Journal of Mathematics and Statistics 2 (1): 339-342, 2006 ISSN 1549-3644 © 2006 Science Publications

On Some Stability Results for Fixed Point Iteration Procedure

M. O. Olatinwo, O. O. Owojori and C. O. Imoru Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria.

Abstract: In this study, we establish that both the Mann and Ishikawa iteration processes are T-stable for the mappings T satisfying a more general contractive definition than that of $Osilike^{[1]}$. The results obtained generalize some of the recent results of $Osilike^{[1]}$ which are themselves generalizations and extensions of some of the results of Harder and Hicks^[2] and Rhoades^[3,4].

Key words: Stability results, fixed point iteration procedure

INTRODUCTION

Let (E, d) be a complete metric space and T : E \rightarrow E a selfmap of E and F(T) = {p \in E : T_p = p}, the set of fixed points of T. For $x_o \in$ E, define sequence { x_x }_{n=o}[∞] iteratively by

$$x_{n+1} = f(T, x_n), \quad n = 0, 1, 2, ...$$
 (1)

Suppose $\{X_n\}_{n=o}^{\infty}$ converges to a fixed point p of T and let $\varepsilon_n = d(y_{n+1}, f(T, y_n))$, where $\{y_n\}_{n=o}^{\infty} \subset E$. Then, the iteration procedure (I) is said to be T-stable or stable with respect to T if and only if $\lim_{n\to\infty} \varepsilon_n = 0$ implies $\lim_{n\to\infty} y_n = p$.

Harder and Hicks^[2] established several stability results under various contractive conditions using the above concept. Rhoades^[3,4] extended the results of Harder and Hicks^[2] to other classes of contractive mappings. In Rhoades^[4], the following contractive definition was considered : there exists a constant $c \in$ [0,1), such that for each x, y \in E,

$$d(Tx, Ty) \leq c \max\{d(x, y), \frac{1}{2}[d(x, Tx) + d(y, Ty)], d(x, Ty)], d(y, Tx)\}$$
(2)

Using (2), Rhoades^[4] established several stability results which are generalizations and extensions of most of the results of Harder and Hicks^[2] and Rhoades^[5]. It was shown in Rhoades^[6] that if T satisfies (2) then,

$$d(Tx, Ty) \leq \frac{c}{1-c} d(x, Ty) + c d(x, y)$$

Osilike^[1] employed the following contractive definition: for each x, $y \in E$, there exist constants $a \in [0,1)$ and $L \ge 0$ such that

$$d(Tx, Ty) \le Ld(x, Tx) + a d(x, y).$$
(3)

Using (3), Osilike^[1] proved several stability results which are generalizations and extensions of most of the results of Rhoades^[4].

Employing the same contractive definitions as in Harder and Hicks^[2], Berinde^[7] proved the same stability results for the same iteration procedures by an alternative method.

In this study, we extend some of the recent results of Berinde^[7], Osilike^[1] and Rhoades^[4] to a more general contractive definition.

Preliminaries: In the sequel, we shall employ the following contractive definition. For each x, $y \in E$, there exist a constant $b \in [0,1]$, and a continuous, monotone increasing function $\varphi : \Re_+ \to \Re_+$ with $\varphi(0) = 0$, such that

$$d(Tx, Ty) \le \varphi(d(x, Tx)) + bd(x, y).$$
(4)

The contractive definition (4) is more general than those considered by Berinde^[7], Harder and Hicks^[2], Rhoades^[3,4] and Osilike^[1]. This is evident by specifying φ in (4) as follows. If $\varphi(u) = Lu$ in (4) above, where $L \ge 0$ is a constant, then we obtain the contractive mapping of Osilike^[1] which is itself a generalization of those in Harder and Hicks^[2], Berinde^[7] and Rhoades^[4]. Also, if L = mb, where m = $(1-b)^{-1}$, $b \in [0,1)$, we obtain the contractive mapping considered by Rhoades^[4].

Also, if $L = 2\delta$, $b = \delta$, where $\delta = \max \left\{ \alpha \frac{\beta}{1-\beta}, \frac{\gamma}{1-\gamma} \right\}, 0 \le \alpha < 1$

 $0 \le \beta < 0.5$, $0 \le Y \le 0.5$, then we obtain the Zamfirescu's contractive definition which was employed in Harder and Hicks^[2] and Berinde^[7]. Furthermore, if $\varphi(u) = 0$, then (4) reduces to d(Tx, Ty) $\le bd(x, y)$, $b \in [0,1)$ which is another contractive definition used by Harder and Hicks^[2] and Berinde^[7].

