

© 2025 Alan Kruger and Sun Yi. This open-access article is distributed under a Creative Commons Attribution (CC-BY)

4.0 license.

Journal of Mechatronics and Robotics

Original Research Paper

A Vision-Based Approach to Real-Time Trust Evaluation

within Multiagent Systems

1Alan Kruger and 2Sun Yi

1Department of Computer and Electrical Engineering, North Carolina Agricultural and Technical State University,
Greensboro, NC, USA
2Department of Mechanical Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC, USA

Article history
Received: 20-07-2024
Revised: 17-08-2024
Accepted: 24-08-2024

Corresponding Author:
Alan Kruger

Department of Computer and
Electrical Engineering, North
Carolina Agricultural and
Technical State University,
Greensboro, NC, USA
Email: agkruger@aggies.ncat.edu

Abstract: As robotic autonomy increases, single-agent systems are evolving

into more complex multiagent systems that require more factors for

successful implementation. In exchange for this complexity, applications
such as autonomous delivery services and reconnaissance swarms become

possible when they are infeasible with only one agent. By incorporating Trust

into the multiagent system, the complexity of the agent-to-agent relationships

can be managed more reliably by accounting for agent defectiveness or

abnormality. This research explores ways of obtaining trust values for other

agents using their own sensors and implementing them using a novel trust

model called OmniLightTrust. The implementation is also deployed on a real

multiagent system tasked with mapping an unknown region collaboratively

with realistic computational limitations. Results show the relationship trust

has with certain perception techniques, mission performance, and time delay.

The perception pipeline was found to be the greatest bottleneck to this
research as an inline dependency to each iteration of the trust algorithm.

Operating in real-time and minimizing time delay are instrumental to getting

acceptable performance from the trusted output. Consequently, this research

focused a lot on how to solve this bottleneck by surveying the different

perception technique pathways one can choose and how they synergize with

the trust algorithm.

Keywords: Trust, Multiagent Systems, Robotics, Networked Robots,

ROS, Communication

Introduction

A Multiagent System (MAS) has a lot of applications in
the Internet of Things and robotics. In theory, Basheer et al.

(2015) say a MAS can break down a complex task into a
parallel set of simple tasks for multiple agents to

collaboratively complete. Gautam and Mohan (2012) lay
specific example applications ranging from package

delivery to search-and-rescue robot teams. This study
utilizes robotic-based agents such as UAVs and

Unmanned Ground Vehicles (UGVs) for collaborative
completion of tasks. Unfortunately, MASs are tough to

implement for many reasons.

Natural and Contrived MAS Problems

Robotic agents are typically equipped with sensory,

computing, power, and mechanical hardware. Due to wear

and tear from prolonged usage, all these components can

either malfunction or fail altogether, according to

Kurniawati et al. (2011). Additionally, these components

can suffer physical damage in the field, where they are at

the mercy of the elements. Software bugs are another form

of imperfections that can naturally be expected when

developing robotic platforms. Unfortunately, there are

also contrived threats that should be taken into account.

Das and Islam (2012); Chen et al. (2018) state that

adversaries wishing to simply disrupt or even benefit from

the MAS may attempt a cyber-attack. Examples include

agent modifications, trojan attacks, eavesdropping, or

even Man-in-the-Middle (MITM) attacks, according to

Liu et al. (2018); Arnaldy and Perdana (2019).

Trust

To see which agents are safe and worthwhile
collaborating with, Chun and Guihan (2009) talk about
MASs having begun to add trust models into their design.
Trust values are obtained by observing agent interactions
and performance using a trust evaluation model, according
to Kurniawati et al. (2011); Rishwaraj et al. (2017). Chun
and Guihan (2009) mentioned that the higher the trust
value, the more the agent demonstrates ideal behaviors
within the MAS. Agent interactions are traditionally judged

Alan Kruger and Sun Yi / Journal of Mechatronics and Robotics 2025, Volume 9: 1.12

DOI: 10.3844/jmrsp.2025.1.12

2

based on data exchanges between agents. However,
extracting useful information from data exchanges is not
always practical. Users must consider the bandwidth and
computational power needed to correctly interpret other
agents in certain applications.

