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Abstract: As robotic autonomy increases, single-agent systems are evolving 

into more complex multiagent systems that require more factors for 

successful implementation. In exchange for this complexity, applications 
such as autonomous delivery services and reconnaissance swarms become 

possible when they are infeasible with only one agent. By incorporating Trust 

into the multiagent system, the complexity of the agent-to-agent relationships 

can be managed more reliably by accounting for agent defectiveness or 

abnormality. This research explores ways of obtaining trust values for other 

agents using their own sensors and implementing them using a novel trust 

model called OmniLightTrust. The implementation is also deployed on a real 

multiagent system tasked with mapping an unknown region collaboratively 

with realistic computational limitations. Results show the relationship trust 

has with certain perception techniques, mission performance, and time delay. 

The perception pipeline was found to be the greatest bottleneck to this 
research as an inline dependency to each iteration of the trust algorithm. 

Operating in real-time and minimizing time delay are instrumental to getting 

acceptable performance from the trusted output. Consequently, this research 

focused a lot on how to solve this bottleneck by surveying the different 

perception technique pathways one can choose and how they synergize with 

the trust algorithm. 
 
Keywords: Trust, Multiagent Systems, Robotics, Networked Robots, 

ROS, Communication 
 

Introduction 

A Multiagent System (MAS) has a lot of applications in 
the Internet of Things and robotics. In theory, Basheer et al. 

(2015) say a MAS can break down a complex task into a 
parallel set of simple tasks for multiple agents to 

collaboratively complete. Gautam and Mohan (2012) lay 
specific example applications ranging from package 

delivery to search-and-rescue robot teams. This study 
utilizes robotic-based agents such as UAVs and 

Unmanned Ground Vehicles (UGVs) for collaborative 
completion of tasks. Unfortunately, MASs are tough to 

implement for many reasons. 

Natural and Contrived MAS Problems 

Robotic agents are typically equipped with sensory, 

computing, power, and mechanical hardware. Due to wear 

and tear from prolonged usage, all these components can 

either malfunction or fail altogether, according to 

Kurniawati et al. (2011). Additionally, these components 

can suffer physical damage in the field, where they are at 

the mercy of the elements. Software bugs are another form 

of imperfections that can naturally be expected when 

developing robotic platforms. Unfortunately, there are 

also contrived threats that should be taken into account. 

Das and Islam (2012); Chen et al. (2018) state that 

adversaries wishing to simply disrupt or even benefit from 

the MAS may attempt a cyber-attack. Examples include 

agent modifications, trojan attacks, eavesdropping, or 

even Man-in-the-Middle (MITM) attacks, according to 

Liu et al. (2018); Arnaldy and Perdana (2019). 

Trust 

To see which agents are safe and worthwhile 
collaborating with, Chun and Guihan (2009) talk about 
MASs having begun to add trust models into their design. 
Trust values are obtained by observing agent interactions 
and performance using a trust evaluation model, according 
to Kurniawati et al. (2011); Rishwaraj et al. (2017). Chun 
and Guihan (2009) mentioned that the higher the trust 
value, the more the agent demonstrates ideal behaviors 
within the MAS. Agent interactions are traditionally judged 
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based on data exchanges between agents. However, 
extracting useful information from data exchanges is not 
always practical. Users must consider the bandwidth and 
computational power needed to correctly interpret other 
agents in certain applications. 

Proposed Alternative 

This study introduces a way to make real-time trust 
evaluation possible using an MAS relying on lower 

memory and computing power devices. A practical trust-
based MAS was achieved using low-bandwidth, live 

sensor-derived interpretations of other agents. The 
authors made this possible by creating OmniLightTrust 

(OLT), a novel trust model optimized for efficiently 
analyzing multiple parallel behaviors. The benefits and 

weaknesses of this approach will be expanded upon 
throughout the following sections. 

Literature Review 

Chae et al. (2016) created a color code to address 

getting a high detection range and flexible recognition 
angle in marker technology. The authors found that these 

markers can be placed on the robots as a means of 
detection and simultaneous unique identification. 

Increasing the number of agents became a limitation as it 
required more complex patterns to retain uniqueness. This 

made using the work of Chae et al. (2016) only viable in 
contained, short-range environments. 

Wei et al. (2018) created a real-time sensor fusion 
algorithm that combines a monocular camera and LiDAR 

together to detect certain objects. The fusion consisted of 
an image-based Convolutional Neural Network (CNN) in 

parallel with a point cloud-based support vector machine. 
The greatest limitation of this research was the 

performance. The output detections on board the NVIDIA 
Jetson TX2 came in at 5 Hz. 