In the sequel, we shall establish stability results for the following iteration procedures:

Corresponding Author: M. O. Olatinwo, Department of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria

- i. The Mann Iteration Process ^[1,6], which is defined for arbitrary $x_o \in E$ by $x_{n+1} = f(T, x_n) = (1 - \alpha_n)x_n$ + $\alpha_n T x_n$, $n \ge 0$, Where, $\{\alpha_n\}_{n=o}^{\infty}$ is a real sequence satisfying $\alpha_o = 1, 0 \le \alpha_n \le 1$, for n > 0and $\sum_{n=o}^{\infty} \alpha_n = \infty$.
- ii. The Ishikawa Iteration Process ^[1,6] which is defined for arbitrary $x_o \in E$ by:

$$Z_n = (1 - \beta_n) x_n + \alpha_n T x_n$$

$$x_{n+1} = f(T, X_n) = (1 - \alpha_n) x_n + \alpha_n T x_n,$$

Where, $\{\alpha_n\}_{n=o}^{\infty}$ and $\{\beta_n\}_{n=o}^{\infty}$ are real sequences satisfying $0 \le \alpha_n \le \beta_n \le 1$ for all $n \ge 0$, and $\lim_{n\to\infty} \beta_n = 0$ and $\sum_{n=o}^{\infty} \alpha_n \beta_n = \infty$. We shall employ the following lemmas in the proofs of the stability results.

Lemma 1: Let (E, d) be a complete metric space, and T: $E \to E$ - a selfmap of E satisfying (4). Let $x_o \in E$ and $x_{n+1} = Tx_n$, $n \ge 0$. Suppose T has a fixed point p and $\varphi : \Re_+ \to \Re_+ = [0, \infty)$ is a continuous monotone increasing function such that $\varphi(0) = 0$. Then, $\lim_{n = \infty} \varphi(d(x_n, Tx_n)) = 0$.

Proof: From (4) and the hypothesis of the Lemma, we have:

$$\begin{split} d(x_{n+1,}\,p) &= \, d(Tx_n,Tp) \,=\, d(Tp,Tx_n) \\ &\leq \phi(d(p,Tp)) + bd(p,\,x_n) \\ &= \, bd(x_n,p) \,\leq b^2 d(x_{n-1},p) \,\leq \dots \\ &\leq b^{n+1} d(x_o,p) \to 0 \,, \quad \text{as } n \to \infty \,. \end{split}$$

By triangle inequality and (4), we have: $\begin{aligned} d(x_n, Tx_n) &\leq d(x_n, p) + d(p, Tx_n) \\ &= d(x_n, p) + d(Tp, Tx_n) \\ &\leq d(x_n, p) + \phi \left(d(p, Tp) \right) + bd(p, x_n) \\ &= (1+b)d(x_n, p) \rightarrow 0 \text{ as } n \rightarrow \infty \end{aligned}$ Thus, $\lim_{n=\infty}^{\lim} d(x_n, Tx_n) = 0.$

But φ is continuous, therefore we have : $\lim_{n\to\infty} \varphi(d(x_n, Tx_n) = \varphi(\lim_{n\to\infty} d(x_n, Tx_n)) = 0,$ This completes the proof of the Lemma.

Remark 1: The operator T in Lemma 1 is not necessarily a Picard operator.

Lemma 2: Let $(E, \|.\|)$ be a normed linear space, and let $T : E \to E$ be a selfmap of E satisfying (4). Suppose T has a fixed point p. Let $\{x_n\}_{n=o}^{\infty}$ be the Ishikawa iteration process with $\{\alpha_n\}_{n=o}^{\infty}$ and $\{\beta_n\}_{n=o}^{\infty}$ satisfying i. $\alpha_o = 1$; ii. $0 \le \alpha_n, \ \beta_n \le 1, \ n \ge 0$; iii. $\sum_{n=0}^{\infty} \alpha_{j} = \infty$; iv. $\sum_{n=0}^{\infty} \prod_{k=j+1}^{n} (1 - \alpha_{k} + b\alpha_{k})$ converges.