Proposed Alternative

This study introduces a way to make real-time trust
evaluation possible using an MAS relying on lower

memory and computing power devices. A practical trust-
based MAS was achieved using low-bandwidth, live

sensor-derived interpretations of other agents. The
authors made this possible by creating OmniLightTrust

(OLT), a novel trust model optimized for efficiently
analyzing multiple parallel behaviors. The benefits and

weaknesses of this approach will be expanded upon
throughout the following sections.

Literature Review

Chae et al. (2016) created a color code to address

getting a high detection range and flexible recognition
angle in marker technology. The authors found that these

markers can be placed on the robots as a means of
detection and simultaneous unique identification.

Increasing the number of agents became a limitation as it
required more complex patterns to retain uniqueness. This

made using the work of Chae et al. (2016) only viable in
contained, short-range environments.

Wei et al. (2018) created a real-time sensor fusion
algorithm that combines a monocular camera and LiDAR

together to detect certain objects. The fusion consisted of
an image-based Convolutional Neural Network (CNN) in

parallel with a point cloud-based support vector machine.
The greatest limitation of this research was the

performance. The output detections on board the NVIDIA
Jetson TX2 came in at 5 Hz.

In RoboTrust by Mikulski et al. (2012), the output of
its observation, or acceptance function, is binary for

simplicity. A favorable observation is a 1, and an
unfavorable observation is a 0. Mikulski et al. (2012) also

noted each agent considers the current observation and a
constant number of old observations tuned by the

practitioner. The maximum likelihood that the event is
favorable is calculated for each observation in an agent’s

memory. The minimum of the maximum likelihoods
within the set of observations is the output trust. This

study was most limited by the use of one single behavior
to observe.

Rishwaraj et al. (2017) attempted to create a more
efficient trust estimation model using objective

completion. The binary agreement of detected targets
dictates favorability. Their proposal uses temporal

difference learning, which takes the observation value, the
previous trust value, and a tunable learning rate to

determine Trust. Agents who get too low of a reputation
in the network are identified as useless agents.

Unfortunately, this research is very theoretical and
untested outside of simulation.

Zhou et al. (2015) created a stereotypical deep model

called Context-Aware Stereotypical Trust (CAST). Liu et al.

(2009) point out that stereotypes are said to be behaviors

correlated with certain Trust. CAST from Zhou et al.
(2015) observes agent quality of service and extracts up

to 7 stereotypes pertaining to the application.

Additionally, CAST evaluates the Trust of the agent once

trained. While this was very robust, Rishwaraj et al.

(2017) critiqued that any behavior outside of the seven

stereotypes would not be covered.

Das and Islam (2012) focused much more on the

cybersecurity aspect of Trust by using secured trust to

detect malicious oscillatory behaviors. Some of the tools

Rishwaraj et al. (2017) used to achieve this include

satisfaction, similarity, and trust trends. Overall, Trust is

calculated using the expected Trust and a decay model
that states Trust decreases as agents become absent over

time, according to Das and Islam (2012). Not only did this

study include a trust model, but it also included a load-

balancing scheme to avoid having a single agent doing all

the work. Rishwaraj et al. (2017) argue that this study is

very powerful, but it is also taxing on the system to

compute so many complex parameters. It also is limited

in terms of practical performance, which is something the

authors intend to improve in the future.

Cheng et al. (2021) found that a MAS with a trust

model could be used to improve safety in intersections and

cooperative adaptive cruise control scenarios. Resistance
to adversarial agents was another compelling aspect of

this research. The work was specialized for its automotive

application. More generalized work can be done for

various types of agents in MAS, considering their

different dynamics and characteristics.

The use of a Bayesian model to predict trust values of

given agents in a multiagent system is very effective, as

presented by Hallyburton and Pajic (2024). However, the

approach relies on multiple sources of agent data, which

may require substantial time to converge to something

meaningful for actual implementation.

