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Abstract: In this study, we establish that both the Mann and Ishikawa iteration processes are T-stable 
for the mappings T satisfying a more general contractive definition than that of Osilike[1] .  The results 
obtained generalize some of the recent results of Osilike[1]  which are themselves generalizations and 
extensions of some of the results of Harder and Hicks[2]  and Rhoades[3,4]. 
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INTRODUCTION 

 
 Let (E, d) be a complete metric space and T : E → 
E a selfmap of E and F(T) = {p∈E : Tp  = p}, the set of 
fixed points of T.  For xo ∈ E, define sequence 

∞
=on}{x x iteratively by 

 
xn+1 =  f(T, x n) ,   n = 0, 1, 2, … (1) 
 

 Suppose ∞
=onn}{x  converges to a fixed point  p  of 

T  and let  εn = d(yn+1, f(T, yn)), where ∞
=on}{y n ⊂ E.  

Then, the iteration procedure (I) is said to be T-stable or 
stable with respect to T if and only if 0lim =∞→ nn ε  

implies .lim py nn =∞→  
 Harder and Hicks[2] established several stability 
results under various contractive conditions using the 
above concept. Rhoades[3,4] extended the results of 
Harder and  Hicks[2] to other classes of contractive 
mappings.  In Rhoades[4], the following contractive 
definition was considered :  there exists a constant c ∈ 
[0 ,1), such that for each  x, y  ∈ E,  

d(Tx , Ty)  ≤  c max{d(x, y),  
2
1

[d(x, Tx) + d(y, Ty)], 

 d(x, Ty)], d(x, Ty), d(y, Tx)}  (2) 
 
 Using (2), Rhoades[4] established several stability 
results which are generalizations and extensions of 
most of the results of Harder and Hicks[2]  and 
Rhoades[5].  It was shown in Rhoades[6]  that if T 
satisfies (2) then,  

d(Tx , Ty)  ≤  
c

c
−1

d(x ,Ty) + c d(x ,y) 

 Osilike[1] employed the following contractive 
definition: for each x, y ∈  E, there exist constants  a ∈ 
[0,1) and L ≥ 0  such that 
 
d(Tx , Ty)  ≤  Ld(x , Tx) + a d(x , y). (3) 

 Using (3), Osilike[1] proved several stability results 
which are generalizations and extensions of most of the 
results of Rhoades[4]. 
 Employing the same contractive definitions as in 
Harder and Hicks[2], Berinde[7] proved the same 
stability results for the same iteration procedures by an 
alternative method. 
In this study, we extend some of the recent results of 
Berinde[7], Osilike[1] and Rhoades[4] to a more general 
contractive definition. 
 
Preliminaries: In the sequel, we shall employ the 
following contractive definition.  For each x, y ∈ E, 
there exist a constant  b ∈  [0,1}, and a continuous, 
monotone increasing function  ϕ : ℜ+ →ℜ+  with   ϕ(0) 
= 0,  such that  
 
d(Tx, Ty)  ≤  ϕ (d(x, Tx)) + bd(x, y). (4) 
 
 The contractive definition (4) is more general than 
those considered by Berinde[7], Harder and Hicks[2], 
Rhoades[3,4]  and Osilike[1].  This is evident by 
specifying ϕ in (4) as follows.  If ϕ(u) = Lu  in (4)  
above, where  L ≥ 0  is a constant, then we obtain the 
contractive mapping of Osilike[1] which is itself a 
generalization of those in Harder and Hicks[2], 
Berinde[7] and Rhoades[4].  Also, if L = mb, where m = 
(1-b)-1, b∈[0,1), we obtain the contractive mapping 
considered by Rhoades[4]. 
Also, if L = 2δ,  b = δ,  where  δ = max  

�
�
�

− β
βα

1
,

�
�
�

− γ
γ

1
,  0 ≤ α< 1 

0 ≤ β < 0.5,  0≤ϒ≤ 0.5,  then we obtain the 
Zamfirescu’s contractive definition which was 
employed in Harder and Hicks[2] and Berinde[7].  
Furthermore,  if ϕ(u) = 0, then (4) reduces to d(Tx, Ty)  
≤  bd(x, y),     b ∈ [0,1) which is another contractive 
definition used by Harder and Hicks[2] and Berinde[7]. 
 In the sequel, we shall establish stability results for 
the following iteration procedures: 
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i. The Mann Iteration Process [1,6], which is defined 
for arbitrary  xo  ∈ E  by xn+1 = ƒ(T, xn) = (1- αn)xn 

+ αnTxn,    n ≥ 0, Where, {αn} ∞
=on  is a real 

sequence satisfying  αo = 1, 0  ≤ αn ≤  1,  for  n > 0 
and .∞=� ∞

= non α  

ii. The Ishikawa Iteration Process [1,6] which is 
defined for arbitrary   xo ∈  E  by:  

1 ,

(1 )

( , ) (1 )
n n n n n

n n n n n n

Z x Tx

x f T X x Tx

β α
α α+

= − + �
�= = − + �

 

 Where, {αn} ∞
=on  and {βn} ∞

=on are real 

sequences satisfying 0 ≤ αn ≤ βn ≤ 1 for all n ≥ 0, and 
limn→∞ βn = 0 and  � ∞

=on  α nβn = ∞. We shall employ 
the following lemmas in the proofs of the stability 
results. 
 