In RoboTrust by Mikulski et al. (2012), the output of 
its observation, or acceptance function, is binary for 

simplicity. A favorable observation is a 1, and an 
unfavorable observation is a 0. Mikulski et al. (2012) also 

noted each agent considers the current observation and a 
constant number of old observations tuned by the 

practitioner. The maximum likelihood that the event is 
favorable is calculated for each observation in an agent’s 

memory. The minimum of the maximum likelihoods 
within the set of observations is the output trust. This 

study was most limited by the use of one single behavior 
to observe. 

Rishwaraj et al. (2017) attempted to create a more 
efficient trust estimation model using objective 

completion. The binary agreement of detected targets 
dictates favorability. Their proposal uses temporal 

difference learning, which takes the observation value, the 
previous trust value, and a tunable learning rate to 

determine Trust. Agents who get too low of a reputation 
in the network are identified as useless agents. 

Unfortunately, this research is very theoretical and 
untested outside of simulation. 

Zhou et al. (2015) created a stereotypical deep model 

called Context-Aware Stereotypical Trust (CAST). Liu et al. 

(2009) point out that stereotypes are said to be behaviors 

correlated with certain Trust. CAST from Zhou et al. 
(2015) observes agent quality of service and extracts up 

to 7 stereotypes pertaining to the application. 

Additionally, CAST evaluates the Trust of the agent once 

trained. While this was very robust, Rishwaraj et al. 

(2017) critiqued that any behavior outside of the seven 

stereotypes would not be covered. 

Das and Islam (2012) focused much more on the 

cybersecurity aspect of Trust by using secured trust to 

detect malicious oscillatory behaviors. Some of the tools 

Rishwaraj et al. (2017) used to achieve this include 

satisfaction, similarity, and trust trends. Overall, Trust is 

calculated using the expected Trust and a decay model 
that states Trust decreases as agents become absent over 

time, according to Das and Islam (2012). Not only did this 

study include a trust model, but it also included a load-

balancing scheme to avoid having a single agent doing all 

the work. Rishwaraj et al. (2017) argue that this study is 

very powerful, but it is also taxing on the system to 

compute so many complex parameters. It also is limited 

in terms of practical performance, which is something the 

authors intend to improve in the future. 

Cheng et al. (2021) found that a MAS with a trust 

model could be used to improve safety in intersections and 

cooperative adaptive cruise control scenarios. Resistance 
to adversarial agents was another compelling aspect of 

this research. The work was specialized for its automotive 

application. More generalized work can be done for 

various types of agents in MAS, considering their 

different dynamics and characteristics. 

The use of a Bayesian model to predict trust values of 

given agents in a multiagent system is very effective, as 

presented by Hallyburton and Pajic (2024). However, the 

approach relies on multiple sources of agent data, which 

may require substantial time to converge to something 

meaningful for actual implementation. 

Materials 

This research can be replicated using any edge device, 

camera, LiDAR, and agent robot model. All hardware 

used in this research was chosen because of availability 

and specifications. The niche components used in this 

experiment include AR codes and retroreflective tape. AR 

codes can be freely printed and retroreflective tape can be 

found in arts and crafts stores. Any open-source software 
used in this experiment can also be used freely. However, 

the state machine software, trust algorithm, and models 

developed in this research will need to be redeveloped by 

anyone trying to replicate this. Derivatives may cause 

worse or improved results. 



Alan Kruger and Sun Yi / Journal of Mechatronics and Robotics 2025, Volume 9: 1.12 

DOI: 10.3844/jmrsp.2025.1.12 

 

3 

Methods 

This study does not focus purely on either Trust or 

image processing techniques. The focus of this research is 

how these two topics can be combined to ultimately create 

a solution that is beneficial and worth exploring further. 

As a result of this novelty, the literature provides insights 

from either subject but rarely a combination. Shakshuki 

and Reid (2015) warn that the major clash between these 

two topics is the detection of robotic agents in a 

homogeneous system and how they can maintain a 

memory of Trust. 

Case Study 

A single observation method has its own strengths and 

weaknesses. A case study exploring and comparing 

multiple observation methods inspired by the literature is 

presented to obtain a broader perspective. The three cases 

are designated as AR tracker, sensor fuser, and CNN 

Detector, respectively, for simplicity. These methods aim 

to collect and calculate behavioral data such as attitude 

and velocity for example. This fundamental data can then 

be used to interpret more complex behaviors about the 

agent’s performance. 

In AR tracker, agents are equipped with a stereo 

camera and a unique AR data matrix code representing a 
value between 1 and 4. The initial advantage of this 

method is the simple gathering of relative position, 

velocity, and Euler angles using the AR track alvar 

package. This package from Ros Wiki Org (2016) 

additionally supports up to 24 different agents, which far 

exceeds the numbers of the other cases. Simply printing 

out an AR code, attaching it to an agent, and running the 

AR track alvar package describes all the complexity. 