Materials

This research can be replicated using any edge device,

camera, LiDAR, and agent robot model. All hardware

used in this research was chosen because of availability

and specifications. The niche components used in this

experiment include AR codes and retroreflective tape. AR

codes can be freely printed and retroreflective tape can be

found in arts and crafts stores. Any open-source software
used in this experiment can also be used freely. However,

the state machine software, trust algorithm, and models

developed in this research will need to be redeveloped by

anyone trying to replicate this. Derivatives may cause

worse or improved results.

Alan Kruger and Sun Yi / Journal of Mechatronics and Robotics 2025, Volume 9: 1.12

DOI: 10.3844/jmrsp.2025.1.12

3

Methods

This study does not focus purely on either Trust or

image processing techniques. The focus of this research is

how these two topics can be combined to ultimately create

a solution that is beneficial and worth exploring further.

As a result of this novelty, the literature provides insights

from either subject but rarely a combination. Shakshuki

and Reid (2015) warn that the major clash between these

two topics is the detection of robotic agents in a

homogeneous system and how they can maintain a

memory of Trust.

Case Study

A single observation method has its own strengths and

weaknesses. A case study exploring and comparing

multiple observation methods inspired by the literature is

presented to obtain a broader perspective. The three cases

are designated as AR tracker, sensor fuser, and CNN

Detector, respectively, for simplicity. These methods aim

to collect and calculate behavioral data such as attitude

and velocity for example. This fundamental data can then

be used to interpret more complex behaviors about the

agent’s performance.

In AR tracker, agents are equipped with a stereo

camera and a unique AR data matrix code representing a
value between 1 and 4. The initial advantage of this

method is the simple gathering of relative position,

velocity, and Euler angles using the AR track alvar

package. This package from Ros Wiki Org (2016)

additionally supports up to 24 different agents, which far

exceeds the numbers of the other cases. Simply printing

out an AR code, attaching it to an agent, and running the

AR track alvar package describes all the complexity.

In Sensor Fuser, the agents are equipped with a

camera, a LiDAR, a headlight, and color-coded

retroreflective tape. This case supports only four

agents, each representing a dominant color of
retroreflective tape. Agents 1 through 4 are designated

to be red, green, blue, and yellow, respectively. Adding

LiDAR not only allows for detection in most lighting

conditions but also finds reflective surfaces as outliers,

according to Hata and Wolf (2014).

The robots receive visual information using Robotic

Operating System (ROS) middleware. Camera data is

processed using OpenCV libraries. LiDAR data is

processed using Point Cloud Library. For more

information, see Quigley et al. (2009); Bradski (2000);

Rusu and Cousins (2011), respectively. Once there is a
consensus between the LiDAR and the camera, the agent

is recognized as the correct color ID and is localized.

In a CNN detector, agents are simply equipped with a

camera. COCO SSD MobileNetV2 from Huang et al.

(2017) is used to train a homemade data set of robot

images found in the MAS to detect them in real time. In

theory, the biggest advantage of using this method is the

scalability it has with proper training. This can possibly

achieve great results without needing to pile on more sensors

or bulky modifications on the agents in some cases.

Trust Evaluation Model

Without an implementable perception-based trust

model in the literature, OmniLightTrust (OLT) was born.

Most of the algorithms in the literature and OLT share

similarities. All of these models need an acceptance

function and ultimately output a trust value between 0 and

1. Table (1) and the pseudocode in Fig. (2) present the

lower-level functionality.