Suppose $\phi: \mathfrak{R}_+ \to \mathfrak{R}_+$ is a continuous monotone increasing function such that

$$\begin{split} \phi(0) &= 0 \text{ . Let } \{y_n\}_{n=o}^{\infty} \subset E \text{ and define.} \\ s_n &= (1 - \beta_n)y_n + \beta_n T y_n, \ n \ge 0 \\ \epsilon_n &= \left\| y_{n+1} - (1 - \alpha_n)y_n - \alpha_n T s_n \right\| \end{split}$$

Then,

$$\begin{split} \left\| \mathbf{y}_{n+1} - \mathbf{p} \right\| &\leq \left\| \mathbf{x}_{n+1} - \mathbf{p} \right\| + \sum_{j=o}^{\infty} \prod_{k=j+1}^{n} \\ & (1 - \alpha_k + b\alpha_k) \, \boldsymbol{\varphi} \| \mathbf{z}_j - \mathbf{T} \mathbf{z}_j \|) \\ & + \sum_{j=o}^{\infty} \alpha_j \, \beta_j \prod_{k=j+1}^{n} (1 - \alpha_k + b\alpha_k) \\ & \boldsymbol{\varphi} (\left\| \mathbf{x}_j - \mathbf{T} \mathbf{x}_j \right\|) \\ & + \prod_{k=o}^{n} (1 - \alpha_k + b\alpha_k) \, \left\| \mathbf{x}_o - \mathbf{y}_o \right\| \\ & + \sum_{j=o}^{\infty} \prod_{k=j+1}^{n} (1 - \alpha_k + b\alpha_k) \boldsymbol{\varepsilon}_j, \end{split}$$
(5)

Where the product is 1 when j = n.

Proof: Using (4) and the triangle inequality, we have the following:

$$\begin{split} \left\| y_{n+1} - p \right\| &\leq \left\| y_{n+1} - x_{n+1} \right\| + \left\| x_{n+1} - p \right\| \\ &\leq \left\| y_{n+1} - p \right\| + \left\| y_{n+1^{-}} (1 - \alpha_n) y_{n^{-}} \alpha_n T s_n \right\| \\ &+ \left\| (1 - \alpha_n y_{n^{-}} \alpha_n T s_{n^{-}} x_{n+1} \right\| \\ &= \left\| x_{n+1} - p \right\| + \varepsilon_j + \right\| \\ &(1 - \alpha_n) y_{n^{-}} \alpha_n T s_{n^{-}} (1 - \alpha_n) x_{n^{-}} \alpha_n T z_n \right\| \\ &\leq \left\| x_{n+1} - p \right\| + (1 - \alpha_n) + \left\| x_n - y_n \right\| \\ &+ \alpha_n \left\| T z_{n^{-}} T s_n \right\| + \varepsilon_n \\ &\leq \left\| x_{n+1} - p \right\| + (1 - \alpha_n) \left\| x_n - y_n \right\| \\ &+ \alpha_n [\phi \left(\left\| z_{n^{-}} T z_n \right\| \right) + b \left\| z_{n^{-}} s_n \right\| \right] + \varepsilon_n \\ &= \left\| x_{n+1} - p \right\| + (1 - \alpha_n) \left\| x_n - y_n \right\| \\ &+ \alpha_n \phi \left(\left\| z_{n^{-}} T z_n \right\| \right) + \alpha_n b \left\| z_{n^{-}} s_n \right\| + \varepsilon_n \end{split}$$

Observe that

$$\begin{split} \left\| z_{n} - s_{n} \right\| &= \left\| (1 - \beta_{n}) x_{n} + \beta_{n} T x_{n} - (1 - \beta_{n}) y_{n} - \beta_{n} T y_{n} \right\| \\ &\leq (1 - \beta_{n}) \left\| x_{n} - y_{n} \right\| + \beta_{n} \left\| T x_{n} - T y_{n} \right\| \\ &\leq (1 - \beta_{n}) \left\| x_{n} - y_{n} \right\| + \beta_{n} (\phi \| x_{n} - T x_{n} \|) \\ &+ b \left\| x_{n} - y_{n} \right\|) \\ &= \beta_{n} \phi(\left\| x_{n} - T x_{n} \right\|) + (1 - \beta_{n} + b\beta_{n}) \left\| x_{n} - y_{n} \right\| \\ &\leq \beta_{n} \phi(\left\| x_{n} - T x_{n} \right\|) + \left\| x_{n} - y_{n} \right\|. \end{split}$$