In Sensor Fuser, the agents are equipped with a 

camera, a LiDAR, a headlight, and color-coded 

retroreflective tape. This case supports only four 

agents, each representing a dominant color of 
retroreflective tape. Agents 1 through 4 are designated 

to be red, green, blue, and yellow, respectively. Adding 

LiDAR not only allows for detection in most lighting 

conditions but also finds reflective surfaces as outliers, 

according to Hata and Wolf (2014). 

The robots receive visual information using Robotic 

Operating System (ROS) middleware. Camera data is 

processed using OpenCV libraries. LiDAR data is 

processed using Point Cloud Library. For more 

information, see Quigley et al. (2009); Bradski (2000); 

Rusu and Cousins (2011), respectively. Once there is a 
consensus between the LiDAR and the camera, the agent 

is recognized as the correct color ID and is localized. 

In a CNN detector, agents are simply equipped with a 

camera. COCO SSD MobileNetV2 from Huang et al. 

(2017) is used to train a homemade data set of robot 

images found in the MAS to detect them in real time. In 

theory, the biggest advantage of using this method is the 

scalability it has with proper training. This can possibly 

achieve great results without needing to pile on more sensors 

or bulky modifications on the agents in some cases. 

Trust Evaluation Model 

Without an implementable perception-based trust 

model in the literature, OmniLightTrust (OLT) was born. 

Most of the algorithms in the literature and OLT share 

similarities. All of these models need an acceptance 

function and ultimately output a trust value between 0 and 

1. Table (1) and the pseudocode in Fig. (2) present the 

lower-level functionality. 

 
Table 1: Useful terminology and mathematical rules for understanding OLT 

Variable/Term Meaning Condition 

B # of behaviors B ≥1; B = P + N; 

P # of positive behaviors P ≥0 

N # of negative behaviors N ≥0 

Observation data Perceivable agent states Measurable in sensor's range 

Behavior Coupled states to trust Feasible computation 

Neutral Trust The default trust value If N == 0, NT = 0; 

(NT) if there is no reward or 
punishing reinforcement 

If P == 0, NT = 1; Else, 0< NT <1; 

Acceptance Current behavior is If Obs == bad, AF (Obs) = 0; 

Function (AF) favorable or unfavorable Else, AF (Obs) = 1; 

Favorability Threshold (FT) Maps favorability to 
appropriate delta value 

If AF (Obs) == 0, ∆T = Decrement; 
Else, ∆T = Increment; 

Increment/Decrement (∆T) The small value that adjusts 
trust depending on the output 
of acceptance function 

Increment >0; Decrement <0; 
Increment < |Decrement|; 

Optimistic Limit (OL) The ceiling value of a behavior OL > PL; −1 < OL < 1; 

Pessimistic Limit (PL) The floor value of a behavior PL < OL; −1 < PL < 1; 

Positive Weights (W+i) The weight of each positive behavior W+i = OL+i– PL+i for i = 0, P−1.   

Negative Weight (W−) The weight of all negative behaviors W− = OL− – PL−                    
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Table 1: Continue    

Behavior Extremes Limits weight W within the bounds 
of OL and PL to bind overall trust value 

∑ 𝑊+𝑖 + 𝑊−

𝑃−1

𝑖=0
= 1 

𝑁𝑇 + ∑ 𝑂𝐿+𝑖 + 𝑂𝐿−

𝑃−1

𝑖 = 0
= 1 

𝑁𝑇 + ∑ 𝑃𝐿+𝑖 + 𝑃𝐿−

𝑃−1

𝑖 = 0
= 0 

 

Behavior Trust (BTi) The current value of each behavior BTi+ = ∆T for i = 0,… B – 1. 
PLi ≤ BTi ≤ OLi; 

 

Reward Value (RV) The sum of all positive behavior trust values RV = ∑ 𝐵𝑇+𝑖
𝑃−1
𝑖 = 0   

Punishment Value (PV) Min of all negative behavior trust values PV = MIN (BT−i) for i = 0,… N−1. 
Overall, Trust (OT) Quantification of productivity of an agent OT = RV + PV + NT 
Collaboration Threshold (ClT) Collaboration begins when the agents trust 

or mutual Trust surpasses this value 
If OT > ClT, collaborate; Else, do not collaborate; 
ClT > CnT 

Connection Threshold (CNT) Agents below this level of Trust 

are too risky to keep in the 
network and removed 

If OT < CnT, disconnect; Else, do not disconnect; 

CnT < ClT 

Performance Trust Observes higher level tasks Optionally independent from OT 

 
Table 2: Comparison of OLT proposed in this study to other methods 

Study Communication data Perception data Mission objectives Simple Multiple stereotypes Experiment 