Table 1: Useful terminology and mathematical rules for understanding OLT

Variable/Term Meaning Condition

B # of behaviors B ≥1; B = P + N;

P # of positive behaviors P ≥0

N # of negative behaviors N ≥0

Observation data Perceivable agent states Measurable in sensor's range

Behavior Coupled states to trust Feasible computation

Neutral Trust The default trust value If N == 0, NT = 0;

(NT) if there is no reward or
punishing reinforcement

If P == 0, NT = 1; Else, 0< NT <1;

Acceptance Current behavior is If Obs == bad, AF (Obs) = 0;

Function (AF) favorable or unfavorable Else, AF (Obs) = 1;

Favorability Threshold (FT) Maps favorability to
appropriate delta value

If AF (Obs) == 0, ∆T = Decrement;
Else, ∆T = Increment;

Increment/Decrement (∆T) The small value that adjusts
trust depending on the output
of acceptance function

Increment >0; Decrement <0;
Increment < |Decrement|;

Optimistic Limit (OL) The ceiling value of a behavior OL > PL; −1 < OL < 1;

Pessimistic Limit (PL) The floor value of a behavior PL < OL; −1 < PL < 1;

Positive Weights (W+i) The weight of each positive behavior W+i = OL+i– PL+i for i = 0, P−1.

Negative Weight (W−) The weight of all negative behaviors W− = OL− – PL−

Alan Kruger and Sun Yi / Journal of Mechatronics and Robotics 2025, Volume 9: 1.12

DOI: 10.3844/jmrsp.2025.1.12

4

Table 1: Continue

Behavior Extremes Limits weight W within the bounds
of OL and PL to bind overall trust value

∑ 𝑊+𝑖 + 𝑊−

𝑃−1

𝑖=0
= 1

𝑁𝑇 + ∑ 𝑂𝐿+𝑖 + 𝑂𝐿−

𝑃−1

𝑖 = 0
= 1

𝑁𝑇 + ∑ 𝑃𝐿+𝑖 + 𝑃𝐿−

𝑃−1

𝑖 = 0
= 0

Behavior Trust (BTi) The current value of each behavior BTi+ = ∆T for i = 0,… B – 1.
PLi ≤ BTi ≤ OLi;

Reward Value (RV) The sum of all positive behavior trust values RV = ∑ 𝐵𝑇+𝑖
𝑃−1
𝑖 = 0

Punishment Value (PV) Min of all negative behavior trust values PV = MIN (BT−i) for i = 0,… N−1.
Overall, Trust (OT) Quantification of productivity of an agent OT = RV + PV + NT
Collaboration Threshold (ClT) Collaboration begins when the agents trust

or mutual Trust surpasses this value
If OT > ClT, collaborate; Else, do not collaborate;
ClT > CnT

Connection Threshold (CNT) Agents below this level of Trust

are too risky to keep in the
network and removed

If OT < CnT, disconnect; Else, do not disconnect;

CnT < ClT

Performance Trust Observes higher level tasks Optionally independent from OT

Table 2: Comparison of OLT proposed in this study to other methods

Study Communication data Perception data Mission objectives Simple Multiple stereotypes Experiment

Mikulski et al. (2012) Y N N Y Possible Simulation

Rishwaraj et al. (2017) Y N Y Y N Simulation

Zhou et al. (2015) Y N N - Y Simulation

Das and Islam (2012) Y N N N N Simulation

OLT N Y - Y Y Implemented

Looking at the visual representation of OLT in Fig. (1),

the practitioner has the freedom to pick many visual
behaviors to observe. Behaviors are defined by quantifiable

parameters that the sensors can extract, such as roll and
position. It is worth noting that OLT can work with nonvisual

inputs, too, so it is universal. These behaviors each have their
own feedback loop best shown in Fig. (1). The current trust

value of that specific behavior is increased or decreased with
positive or negative observations, respectively. The weight

system is unconventional because it is not a gain-based
system. Instead, it uses neutral Trust as a starting point and

allows each behavior to increase or decrease it appropriately.
Each behavior has a certain range of improvement or

detriment to trust depending on its worth to the overall Trust
of an agent. This is just one iteration; Fig. (2) shows the

time component better as this is just a single frame of data
collection. Trust approaching 0 signifies a danger to the

MAS. Trust approaching 1 signifies productivity and safety
in the MAS. Akintunde et al. (2024) define the Trust that is

gathered from past events as retrospective Trust in the
literature or typical Trust. However, Akintunde et al.