Lemma 1:  Let (E, d) be a complete metric space, and  
T: E → E  -  a selfmap of E satisfying  (4).  Let  xo ∈ E   
and   xn+1 = Txn,   n ≥ 0.  Suppose T has a fixed point  p 
and ϕ : ℜ+ → ℜ+ = [0, ∞)  is a continuous monotone 
increasing  function such that  ϕ(0) = 0.  Then,  
lim

∞=n ϕ(d(  xn,  Txn))   =  0. 

 
Proof:  From (4) and the hypothesis of the Lemma, we 
have:   
d(xn+1, p)  =  d(Txn, Tp)  =  d(Tp, Txn) 
  ≤ ϕ(d(p, Tp)) + bd(p, xn) 
  = bd(xn, p)  ≤ b2d(xn-1,p)  ≤ …  
  ≤ bn+1d(xo, p) → 0 ,        as  n → ∞ . 
 
By triangle inequality and (4), we have: 
d(xn, Txn) ≤ d(xn, p) + d(p, Txn) 
  = d(xn, p) + d(Tp, Txn) 
  ≤ d(xn, p) +  ϕ (d(p, Tp)) + bd(p,xn) 
  = (1+b)d(xn, p) → 0  as  n → ∞    
Thus,  lim

∞=n d(  xn,  Txn)   = 0. 
 
But  ϕ is continuous,  therefore we have : 
limn→∞  ϕ(d(xn, Txn) = ϕ( limn→∞  d(xn, Txn)) = 0, 
This completes the proof of the Lemma. 
 
Remark 1:  The operator T in Lemma 1 is not 
necessarily a Picard operator. 
 
Lemma 2:  Let  (E, �.�) be a normed linear space, and 
let  T : E  → E  be a selfmap of E satisfying (4).  
Suppose T has a fixed point p.  Let {xn} ∞

=on be the 

Ishikawa iteration process with  {αn} ∞
=on  and  

{βn} ∞
=on satisfying  

i. αo = 1; 
ii. 0 ≤ αn ,  βn ≤  1,     n ≥ 0 ; 

iii. � ∞
=on αj =  ∞ ; 

iv.  � ∞
=on  Π n

jk 1+= (1- αk + bαk) converges. 

 
 Suppose  ϕ : ℜ+ → ℜ+ is a continuous monotone 
increasing function such that 
ϕ(0) = 0 .  Let {yn} ∞

=on ⊂ E  and define. 

sn = (1- βn)yn +  βnTyn,  n  ≥ 0  
εn = �yn+1 – (1- αn)yn -  αnTsn� 
 
Then, 
�yn+1 - p� ≤ � xn+1 - p� + � ∞

=oj Π n
jk 1+=  

  (1- αk + bαk) ϕ�zj - Tzj�) 
  + � ∞

=oj αj βj Π n
jk 1+= (1- αk + bαk) 

  ϕ(�xj - Txj�) 
  + Π n

ok = (1- αk + bαk) �xo – yo� 

 +� ∞
=oj Π n

jk 1+= (1- αk + bαk)εj,  (5)  

 
Where the product is 1 when j = n. 
 
Proof:  Using (4) and the triangle inequality, we have 
the following: 
�yn+1 - p� ≤ � yn+1 - xn+1� + � xn+1 -p� 
  ≤�yn+1 - p�+� yn+1- (1- αn)yn- αnTsn� 
  + �(1- αnyn- αnTsn- xn+1� 
  =  �xn+1 - p�+εj +� 
  (1- αn)yn- αnTsn-(1- αn)xn- αnTzn� 
  ≤ �xn+1 - p� + (1- αn) + �xn - yn� 
  + αn�Tzn- Tsn�+ εn 
  ≤�xn+1 - p� + (1- αn)�xn - yn� 
  + αn[ϕ (�zn- Tzn�)+b�zn- sn�]+εn 

  =�xn+1 - p� + (1- αn)�xn - yn� 
  + αnϕ (�zn- Tzn�)+αnb�zn- sn�+εn (6) 