Mikulski et al. (2012) Y N N Y Possible Simulation 

Rishwaraj et al. (2017) Y N Y Y N Simulation 

Zhou et al. (2015) Y N N - Y Simulation 

Das and Islam (2012) Y N N N N Simulation 

OLT N Y - Y Y Implemented 

 
Looking at the visual representation of OLT in Fig. (1), 

the practitioner has the freedom to pick many visual 
behaviors to observe. Behaviors are defined by quantifiable 

parameters that the sensors can extract, such as roll and 
position. It is worth noting that OLT can work with nonvisual 

inputs, too, so it is universal. These behaviors each have their 
own feedback loop best shown in Fig. (1). The current trust 

value of that specific behavior is increased or decreased with 
positive or negative observations, respectively. The weight 

system is unconventional because it is not a gain-based 
system. Instead, it uses neutral Trust as a starting point and 

allows each behavior to increase or decrease it appropriately. 
Each behavior has a certain range of improvement or 

detriment to trust depending on its worth to the overall Trust 
of an agent. This is just one iteration; Fig. (2) shows the 

time component better as this is just a single frame of data 
collection. Trust approaching 0 signifies a danger to the 

MAS. Trust approaching 1 signifies productivity and safety 
in the MAS. Akintunde et al. (2024) define the Trust that is 

gathered from past events as retrospective Trust in the 
literature or typical Trust. However, Akintunde et al. 

(2024) define the predicted Trust to be prospective Trust or 
actual Trust of an agent. Simply using gain coefficients while 

limiting overall Trust to 0 and 1 would lead to less critical, 
yet more common, behaviors skewing Trust. This new 

weight and management system for agent stereotypes, as 
well as the use of visual observations as the input, 

contribute to the novelty of this study. Table (2) shows the 
most relevant studies and how they compare to OLT in 

terms of novelty. 

 
 
Fig. 1: Low-level symbolic view of the OLT system 

 

Implementation 

The MAS consists of two Robotis TurtleBot3 
Waffle agents, each using an NVIDIA Jetson TX2 as 

the on-board edge device. Each TX2 uses the 

middleware ROS Kinetic, running on Ubuntu 16.04 

LTS. Those lacking the hardware needed to reproduce 

this study with the same code can utilize Gazebo as 

Dekkata et al. (2023) did, which is a physics simulator 

that integrates seamlessly with ROS. The experiment is 

done in a collaborative manner without the aid of GPS 

through network sharing of x and y boundary 

coordinates. Each agent makes its own decentralized 

map using the method in Wiki. Ros. Org. (2016) with 
respect to its own origin, regardless of any 

collaboration. An open-source SLAM algorithm is 

provided in Wiki. Ros. Org. (2016). 
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Fig. 2: OmniLightTrust (OLT) pseudocode 

 

Any robot can be used in this case as long as it is suitable 

for the application and given the resources. Omnidirectional 

ground robots were selected due to their higher payloads for 

holding a 3D LiDAR. Those wanting to implement this study 

on a MAS of autonomous UAVs can opt for lighter sensors 

than this study showcased. To consider the number of robots 

allowed in the system, the user needs to consider the system’s 

bandwidth. In this study, there is a maximum number of 

robots that can be processed in a single frame before time 

delays are introduced in Eq. (1): 

 

ttotal = n (t
agent processing

) + t
detection system

 (1) 

 

where, n is the number of robots in the system, tagent 

processing denotes the period of time each positive detection 

takes, and tdetection system is the time it takes for the system 

to refresh. This can be used to determine the total amount 

of delay, ttotal, the system can afford per frame with n 

agents when converted to seconds. Unlike what Toda 

and Kubota (2013) performed, this study is 
decentralized, so there is no master agent or map. Toda 

and Kubota (2013) focused on the development of a 

multiresolution map. This study used an existing SLAM 

algorithm and focused on how agents trust each other 

while creating these maps. They send each other vectors 

of 3D points representing map data as well as Boolean 

indicators of which agents have been removed. These 

transmissions take the form of TCP messages within 

ROS while they keep their trust values private. 

This example MAS implementation makes use of 4 

user-defined behaviors to demonstrate its effectiveness. 
Presence and stability denote positive behaviors. Crash 

and oscillation denote the negative behaviors. A high-

level representation of the trust algorithm in this 

implementation can be seen in Fig. (3). Presence judges 

an agent based on its status of being in range of the user 

at certain time intervals following the decay model of Das 

and Islam (2012). Presence is of lower priority in this 

application because the agents seldom separate for long 

periods, which merited it a weight of 0.1. Stability 

considers the roll or pitch of the agent to judge whether 

the agent is properly upright. The tuning of the weights 
was chosen to be pessimistic for this example, so stability 

gets a weight of 0.3. This allows the punishing behaviors 

to share a majority weight of 0.6. Crash considers velocity 

as well as roll or pitch to judge whether the agent is stuck 

and unable to move. Oscillation considers velocity and 

relative position to observe whether the agent is moving 

in a malicious manner. Figure (4) shows how the 

behaviors and weights balance out visually. 

