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Abstract: The conventional Frobenius method for second order differential equations with regular 
singular points is extended to differential equations of higher and lower orders.  The conditions of a 
point being regular singular are addressed.  It is also shown that Cauchy-Euler differential equations are 
a special case of ordinary differential equations with regular singular points. 
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INTRODUCTION 
The series solution for a regular singular point of an 
ordinary differential equation with non-constant 
coefficients is typically addressed for second order linear 
ordinary equations as: 
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A singular point 0x  is regular singular if both 

)()( 0 xpxx −  and )()( 2
0 xqxx −  are analytic at 

0x .  Then the series solution of equation (1) about 

0x can be assumed as: 
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The indicial equation for the exponent r  of equation (2) 

is: 
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The description given above can be seen in books on 
ordinary differential equations, e.g., [1,2] or advanced 
engineering mathematics, such as references [3-6].  A 
natural question is what happens to ordinary differential  
equations of other orders?  Also, what are the conditions 
for 0x  to be regular singular for linear ordinary 
differential equations of orders other than 2?  This study 
explores these issues and provides concrete solutions. 

 
A Simple Starting Point: To     begin     with,    the first 
order   linear   ordinary   equations   of   non-constant 
coefficients   are   considered.    The   equations     are   
expressed     in    the    following    form:  
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A singular point 0x  of equation (4) can be considered as 
a regular singular point if )()( 0 xpxx −  is analytic at 

0x .  Namely, )()( 0 xpxx −  can be expanded as:  
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And the expansion coefficients are  
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Or by combing similar terms, it can be further written as: 
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From equation (7), it can be seen easily that the 

coefficient of rx  is: 
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If 0a  in equation (8) is set to 0, then the trivial solution 

0≡y  is obtained.  Therefore, by not setting 0a  to 0, 

the “indicial equation” in parallel to the second order 

linear ordinary differential equations denoted by 

equation (3) is: 
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As a demonstration purpose, the following simple first 

order equation is solved by series method. 
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From the above argument, 00 =x  is a regular singular 

point and the solution can be assumed as: 
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equation (10) becomes 

0)1(
0

=++ +
∞

=
�

rn

n
n xarn  

 

In other words, the indicial equation is 01 =+r , i.e., 

1−=r  and other coefficients are equal to 0 identically; 

namely, the solution is:  
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As a comparison, the exact solution can be obtained by 

separation of variables and is: 

 

x
c
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Where c  is  an  integration constant.  It can be seen  

that equations (12) and (13) are essentially the same. 

It should be pointed out that the Frobenius method can 

be applied equally well to an ordinary point also as 

shown by the following example. 
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Where 00 =x  is an ordinary point.  By assuming 
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For a non-trivial solution, the value of r  equals to 0 

identically and the recurrence relation for the 

coefficients is 
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And the non-trivial solution is 
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Which is the exact solution of equation (14).  In other 

words, a series solution of an ordinary point is a special  

case  of   the Frobenius solution with 0=r . 

 

Higher Order Linear Ordinary Differential  
Equations: For higher order linear differential 
equations,  
third order equations are considered first as a  
starting point of generalization of Frobenius solution as  

follows: 
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A singular point 0x  is regular singular if  

)()( 0 xpxx − , )()( 2
0 xqxx −  and 

)()( 3
0 xRxx −    are   analytic   at 0x .  Namely,  

they can be expanded by Taylor series as follows:
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By assuming a series solution of the form rn

n
n xxay +

∞
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0

 and substituting equations (17a)-(17c) into 

equation (16), the following equation is obtained. 
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The indicial equation can be obtained from equation (18)    

and is 
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It is interesting to note that if 00 =x  is chosen and 

equation (16) is rewritten into:  
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And further letting 0)( pxxp = , 0
2 )( qxqx =  and  

0
3 )( RxRx = , then equation (20) becomes a third 

order Cauchy-Euler equation.  It can be readily seen that 

the indicial equation, equation (19), is the equation  

 

 
obtained by assuming rcxy =  as commonly 
conducted in solving Cauchy-Euler equations.  In other 
words, Cauchy-Euler equation is a special case of linear 
ordinary differential equations with regular singular 
points. 

The solution methodology can be extended to even 

higher order linear ordinary equations of order m  quite 

straight forwardly as follows: 
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Then a singular point 0x  is regular if )()( 0 xpxx − , 
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converting equation (21) into the following form: 
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An equation similar to equation (18) is obtained as given in equation (23). 
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The indicial equation can be deduced from equation (23) 

as: 
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It can be seen that equation (24) gives m  roots for r  

and the indicial equations for lower order linear ordinary 

differential equations can also be deduced from it.  For 

example, for first order equations, 1=m , and equation 

(24) becomes 
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A comparison between equation (25) and equation (9) 

shows that they are essentially the same, except in 

symbols.  By the same token, equations (3) and (19) are 

special cases for 2=m  and 3=m  of equation (24), 

respectively.  Furthermore, it can be observed also that 

the Cauchy-Euler equation  

 

002

2
2

01

1
1

0 =++++ −

−
−

−

−
− yz

dx
yd

xq
dx

yd
xp

dx
yd

x m

m
m

m

m
m

m

m
m

�

 

is simply a special case of equation (22). 

 

 

 

 

 

 

 

 

 

 

CONCLUSION 

In this study, a general   solution  methodology for thm   
order linear ordinary differential equations with variable  
coefficients    possessing     regular     singular  points is  
developed.  The  Frobenius  method and the conditions  
for a regular singular  point of second order differential  
equations can be deduced by setting 2=m .   
Furthermore, the solution technique for Cauchy-Euler 
equations can be treated as a special case of this 
generalized Frobenius method. 
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