 
Observe that  
�zn - sn� = �(1- βn)xn + βnTxn – (1 - βn)yn - βnTyn� 
  ≤ (1- βn)�xn - yn� + βn �Txn – Tyn� 
  ≤ (1- βn)�xn - yn� + βn (ϕ�xn – Txn�) 
  + b�xn - yn�) 
  = βnϕ(�xn - Txn�) + (1 - βn + bβn)�xn - yn� 
  ≤βnϕ(�xn - Txn�) + �xn - yn�. (7) 
 
Substituting  (7) into (6), we have  
�yn+1 - p� ≤ � yn+1 - p� + αnϕ 
(�zn - Tzn�) + bαnβnϕ(� xn - Txn�) 
+ (1- αn + bαn )�xn - yn� + εn (8) 
 
Moreover, 
�yn - xn� ≤� yn – (1-α n-1)yn-1 - αn-1Tsn� 
    +�(1-αn-1)yn-1+ αn-1Tsn-1 -xn�  
    = ε n-1 + �(1 - αn-1)yn-1 - αn-1Tsn-1 

     - (1- αn-1)xn-1 - αn-1Tzn-1�  
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   ≤(1 - α n-1)�xn-1 - yn-1 � + αn-1� 
   Tzn-1 - Tsn-1� + ε n-1 

   ≤ (1- α n-1)�xn-1 - yn-1 � + αn-1 

  (ϕ (�zn-1 - Tzn-1�) 
   + b�zn-1- sn-1�) + ε n-1 

  = αn-1ϕ (�zn-1 - Tzn-1�) + (1- αn-1)�xn-1 - yn-1� 
  + bαn-1�zn-1- sn-1� +  ε n-1 (9) 

 
Similarly, from (7), we have:   
�zn-1 - sn-1�) ≤  βn-1ϕ (�xn-1 - Txn-1�) 
+ �xn-1- yn-1� (10) 

 
Substituting (10) into (9), we have 
�xn - yn� ≤ αn-1ϕ (�zn-1 - Tzn-1�) 
+ bαn-1βn-1ϕ(�xn-1 - Txn-1�) +   
(1-αn-1 + bαn-1)�xn-1 - yn-1� +  ε n-1 (11) 

 
 Substituting  (11) into (8) yields: 
�yn+1 - p� ≤ �xn+1 - p� + αnϕ (�zn - Tzn�) + bαnβnϕ 
(�xn - Txn�) +  ε 

+ (1- αn + bαn)ε n-1 + (1- αn+ bαn ) αn-1ϕ (�zn-1 - Tzn-1�) 

+ b(1-αn+ bαn)αn-1β n-1ϕ(�xn-1 - Txn-1�)  
+ (1-αn+ bαn ) (1-αn-1+ bαn-1 )�xn-1 - yn-1� 
Repeating this process (n-1) more times yields (5).  
This completes the proof. 
 
Remark 2: If βn = 0 in Lemma 2, then we obtain an 
equivalent result for the Mann iteration process. 
 

MAIN RESULTS 
 
Theorem 1:  Let  (E, �.�) be a normed linear space 
and let  T : E  → E  be a selfmap of E satisfying the 
contractive definition (4).  Suppose T has a fixed point 
p and the sequence {xn} ∞

=on  is the Ishikawa iteration 
process satisfying the conditions of Lemma 2.  Then, 
the Ishikawa iteration process is T-stable. 
 

Proof:  Suppose 0lim =∞→ nn ε .  Then, we shall show 

that py nn =∞→
lim , using Lemmas 1 and 2.  Let C be the 

lower triangular matrix with entries: 

cnj =αj Π n
ojk 1+= (1-α k+ bαk).  Then, C is 

multiplicative[1,4]. Since  ϕ is continuous and lim
∞→n �zn - 

Tzn� = 0, then  by Lemma 1, we obtain: 
n

jkj

n

jn 10
lim

+==∞→ ∏� α  (1- α k + bαk)ϕ 

(�zj – Tzj� ) = 0. 
 
Furthermore, 

0 ≤  n
jkj

n

j
b 10 +==

∏� α (1 - α k + bαk)ϕ(�xj – Txj�) 

≤  n
jkj

n

j
b 10 +==

∏� α (1 - α k + bαk)ϕ(�xj – Txj�). 

Since  ϕ is continuous and lim
∞→n  �xn – Txn� ) = 0,  we 

have 
lim

∞→n
n

jkj

n

j
b 10 +==

∏� α (1- αk + bαk)ϕ 

(�xj – Txj�) = 0. 
which implies that : 

lim
∞→n

n
jkjj

n

j
b 10 +==

∏� βα
 

(1 - αk + bαk)ϕ(�xj – Txj�) = 0, 
 
 Let  D be the lower triangular matrix with entries 

dnj  = n
jk 1+=∏ (1 - αk +  bαk). 