As each agent encounters other agents, it takes time to 

allow trust values to adjust with respect to the behavior of the 

new agent. If Trust surpasses the collaboration threshold 

shown in Fig. (4), the trustworthy agent shares its live data 
with the observer until that threshold is no longer met. 
 

 
 
Fig. 3: High-level representation of experimental behaviors 
 

 
 
Fig. 4: MAS response to trust 
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The agents can more efficiently create decentralized maps by 
collaborating with agents that behave as the MAS was 

designed. Any agent that dips below the connection 
threshold is disconnected from the entire network. Not only 

does that agent lose its mapping capabilities, but all agents 
become aware and avoid collaboration with the abnormal 

agent. Two other consequences for dipping below the 
connection threshold were considered. The first consequence 

added the absolute shutdown of the agent to avoid continued 
physical movement. The second consequence could involve 

other agents ignoring the detection of the disconnected agent 
to reduce unnecessary computations. Considering that the 

agent most likely displayed suspicious behavior according to 
its tuning, it will not be forgivable and can theoretically be 

replaced by a new agent throughout the mission. Some 
cybersecurity attacks can really abuse these consequences, 

but that will be discussed in the Discussion. The 
consequences depend on what the MAS designer values and 

views as worth the added complexity. 
The first experiment to test the vision-based approach 

and OLT is the collaborative and autonomous mapping of a 

room. A manually controlled drone is used as a leader agent 

but does not have an on-board system to evaluate Trust. The 

leader, agent 4, is autonomously followed by agent 3. Lastly, 

agent two autonomously patrols the perimeter and is tasked 

with ensuring that agent 3 is following agent 4 as a subtask. 

While the agents navigate throughout their mission, agent 

three will eventually get cyber-attacked after a trigger and 
imitate defectivity in its control system. As it is behaving 

abnormally, agent three will propagate erroneous SLAM 

data to the other agents. This demonstration will be used as a 

way to show the effectiveness of incorporating a trust model 

into the system. The rainbow-colored dots in Fig. (5) denote 

live laser data, while the white dots denote accumulated 

SLAM data using the open-source software package from 

Wiki. Ros. Org. (2016). 

The second experiment tackles the idea of excessive 
computational delay being introduced to the first 

experiment and how it affects Trust. A lot of sensor-based 
agent detection algorithms are not able to perform well in 

real-time, so this is an important factor to explore in the 
field of Trust. To find out, the same experiment is played 

back, but the trust evaluation model gets an input throttled 
to 1 Hz instead of the expected 15 Hz. 

The significance of these experiments revolves around 

discovering the worth of Trust. The other trust models 

from the literature were not very practical in a real-life 

mission. Most were just too computationally expensive 
and would consequently throttle primary functions. Other 

approaches were just not robust for real-time applications. 

If the incorporation of a trust model is simply going to 

create a bottleneck and degrade the performance of the 

system, then the trust model should be omitted. This study 

demonstrates a system that needs real-time decision-

making and discovers an approach to trust evaluation that 

improves the MAS. 

 
 
Fig. 5: Visualization of the SLAM MAS in action 
 

Results 

Case Study 

A MAS benefits from a simplistic design with minimal 
hardware. Fewer components lead to fewer points of error. 

Some MASs can use hundreds of agents, and each 
component needs to be multiplied by the number of agents, 

which can skyrocket the budget. Another consideration is the 
size and mass of the equipped hardware. A more robust robot 

will be needed for heavier equipment, which will increase 
cost. Specifically, of interest to the vision-based approach, 

the effective range, Field-of-View (FOV), and resolution of 
sensors are crucial to gathering accurate and reliable 

information about other agents. As the range and FOV 
decrease, the time agents spend without any other agent 

witnessing their behavior increases. As sensor resolution 
increases, the agent will need more computational power to 

process the data in real time. Table (3) shows how this case 
study stacks up in regard to hardware. All color-coded tables 

will imply that green is advantageous, yellow is neutral, and 
red is disadvantageous. 

The CPU and RAM usage of each method can impact 
the kind of embedded processor used onboard each agent. 

The results were all taken using the TX2 for reference. See 
Hardware for Every Situation (2024) for more information. 

Other devices considered for this study are shown in 
Table (4). The TX2 was the most expensive, most powerful, 

and largest option. This limited the robots available to carry 
it, but the capability allowed for the more flexible exploration 

for this case study. Despite the strengths and weaknesses of 
each method in the case study of visual behavior capture, 

each case affects Trust in a different way. 
The results of the case study are shown in Table (4-5). 