Substituting (7) into (6), we have $\begin{aligned} \| y_{n+1} - p \| &\leq \| y_{n+1} - p \| + \alpha_n \varphi \\
(\| z_n - Tz_n \|) + b\alpha_n \beta_n \varphi(\| x_n - Tx_n \|) \\
+ (1 - \alpha_n + b\alpha_n) \| x_n - y_n \| + \varepsilon_n \end{aligned}$ (8)

Moreover, $\|y_{n} - x_{n}\| \leq \|y_{n} - (1 - \alpha_{n-1})y_{n-1} - \alpha_{n-1}Ts_{n}\| + \|(1 - \alpha_{n-1})y_{n-1} + \alpha_{n-1}Ts_{n-1} - x_{n}\| = \varepsilon_{n-1} + \|(1 - \alpha_{n-1})y_{n-1} - \alpha_{n-1}Ts_{n-1} - (1 - \alpha_{n-1})x_{n-1} - \alpha_{n-1}Tz_{n-1}\|$

$$\begin{split} &\leq (1 - \alpha_{n-1}) \left\| x_{n-1} - y_{n-1} \right\| + \alpha_{n-1} \right\| \\ &Tz_{n-1} - Ts_{n-1} \right\| + \varepsilon_{n-1} \\ &\leq (1 - \alpha_{n-1}) \left\| x_{n-1} - y_{n-1} \right\| + \alpha_{n-1} \\ &(\phi \left(\left\| z_{n-1} - Tz_{n-1} \right\| \right) \\ &+ b \left\| z_{n-1} - s_{n-1} \right\| \right) + \varepsilon_{n-1} \\ &= \alpha_{n-1} \phi \left(\left\| z_{n-1} - Tz_{n-1} \right\| \right) + (1 - \alpha_{n-1}) \left\| x_{n-1} - y_{n-1} \right\| \\ &+ b \alpha_{n-1} \left\| z_{n-1} - s_{n-1} \right\| + \varepsilon_{n-1} \end{aligned}$$

 $\begin{aligned} &\text{Similarly, from (7), we have:} \\ &\| z_{n-1} - s_{n-1} \|) \leq \beta_{n-1} \phi \left(\| x_{n-1} - T x_{n-1} \| \right) \\ &+ \| x_{n-1} - y_{n-1} \| \end{aligned}$

Substituting (10) into (9), we have

$$\begin{aligned} \|x_{n} - y_{n}\| &\leq \alpha_{n-1}\varphi(\|z_{n-1} - Tz_{n-1}\|) \\
&+ b\alpha_{n-1}\beta_{n-1}\varphi(\|x_{n-1} - Tx_{n-1}\|) + \\ (1 - \alpha_{n-1} + b\alpha_{n-1})\|x_{n-1} - y_{n-1}\| + \varepsilon_{n-1} \end{aligned}$$
(11)

Substituting (11) into (8) yields: $\|y_{n+1} - p\| \le \|x_{n+1} - p\| + \alpha_n \phi(\|z_n - Tz_n\|) + b\alpha_n \beta_n \phi(\|x_n - Tx_n\|) + \varepsilon$ $+ (1 - \alpha_n + b\alpha_n)\varepsilon_{n-1} + (1 - \alpha_n + b\alpha_n)\alpha_{n-1}\phi(\|z_{n-1} - Tz_{n-1}\|)$

+ $b(1-\alpha_n + b\alpha_n)\alpha_{n-1}\beta_{n-1}\phi(\|x_{n-1} - Tx_{n-1}\|)$ + $b(1-\alpha_n + b\alpha_n)\alpha_{n-1}\beta_{n-1}\phi(\|x_{n-1} - Tx_{n-1}\|)$

+ $(1 - \alpha_n + b\alpha_n) (1 - \alpha_{n-1} + b\alpha_{n-1}) \| x_{n-1} - y_{n-1} \|$

Repeating this process (n-1) more times yields (5). This completes the proof.