 Condition (iv) of Lemma 2 implies that D is 
multiplicative[5] and since  0lim =∞→ nn ε , we obtain:   

�
=

∞→

n

oj
n
lim n

jk 1+=∏ (1 - αk + bαk) nε = 0 

 Moreover, condition (iii) of Lemma 2 implies that 
lim

∞→n
n

ok =∏ (1 - αk + bαk) = 0.  

 Also, we shall prove that     lim
∞→n �xn+1 – p� = 0.  

 Using (4), triangle inequality and condition (ii)  of 
Lemma 2, we have: 
�xn+1 - p� = �(1 - αn )xn + αnTzn - p� 
  = �(1 - αn )(xn – p) +  αn(Tzn – p)� 
  = �( 1-αn )(xn – p) +  αn(Tzn – Tp)� 
  ≤ �( 1-αn )�xn – p� +  αn�Tp – Tzn� 
  ≤ �( 1-αn )�xn – p� +  αn[ϕ(�p – Tp�) 
  + b� p-zn�] 
  =  �( 1-αn )�xn – p� +  bαn�1-βn)xn 

  + βnTxn-p� 
  = �( 1-αn )�xn – p� +  bαn[�1-βn)(xn –p) 
  + βn(Txn-p)� 
  ≤ �( 1-αn )�xn – p� +  bαn(1-βn)� xn – p �) 
   + bαnβn)� Tp – Txn� 
  ≤ �(1- αn )�xn – p� +  bαn(1-βn)� xn – p �)  
  + bαnβn [ϕ(� p – Tp�)+b�p – xn�] 
  = (1- αn + bαn)�xn–p�- bαnβn(1-b)�xn – p� 
  ≤  [1- (1-b) αn ]�xn – p� 
  =  exp(- (1-b) αn )�xn – p� 
  ≤ exp(- (1-b) αn )exp(-(1- b) αn-1) �xn-1 – p� 
  ≤ exp(- (1-b) αn )exp(- (1-b) αn-1)… ≤ 
  exp(- (1-b) αo)�xo – p� 

  = exp(- (1-b) )
0 j

n

j
α� =

�xo – p�→ 0, 

  as n → ∞. 
Hence, inequality (5) yields py nn =∞→

lim . 

Conversely, suppose that py nn =∞→
lim .  Then, 

ε n = � yn+1 – (1- αn)yn - α nTsn� 
 ≤  � yn+1-p� +�p- (1- αn)yn - αnTsn� 
 =� yn+1-p� +� (1- αn)(yn –p)+ α n(Tsn-p)� 
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 � yn+1-p� + (1- αn)�yn - p�+αn�Tp-Tsn� 
 � yn+1-p� + (1- αn)�yn - p�+αn(ϕ(�p-Tp�) 
  + b� p-sn�) 
 = � yn+1-p� + (1- αn)�yn - p�+bαn(1-βn )(yn –p) 
 + βn(Tyn- p)�  
 � yn+1-p� + (1- αn)�yn - p�+bαn(1-βn )(yn –p) 
 + bαnβn �Tp- Tyn� 
 � yn+1 - p� + (1- αn + bαn - bαnβn )� (yn – p) �  
 + bαnβn (ϕ(�p - Tp� + b�p - yn�)) 
 = � yn+1 - p� + (1- αn + bαn - bαnβn + b2nβn ) 
 � (yn – p) �→ 0,  as  n →∞ 
 
This completes the proof of the Theorem. 
 
Remark 3:  Theorem 1 is   a generalization of Theorem 
2   of  Osilike[1] and Theorem 30 of Rhoades[3].  If   βn = 
0, ∀ n ≥ 0  in   Theorem 1, we obtain  a   generalization   
of Theorem 2 of Rhoades[4] which itself is a 
generalization of both Theorem 3 of Harder and 
Hicks[2] and Theorem 2 of Rhoades[5]. 
 By Remark 2, we have the following stability result 
for the Mann iteration process. 
 
Corollary 1: Let  (E, �.�) be a normed linear space 
and let T: E → E be a selfmap of E satisfying the 
contractive definition (4).  Suppose T has a fixed point 
p and let be the Mann iteration process satisfying the 
conditions of Remark 2.  then, the Mann iteration 
process is T-stable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Proof:  The proof follows directly from Theorem 1, by 
putting βn =0. 
 
Remark 4: Corollary 1 is a generalization of Theorem 
2 of Rhoades[4], which itself is a generalization of both 
Theorem 3 of Harder and Hicks[2] and Theorem 2 of 
Rhoades[5]. 
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