All three cases contribute a major advantage, but there are 
some major deficiencies found in each one. It is worth 

noting that cheaper or more powerful hardware can be 
interchanged or added to rectify some of each case’s 

flaws. This depends on the practitioner’s performance, 
budget, and convenience. 

AR Tracker provided the best number of supported 
agents, diverse parameter detection, and a simple setup. 

AR Tracker used C++ and a Stereo Labs ZED 3D camera 
for rectified image support. The lighting needed to be 

optimal, and any movements captured by the camera or 
made by the agent needed to be minimal. 
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Table 3: Comparison of hardware used in this study 

Description AR tracker Sensor fuser CNN detector 

External sensors Stereo labs ZED 3D camera CSI camera, Velodyne LiDAR puck CSI camera 
Additional price $450 $4,000 $0 
Total mass (g) 135 830 - 
Size (mm) 1753033 103.3103.371.7 - 

FOV (◦) 90 (H) 60 (V) 100 (D) 360 (H)  48.8 (V) combined 62.2 (H)  48.8 (V) 

Sensor resolution 19201080 p 960540 p, H: 0.1◦–0.4◦, V: 2◦ 480270 p 

Bandwidth (MB/s) ∼93.3 ∼29.3 combined ∼5.8 
 
Table 4: Comparison of edge computing hardware 

Edge device price CPU CLK freq RAM GPU support Mass Size (mm) 

NVIDIA Jetson TX2 $400 4-core: 2 GHz 8 GB CUDA 467 g 17017049.8 

NVIDIA Jetson Nano $100 4-core: 1.4 GHz 4 GB CUDA 250 g 1008029 

Raspberry Pi 4 $75 4-core: 1.5 GHz 8 GB OpenCL 46 g 885819.5 
 
Table 5: Vision-based observation methods 

Description AR Tracker Sensor Fuser CNN Detector 

Agent distinguishability AR codes (24 agents) Color coding (4 agents) Feature extraction (? agents) 

Effective range ∼1.5 m ∼5 m ∼4.5 m 

Visualizable data XYZ coordinates (m), 
Euler angles (rad) 

XYZ coordinates (m), euler 
angles (rad) 

Relative pixel coordinates 

Conditions Great lighting only All lighting, overexposure Great lighting only 

Sensor delay 0.062 s 0.013 s combined 0.010 s 

Preprocessing delays 0.133 s 0.017 s - 

Agent detection delay N (0.001 s) N (0.016 s) N (0.120 s) 

Agent update frequency ∼7.5 Hz ∼15 Hz ∼13 Hz 

Trust calculation 0.0000045 s 0.0000045 s 0.0000045 s 

Total delay (s) 0.195+0.001 n 0.030+0.016 n 0.010+0.120 n 

CPU usage (with viz) ∼95% (1 core) ∼35% (1 core) ∼60% (4 cores) 

RAM usage (with viz) 0.7 GB (33%) 0.3 GB (25%) 4.2 GB (83%) 
 

 

 
Fig. 6: AR Tracker interpreting flight behavior of quadcopter 

 

 
 
Fig. 7: Sensor fuser analyzing MAS in a dark environment 

The same issues in Chae et al. (2016) regarding range, 

size, and lighting applied here. Notably, being outside the 

1.5 m effective range not only resulted in missed 

detections but also incorrect detections. In addition, the 

paper AR codes are 2D and fragile. The side of the agent 

with the AR code must face the other agent’s cameras to 
be detected, as shown in Fig. (6). As a result of these 

drawbacks, gathering reliable information about an agent 

is highly compromised. Consequences include the 

facilitation of hiding malicious behaviors within the same 

vicinity and false assignation of trust updates. The main 

takeaways from this method are to avoid 2D identifiers 

and focus on maximizing detection accuracy. 

Sensor fuser boasted the best effective range, the most 

robustness to external conditions, and the lowest 

computational expense. The Velodyne LiDAR puck 

introduces 3D coordinate data with a root mean square 
error of 3 cm. For more information, see Velodyne 

LiDAR PUCKTM (2015). This level of accuracy is 

adequate for measuring certain agent parameters reliably, 

such as velocity and relative position, as shown in Fig. (7). 

The LiDAR also contributed to the increase in effective 
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range and allowed the camera to use a lower resolution for 

higher efficiency. The 3-2D conversion is done in C++ 

and makes up the backbone of the accuracy of Sensor 

Fuser. The experimental and expected signals had an 
autocorrelation of 0.9986 and 0.9945 for x and y, 

respectively. The cylindrical tags are lightweight enough 

for a small drone to carry and allow for 360° yaw coverage 

in both light and darkness. Decreasing the diameter of the 

cylinder decreases the detection range and would be less 

burdensome, than the AR tracker discussed. 