Remark 2: If $\beta_n = 0$ in Lemma 2, then we obtain an equivalent result for the Mann iteration process.

MAIN RESULTS

Theorem 1: Let $(E, \|.\|)$ be a normed linear space and let $T : E \to E$ be a selfmap of E satisfying the contractive definition (4). Suppose T has a fixed point p and the sequence $\{x_n\}_{n=0}^{\infty}$ is the Ishikawa iteration process satisfying the conditions of Lemma 2. Then, the Ishikawa iteration process is T-stable.

Proof: Suppose $\lim_{n \to \infty} \mathcal{E}_n = 0$. Then, we shall show that $\lim_{n \to \infty} y_n = p$, using Lemmas 1 and 2. Let C be the lower triangular matrix with entries:

 $\begin{array}{ll} c_{nj} &= \alpha_j \quad \prod_{k=j+1o}^n (1-\alpha_{k} + b\alpha_k). \quad \text{Then, } C \quad \text{is} \\ \text{multiplicative}^{[1,4]}. \text{ Since } \phi \text{ is continuous and } \lim_{n \to \infty} \| z_n - Tz_n \| = 0, \text{ then by Lemma 1, we obtain:} \\ \lim_{n \to \infty} \sum_{j=0}^n \alpha_j \prod_{k=j+1}^n (1-\alpha_k + b\alpha_k)\phi \\ (\| z_j - Tz_j \|) = 0. \end{array}$

Furthermore,

$$0 \le b \sum_{j=0}^{n} \alpha_{j} \prod_{k=j+1}^{n} (1 - \alpha_{k} + b\alpha_{k}) \varphi(\|\mathbf{x}_{j} - \mathbf{T}\mathbf{x}_{j}\|)$$

$$\le b \sum_{j=0}^{n} \alpha_{j} \prod_{k=j+1}^{n} (1 - \alpha_{k} + b\alpha_{k}) \varphi(\|\mathbf{x}_{j} - \mathbf{T}\mathbf{x}_{j}\|).$$

Since φ is continuous and $\lim_{n\to\infty} \|x_n - Tx_n\| = 0$, we have

 $\lim_{n \to \infty} b \sum_{j=0}^{n} \alpha_{j} \prod_{k=j+1}^{n} (1 - \alpha_{k} + b\alpha_{k}) \varphi$ ($\|\mathbf{x}_{j} - \mathbf{T}\mathbf{x}_{j}\|$) = 0. which implies that : $\lim_{n \to \infty} b \sum_{j=0}^{n} \alpha_{j} \beta_{j} \prod_{k=j+1}^{n} \beta_{k} \prod_{$

 $(1 - \alpha_k + b\alpha_k)\phi(\left\| x_j - Tx_j \right\|) = 0,$

Let D be the lower triangular matrix with entries $d_{nj} = \prod_{k=j+1}^{n} (1 - \alpha_k + b\alpha_k).$

Condition (iv) of Lemma 2 implies that D is multiplicative^[5] and since $\lim_{n\to\infty} \mathcal{E}_n = 0$, we obtain:

$$\lim_{n \to \infty} \sum_{j=0}^{n} \prod_{k=j+1}^{n} (1 - \alpha_k + b\alpha_k) \boldsymbol{\mathcal{E}}_n = 0$$

Moreover, condition (iii) of Lemma 2 implies that $\lim_{n \to \infty} \prod_{k=0}^{n} (1 - \alpha_k + b\alpha_k) = 0.$

Also, we shall prove that $\lim_{n \to \infty} \| \mathbf{x}_{n+1} - \mathbf{p} \| = 0.$

Using (4), triangle inequality and condition (ii) of Lemma 2, we have:

