \ and \\ (iii) & 0\leq (1-\alpha_n+\alpha_nb-\alpha_n\beta_nb+\alpha_n\beta_nb^2)\leq (1-\alpha_n+\alpha_nb)<1. \end{array}$

Then, the Ishikawa iteration process is T-stable.

Proof:

$$\begin{split} \| y_{n+1} - p \| &\leq \| y_{n+1} - (1 - \alpha_n) y_n - \alpha_n T s_n \| \\ &+ \| 1 - \alpha_n) y_n - \alpha_n T s_n - p \| \\ &= \varepsilon_n + \| (1 - \alpha_n) y_n + \alpha_n T s_n - [(1 - \alpha_n) + \alpha_n] p \| \\ &= \| (1 - \alpha_n) (y_n - p) + \alpha_n (T s_n - p) \| + \varepsilon_n \\ &\leq (1 - \alpha_n) \| y_n - p \| + \alpha_n \| T s_n - p \| + \varepsilon_n \\ &= (1 - \alpha_n) \| y_n - p \| + \alpha_n \| p - T s_n \| + \varepsilon_n \\ &= (1 - \alpha_n) \| y_n - p \| + \alpha_n \| T p - T s_n \| + \varepsilon_n \end{split}$$

Since T satisfies (5), we have:

$$\begin{split} \| y_{n+1}-p \| &\leq (1-\alpha_n) \| y_n-p \| + \alpha_n [\phi(p-Tp \|) + b \| p-s_n \|] + \varepsilon_n \\ &= (1-\alpha_n) \| y_n-p \| + \alpha_n b(\| (1-\beta_n)(p-y_n) + \beta_n(p-Ty_n) \| + \varepsilon_n \\ &\leq (1-\alpha_n) \| y_n-p \| + \alpha_n b(1-\beta_n) \| (p-y_n) + \beta_n(p-Ty_n) \| + \varepsilon_n \\ &= (1-\alpha_n + \alpha_n b - \alpha_n \beta_n b) \| y_n - p \| + \alpha_n \beta_n b \| Tp - Ty_n \| + \varepsilon_n \\ &= (1-\alpha_n + \alpha_n b - \alpha_n \beta_n b) \| y_n - p \| + \alpha_n \beta_n b [\phi(\| p - Tp \|)) \\ &+ b \| p - y_n \| + \varepsilon_n \\ &= (1-\alpha_n + \alpha_n b - \alpha_n \beta_n b + \alpha_n \beta_n b^2) \| y_n - p \| + \varepsilon_n \\ &\leq (1-\alpha_n + \alpha_n b) \| y_n - p \| + \varepsilon_n \end{split}$$
(9)

Since $0 \le (1 - \alpha_n + \alpha_n b) < 1$, then using Lemma 1 in (9) yields $\lim_{n \to \infty} ||y_n - p|| = 0$. This implies that $\lim_{n \to \infty} y_n = p$.

Conversely, let $\lim_{n \to \infty} y_n = p$. Then, $\in_{n} = \| \mathbf{y}_{n+1} - (1 - \alpha_{n}) \mathbf{y}_{n} - \alpha_{n} \mathbf{T} \mathbf{s}_{n} \|$ $\leq \|y_{n+1} - p\| + \|p - (1 - \alpha_n) y_n - \alpha_n Ts_n\|$ $= \| y_{n+1} - p \| + \| [(1 - \alpha_n) + \alpha_n] p - (1 - \alpha_n) y_n - \alpha_n T s_n \|$ $= \|y_{n+1} - p\| + \|(1 - \alpha_n)(p - y_n) + \alpha_n(p - Ts_n)\|$ $\leq \|y_{n+1} - p\| + (1 - \alpha_n) \|y_n - p\| + \alpha_n \|p - Ts_n\|$ $= \| y_{n+1} - p \| + (1 - \alpha_n) \| y_n - p \| + \alpha_n \| Tp - Ts_n \|$ $\leq \|y_{n+1} - p\| + (1 - \alpha_n) \|y_n - p\| + \alpha_n [\phi(\|p - Tp\|)]$ $+ b \| p - s_n \|]$ $= \|y_{n+1} - p\| + (1 - \alpha_n) \|y_n - p\| + \alpha_n b \| (1 - \beta_n)(p - y_n)$ $+\beta_n(p-Ty_n)$ $\leq ||y_{n+1} - p|| + (1 - \alpha_n) ||y_n - p|| + \alpha_n b || (1 - \beta_n) (p - y_n)$ $+ \alpha_n \beta_n b \| p - T y_n \|$ $= \| y_{n+1} - p \| + (1 - \alpha_n + \alpha_n b - \alpha_n \beta_n b \| y_n - p \|$ + $\alpha_n \beta_n b$ || Tp-Ty_n || $\leq ||y_{n+1} - p|| + (1 - \alpha_n + \alpha_n b - \alpha_n \beta_n b||y_n - p||$ + $\alpha_n \beta_n b[\phi(\|p - Tp\|) + b\|p - y_n\|]$ $= (1 - \alpha_n + \alpha_n b - \alpha_n \beta_n b + \alpha_n \beta_n b^2) \| y_n - p \| + \epsilon_n$ $\leq \|\mathbf{y}_{n+1} - \mathbf{p}\| + (1 - \alpha_n + \alpha_n \mathbf{b}) \|\mathbf{y}_n - \mathbf{p}\| \to 0, \text{ as } n \to \infty.$ This completes the proof.

Remark 3: Theorem 3 in this study is a generalization of Theorem 2 of Osilike^[4] which is itself a generalization of Theorem 30 of Rhoades^[2].

REFERENCES

- Berinde, V., 2002. On the stability of some fixed point procedures, Bul. Stiint. Univ. Baia Mare, Ser. B, Matematica -Informatica, 18: 7-14.
- Rhoades, B.E., 1991. Some fixed point iteration procedures. Intl. J. Math. Math. Sci., 14: 1-16.
- Harder, A.M. and T.L. Hicks, 1988. Stability results for fixed point iteration procedures. Math. Japonica, 33: 693-706.
- Osilike, M.O., 1995. Some stability results for fixed point iteration procedures. J. Nigerian Math. Soc., 14/15: 17-29.
- Osilike, M.O., 1999. Short proofs of stability results for fixed point iteration procedures for a class of contractive-type mappings. Indian J. Pure Appl. Math., 30: 1229-1234.
- Rhoades, B.E., 1990. Fixed point theorems and stability results for fixed point iteration procedures. Indian J. Pure Appl. Math. 21: 1-9.
- Imoru, C.O. and M.O. Olatinwo, 2003. On the stability of Picard and Mann iteration processes. Carpathian J. Math., 19: 155-160.