(2024) define the predicted Trust to be prospective Trust or
actual Trust of an agent. Simply using gain coefficients while

limiting overall Trust to 0 and 1 would lead to less critical,
yet more common, behaviors skewing Trust. This new

weight and management system for agent stereotypes, as
well as the use of visual observations as the input,

contribute to the novelty of this study. Table (2) shows the
most relevant studies and how they compare to OLT in

terms of novelty.

Fig. 1: Low-level symbolic view of the OLT system

Implementation

The MAS consists of two Robotis TurtleBot3
Waffle agents, each using an NVIDIA Jetson TX2 as

the on-board edge device. Each TX2 uses the

middleware ROS Kinetic, running on Ubuntu 16.04

LTS. Those lacking the hardware needed to reproduce

this study with the same code can utilize Gazebo as

Dekkata et al. (2023) did, which is a physics simulator

that integrates seamlessly with ROS. The experiment is

done in a collaborative manner without the aid of GPS

through network sharing of x and y boundary

coordinates. Each agent makes its own decentralized

map using the method in Wiki. Ros. Org. (2016) with
respect to its own origin, regardless of any

collaboration. An open-source SLAM algorithm is

provided in Wiki. Ros. Org. (2016).

Alan Kruger and Sun Yi / Journal of Mechatronics and Robotics 2025, Volume 9: 1.12

DOI: 10.3844/jmrsp.2025.1.12

5

Fig. 2: OmniLightTrust (OLT) pseudocode

Any robot can be used in this case as long as it is suitable

for the application and given the resources. Omnidirectional

ground robots were selected due to their higher payloads for

holding a 3D LiDAR. Those wanting to implement this study

on a MAS of autonomous UAVs can opt for lighter sensors

than this study showcased. To consider the number of robots

allowed in the system, the user needs to consider the system’s

bandwidth. In this study, there is a maximum number of

robots that can be processed in a single frame before time

delays are introduced in Eq. (1):

ttotal = n (t
agent processing

) + t
detection system

 (1)

where, n is the number of robots in the system, tagent

processing denotes the period of time each positive detection

takes, and tdetection system is the time it takes for the system

to refresh. This can be used to determine the total amount

of delay, ttotal, the system can afford per frame with n

agents when converted to seconds. Unlike what Toda

and Kubota (2013) performed, this study is
decentralized, so there is no master agent or map. Toda

and Kubota (2013) focused on the development of a

multiresolution map. This study used an existing SLAM

algorithm and focused on how agents trust each other

while creating these maps. They send each other vectors

of 3D points representing map data as well as Boolean

indicators of which agents have been removed. These

transmissions take the form of TCP messages within

ROS while they keep their trust values private.

This example MAS implementation makes use of 4

user-defined behaviors to demonstrate its effectiveness.
Presence and stability denote positive behaviors. Crash

and oscillation denote the negative behaviors. A high-

level representation of the trust algorithm in this

implementation can be seen in Fig. (3). Presence judges

an agent based on its status of being in range of the user

at certain time intervals following the decay model of Das

and Islam (2012). Presence is of lower priority in this

application because the agents seldom separate for long

periods, which merited it a weight of 0.1. Stability

considers the roll or pitch of the agent to judge whether

the agent is properly upright. The tuning of the weights
was chosen to be pessimistic for this example, so stability

gets a weight of 0.3. This allows the punishing behaviors

to share a majority weight of 0.6. Crash considers velocity

as well as roll or pitch to judge whether the agent is stuck

and unable to move. Oscillation considers velocity and

relative position to observe whether the agent is moving

in a malicious manner. Figure (4) shows how the

behaviors and weights balance out visually.

As each agent encounters other agents, it takes time to

allow trust values to adjust with respect to the behavior of the

new agent. If Trust surpasses the collaboration threshold

shown in Fig. (4), the trustworthy agent shares its live data
with the observer until that threshold is no longer met.