$$\| x_{n+1} - p \| = \| (1 - \alpha_n) x_n + \alpha_n T z_n - p \| = \| (1 - \alpha_n) (x_n - p) + \alpha_n (T z_n - p) \| = \| (1 - \alpha_n) (x_n - p) + \alpha_n (T z_n - T p) \| \le \| (1 - \alpha_n) \| x_n - p \| + \alpha_n \| T p - T z_n \| \le \| (1 - \alpha_n) \| x_n - p \| + \alpha_n [\varphi(\| p - T p \|)) + b \| p - z_n \|] = \| (1 - \alpha_n) \| x_n - p \| + b \alpha_n \| 1 - \beta_n) x_n + \beta_n T x_n - p \| = \| (1 - \alpha_n) \| x_n - p \| + b \alpha_n (1 - \beta_n) (x_n - p) + \beta_n (T x_n - p) \| \le \| (1 - \alpha_n) \| x_n - p \| + b \alpha_n (1 - \beta_n) \| x_n - p \|) + b \alpha_n \beta_n) \| T p - T x_n \| \le \| (1 - \alpha_n) \| x_n - p \| + b \alpha_n (1 - \beta_n) \| x_n - p \|) + b \alpha_n \beta_n [\varphi(\| p - T p \|) + b \| p - x_n \|] = (1 - \alpha_n + b \alpha_n) \| x_n - p \| = exp(-(1 - b) \alpha_n) \| x_n - p \| \le exp(-(1 - b) \alpha_n) \| x_n - p \| \le exp(-(1 - b) \alpha_n) exp(-(1 - b) \alpha_{n-1}) \| x_{n-1} - p \| \le exp(-(1 - b) \alpha_n) exp(-(1 - b) \alpha_{n-1}) \dots \le exp(-(1 - b) \alpha_n) \| x_0 - p \| = exp(-(1 - b) \alpha_n) \| x_0 - p \| = exp(-(1 - b) \alpha_n) \| x_0 - p \| = exp(-(1 - b) \alpha_n) \| x_0 - p \| = exp(-(1 - b) \alpha_n) \| x_0 - p \|$$

Hence, inequality (5) yields $\lim_{n \to \infty} y_n = p$. Conversely, suppose that $\lim_{n \to \infty} y_n = p$. Then, $\varepsilon_n = \| y_{n+1} - (1 - \alpha_n)y_n - \alpha_n Ts_n \|$

$$\leq \| y_{n+1} - p \| + \| p^{-1} (1 - \alpha_n) y_n - \alpha_n T s_n \|$$

$$= \| y_{n+1} - p \| + \| (1 - \alpha_n) (y_n - p) + \alpha n (T s_n - p) \|$$

This completes the proof of the Theorem.

Remark 3: Theorem 1 is a generalization of Theorem 2 of Osilike^[1] and Theorem 30 of Rhoades^[3]. If $\beta_n = 0$, $\forall n \ge 0$ in Theorem 1, we obtain a generalization of Theorem 2 of Rhoades^[4] which itself is a generalization of both Theorem 3 of Harder and Hicks^[2] and Theorem 2 of Rhoades^[5].

By Remark 2, we have the following stability result for the Mann iteration process.

Corollary 1: Let $(E, \|.\|)$ be a normed linear space and let T: $E \to E$ be a selfmap of E satisfying the contractive definition (4). Suppose T has a fixed point p and let be the Mann iteration process satisfying the conditions of Remark 2. then, the Mann iteration process is T-stable. **Proof:** The proof follows directly from Theorem 1, by putting $\beta_n = 0$.

Remark 4: Corollary 1 is a generalization of Theorem 2 of Rhoades^[4], which itself is a generalization of both Theorem 3 of Harder and Hicks^[2] and Theorem 2 of Rhoades^[5].

REFERENCES

- Osilike, M.O., 1995. Stability results for fixed point iteration procedure. J. Nigerian Math. Soc., 14/15: 17-29.
- Harder, A.M. and T.L. Hicks, 1988. Stability results for fixed point iteration procedures, Math. Japonica 33: 693-706.
- 3. Rhoades, B.E., 1991. Some fixed point iteration procedures. Intl. J. Math. Math. Sci., 4: 1-16.
- Rhoades, B.E., 1993. Fixed point theorems and stability results for fixed point iteration procedures II. Indian J. Pure and Applied Math., 24: 691-703.
- Rhoades, B.E., 1990. Fixed point theorems and stability results for fixed point iteration procedures I. Indian J. Pure and Applied Math., 21: 1-9.
- Rhoades, B.E., 1976. Comments on two fixed point iteration methods. J. Math. Anal. Appl., 56: 741-750.
- Berinde, V., 2002. On the stability of some fixed point procedures. Bul. Stiint. Univ. Baia Mare, Ser.B, Matematica-Informatica, xviii: 7-14.