The setup is not only difficult but also expensive and 

heavy. The number of agents that can be supported is the 

other drawback that limits its viability to only small 

MASs. However, Sensor Fuser is still able to better detect 

agents with more range, sampling frequency, and realistic 

lighting expectations. Trust values, therefore, have the 

flexibility to better represent the Trust of a wider variety 

of applications and requirements. The main takeaway 

from this method is to keep in mind the kind of MAS 

desired before committing. 

CNN Detector best-showcased simplicity and good 

effective range in exchange for the high computational 

load, as shown in Fig. (8). This is the only case using 

Python and a good GPU. Thanks to the NVIDIA Pascal 

GPU, the time delay is still very acceptable. Additionally, 

the low resolution of the camera and lack of external 

sensors also contributed to the achieved update frequency. 

Without an adequate update frequency, applications that 

depend on precise behaviors will not be happy. 

Additionally, this case lacks the capabilities that the other 

two demonstrated, but that can be added. CNN Detector 

does not escape the need for modification to discriminate 

agents. The data set required to train an agent to calculate 

information such as Euler angles while being able to 

discriminate robots would be a huge challenge. 

Combining this challenge with the extra resolution and 

needed depth data results in an embedded system that may 

not achieve a real-time frequency. Without enough 

measurable parameters, the agent’s trust value will not 

optimally represent an agent. The main takeaway from this 

method is to ensure that the parameters of interest are simple 

enough to train for high accuracy. Additionally, users would 

need to be prepared to acquire an appropriate data set. 

This case study is meant to provide insight into the 

challenges of acquiring robust observation data using on-

board real-time computing for Trust. For those using big 

MASs in a lab setting with little effort, AR technology is 

great. Those wanting more robust detection should consider 

fusing a camera with compatible sensors. Lastly, those 

wanting to get the most data with the least sensors possible 

should consider using machine learning approaches. 

Trust Evaluation Model 

OLT was written in C++ and takes 4.5 µs to update 

Trust per observation. This shows that OLT itself is 

almost negligible in comparison to the observation 

methods in terms of computation time. For the first 58 s 

of the experiment, the agents behave in a predictable 

manner, and trust increases as expected. Additionally, 
performance trust values fluctuate in parallel where agent 

3 is assigned to follow and maintain a gap of 0.8 m away 

from agent 4. Once the defectiveness begins at 58.07 s in 

Fig. (9), it takes about 2.93 s to begin lowering Trust. It 

also took 5.93 seconds to lower it below the collaboration 

threshold to stop the flow of fraudulent data. Compared to 

the rise of Trust at the beginning of the experiment, the 

gradient of Trust is purposefully much higher while 

decreasing. This is because Mikulski et al. (2012) advised 

Trust to decrease faster than it increases. With a higher 

value assigned to the collaboration threshold, the sooner 
bad behavior can be blocked. The trade-off is that a high 

collaboration threshold also makes it more unlikely that 

collaboration will happen. Agent 3 also became 

disconnected from the network after about 13.53 seconds 

since beginning to show oscillatory behavior. 

Although agent 3 was the culprit of abnormalities, 

Fig. (10) showed that it still trusted the drone and 

patrolling UGV while misbehaving. This was situational, 

and a defective agent could have mutually decreased 

Trust. Agent 3 took much longer to trust agent 2, and that 

is due to the vision-based approach. Considering that 

agent 3 was busy chasing agent 4, it was not encountering 
agent 2 as often as agent 2’s FOV contained agent 3. This 

proves the importance of effective range and FOV in the 

observation methods. 

 

 
 
Fig. 8: CNN detector robustly detecting TurtleBot3 
 

 
 
Fig. 9: Trust evaluations agent 2 gathered using OLT 
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Fig. 10: Trust evaluations agent 3 gathered using OLT 
 

After triggering the defectivity in agent 3, the SLAM 

became contaminated with poisonous and fraudulent data. 

However, it stopped affecting the network when agent 3’s 

Trust was less than the collaboration threshold. Figure (11a) 

output contained 5.93 s of exposure to erroneous data for 

reference. Figure (11b) shows the same agent’s SLAM 

output without using a trust model to attenuate the fraudulent 

data. It is essentially Fig. (11a) with about 22 s of exposure 

to faulty boundary scans instead of 5.93 s. 
In a SLAM mission, corrupt data sent around the 

network can have infinite possibilities. Agents that use this 

data to directly navigate in real-time and do not question 

this data will be at risk of damaging themselves or others. 