Fig. 3: High-level representation of experimental behaviors

Fig. 4: MAS response to trust

Alan Kruger and Sun Yi / Journal of Mechatronics and Robotics 2025, Volume 9: 1.12

DOI: 10.3844/jmrsp.2025.1.12

6

The agents can more efficiently create decentralized maps by
collaborating with agents that behave as the MAS was

designed. Any agent that dips below the connection
threshold is disconnected from the entire network. Not only

does that agent lose its mapping capabilities, but all agents
become aware and avoid collaboration with the abnormal

agent. Two other consequences for dipping below the
connection threshold were considered. The first consequence

added the absolute shutdown of the agent to avoid continued
physical movement. The second consequence could involve

other agents ignoring the detection of the disconnected agent
to reduce unnecessary computations. Considering that the

agent most likely displayed suspicious behavior according to
its tuning, it will not be forgivable and can theoretically be

replaced by a new agent throughout the mission. Some
cybersecurity attacks can really abuse these consequences,

but that will be discussed in the Discussion. The
consequences depend on what the MAS designer values and

views as worth the added complexity.
The first experiment to test the vision-based approach

and OLT is the collaborative and autonomous mapping of a

room. A manually controlled drone is used as a leader agent

but does not have an on-board system to evaluate Trust. The

leader, agent 4, is autonomously followed by agent 3. Lastly,

agent two autonomously patrols the perimeter and is tasked

with ensuring that agent 3 is following agent 4 as a subtask.

While the agents navigate throughout their mission, agent

three will eventually get cyber-attacked after a trigger and
imitate defectivity in its control system. As it is behaving

abnormally, agent three will propagate erroneous SLAM

data to the other agents. This demonstration will be used as a

way to show the effectiveness of incorporating a trust model

into the system. The rainbow-colored dots in Fig. (5) denote

live laser data, while the white dots denote accumulated

SLAM data using the open-source software package from

Wiki. Ros. Org. (2016).

The second experiment tackles the idea of excessive
computational delay being introduced to the first

experiment and how it affects Trust. A lot of sensor-based
agent detection algorithms are not able to perform well in

real-time, so this is an important factor to explore in the
field of Trust. To find out, the same experiment is played

back, but the trust evaluation model gets an input throttled
to 1 Hz instead of the expected 15 Hz.

The significance of these experiments revolves around

discovering the worth of Trust. The other trust models

from the literature were not very practical in a real-life

mission. Most were just too computationally expensive
and would consequently throttle primary functions. Other

approaches were just not robust for real-time applications.

If the incorporation of a trust model is simply going to

create a bottleneck and degrade the performance of the

system, then the trust model should be omitted. This study

demonstrates a system that needs real-time decision-

making and discovers an approach to trust evaluation that

improves the MAS.

Fig. 5: Visualization of the SLAM MAS in action

Results

Case Study

A MAS benefits from a simplistic design with minimal
hardware. Fewer components lead to fewer points of error.

Some MASs can use hundreds of agents, and each
component needs to be multiplied by the number of agents,

which can skyrocket the budget. Another consideration is the
size and mass of the equipped hardware. A more robust robot

will be needed for heavier equipment, which will increase
cost. Specifically, of interest to the vision-based approach,

the effective range, Field-of-View (FOV), and resolution of
sensors are crucial to gathering accurate and reliable

information about other agents. As the range and FOV
decrease, the time agents spend without any other agent

witnessing their behavior increases. As sensor resolution
increases, the agent will need more computational power to

process the data in real time. Table (3) shows how this case
study stacks up in regard to hardware. All color-coded tables

will imply that green is advantageous, yellow is neutral, and
red is disadvantageous.

The CPU and RAM usage of each method can impact
the kind of embedded processor used onboard each agent.

The results were all taken using the TX2 for reference. See
Hardware for Every Situation (2024) for more information.