By paying upfront for the price of implementing a trust 

algorithm, agents become resistant and selective towards 

shared data that should be ignored. That is why the trust-

based result in Fig. (11a) appears cleaner than in Fig. (11b). 

Another point about this comparison is the intricate 

differences between Fig. (11a and c). Consider an 

alternative where Trust is calculated by sending each other 
the map data each agent collects. Comparing and verifying 

the dense information is not only difficult, but one can see 

the two agents’ SLAMs are not the same, even excluding 

the corrupt data. Applications like this are situational, and 

the designer needs to pick an appropriate input type. For 

collaborative mapping using Trust, the vision-based 

approach would be more effective and efficient than 

analyzing all the transmitted data. 

In a situation where computations and communications 

cannot keep up with real-time applications, Figs. (12-13) 

show how this would affect trust from each perspective. The 

gradient of Trust is significantly reduced. As a result, the 
agent arrives at the appropriate trust value much slower in 

this case. Another effect is the loss of resolution in perceived 

agent data with only one update per second. Not only did this 

lead to fewer detections overall, but also more 

misinterpretations. Abrupt and sudden movements would be 

too fast to be registered at 1 Hz, and smooth movements 

appeared to be choppy. This degree of agent data resolution 

is unusable to calculate Trust appropriately in this example. 

Therefore, accounting for time delay is critical to the 

accuracy of perception-based trust algorithms. 
 

 
 
Fig. 11: SLAM mission results 
 

 
 
Fig. 12: Trust from agent 2 with excessive time delays in 

observations 
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Fig. 13: Trust from agent 3 with excessive time delays in 

observations 

 

Discussion 

Table (2) presents the relevant work that is most 

comparable to OLT. Mikulski et al. (2012) showed the 

standard of Trust algorithms with RoboTrust and offered 

a great foundation for communicating simple signals 
among the network. OLT was designed to bolster 

RoboTrust's weakness of being vulnerable to adversarial 

spoofing by introducing interpretation to behaviors that 

cannot be hidden. Additionally, expanding to multiple 

behaviors like (Zhou et al., 2015) gives a more holistic 

view unlike the single stereotype used in RoboTrust. 

Rishwaraj et al. (2017) focused more on objective 

completion; the experiment demonstrating OLT never 

showcased objective completion but does allow for 

visualizable objective completion to be incorporated. Das 

and Islam (2012) inspired a lot of OLT’s reliance on 

democratizing Trust throughout the network and 
tendencies to be pessimistic about Trust. However, OLT 

did not incorporate any of the sophisticated decay models 

and load balancing schemes in an effort to maintain real-

time performance. Consider that OLT was simple and 

robust enough to be implemented on a real multi-agent 

system compared to the rest who simulated everything on 

powerful PCs. Compared to all these works, OLT may 

have inherited many of their strengths, but it also acquired 

the assumption that success is naively visualizable as a 

glaring weakness. However, naivety is still an unsolved 

problem in Trust algorithms as a whole. 

Conclusion 

Trust not only impacts decision-making, but it also 

protects the MAS. Many issues within the MAS 

community still exist, such as natural agent deterioration 

and adversarial attacks. This research demonstrates the 

novelty of vision-based interaction analysis and how it 

offers many defenses to current robotic MAS issues as an 

alternative. Theoretically, this creates a range of 

acceptable actions an agent can perform at a given time 

without intruding on its freedom. This assumes an agent 

is around witness agents that can enforce these rules when 
broken. The big takeaway of this research is that trust 

evaluation is not meant to be complex and resource-

demanding because a MAS has a simultaneous task at 

hand. OLT was designed to work with a variety of parallel 

inputs, including vision-based interactions. 

This study is not perfect and does not provide an 

answer to some aspects. First of all, some MAS 

applications involve robots that never enter each other’s 

sensory range. Another abuser of this system is the MITM 

attack. If the adversary catches the TCP message and 

modifies it before it reaches the recipient, the system will 

fail. This can happen without a difference in the physical 

behavior. Defects that do not show obvious abnormalities 

can also pose a huge threat to this study. 

Future research using advanced cybersecurity 

techniques could more effectively tackle shortcomings 

like the sniffing parasite and even MITM attack problems. 

In the SLAM application explored in this study, the data 

is very large and unpredictable. Future research could use 

trust algorithms that combine different observation 

sources. Other future works can minimize the complexity 

of sensors needed to detect other agents to utilize more 

lightweight and cheaper UAVs and UGVs. With 

increasing security risks, using the agent’s own senses to 

artificially understand its environment will increasingly 

become of interest. As a result, agents will need to be 

more distinguishable from the sensors. This can be done 

through unique manufacturing or new research on 

minimalistic agent identification modifications. 

OmniLightTrust is not flawless, but it has unique 

contributions that will eventually lead to MASs becoming 

more than just experiments. 
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