Other devices considered for this study are shown in
Table (4). The TX2 was the most expensive, most powerful,

and largest option. This limited the robots available to carry
it, but the capability allowed for the more flexible exploration

for this case study. Despite the strengths and weaknesses of
each method in the case study of visual behavior capture,

each case affects Trust in a different way.
The results of the case study are shown in Table (4-5).

All three cases contribute a major advantage, but there are
some major deficiencies found in each one. It is worth

noting that cheaper or more powerful hardware can be
interchanged or added to rectify some of each case’s

flaws. This depends on the practitioner’s performance,
budget, and convenience.

AR Tracker provided the best number of supported
agents, diverse parameter detection, and a simple setup.

AR Tracker used C++ and a Stereo Labs ZED 3D camera
for rectified image support. The lighting needed to be

optimal, and any movements captured by the camera or
made by the agent needed to be minimal.

Alan Kruger and Sun Yi / Journal of Mechatronics and Robotics 2025, Volume 9: 1.12

DOI: 10.3844/jmrsp.2025.1.12

7

Table 3: Comparison of hardware used in this study

Description AR tracker Sensor fuser CNN detector

External sensors Stereo labs ZED 3D camera CSI camera, Velodyne LiDAR puck CSI camera
Additional price $450 $4,000 $0
Total mass (g) 135 830 -
Size (mm) 1753033 103.3103.371.7 -

FOV (◦) 90 (H) 60 (V) 100 (D) 360 (H)  48.8 (V) combined 62.2 (H)  48.8 (V)

Sensor resolution 19201080 p 960540 p, H: 0.1◦–0.4◦, V: 2◦ 480270 p

Bandwidth (MB/s) ∼93.3 ∼29.3 combined ∼5.8

Table 4: Comparison of edge computing hardware

Edge device price CPU CLK freq RAM GPU support Mass Size (mm)

NVIDIA Jetson TX2 $400 4-core: 2 GHz 8 GB CUDA 467 g 17017049.8

NVIDIA Jetson Nano $100 4-core: 1.4 GHz 4 GB CUDA 250 g 1008029

Raspberry Pi 4 $75 4-core: 1.5 GHz 8 GB OpenCL 46 g 885819.5

Table 5: Vision-based observation methods

Description AR Tracker Sensor Fuser CNN Detector

Agent distinguishability AR codes (24 agents) Color coding (4 agents) Feature extraction (? agents)

Effective range ∼1.5 m ∼5 m ∼4.5 m

Visualizable data XYZ coordinates (m),
Euler angles (rad)

XYZ coordinates (m), euler
angles (rad)

Relative pixel coordinates

Conditions Great lighting only All lighting, overexposure Great lighting only

Sensor delay 0.062 s 0.013 s combined 0.010 s

Preprocessing delays 0.133 s 0.017 s -

Agent detection delay N (0.001 s) N (0.016 s) N (0.120 s)

Agent update frequency ∼7.5 Hz ∼15 Hz ∼13 Hz

Trust calculation 0.0000045 s 0.0000045 s 0.0000045 s

Total delay (s) 0.195+0.001 n 0.030+0.016 n 0.010+0.120 n

CPU usage (with viz) ∼95% (1 core) ∼35% (1 core) ∼60% (4 cores)

RAM usage (with viz) 0.7 GB (33%) 0.3 GB (25%) 4.2 GB (83%)

Fig. 6: AR Tracker interpreting flight behavior of quadcopter

Fig. 7: Sensor fuser analyzing MAS in a dark environment

The same issues in Chae et al. (2016) regarding range,

size, and lighting applied here. Notably, being outside the

1.5 m effective range not only resulted in missed

detections but also incorrect detections. In addition, the

paper AR codes are 2D and fragile. The side of the agent

with the AR code must face the other agent’s cameras to
be detected, as shown in Fig. (6). As a result of these

drawbacks, gathering reliable information about an agent

is highly compromised. Consequences include the

facilitation of hiding malicious behaviors within the same

vicinity and false assignation of trust updates. The main

takeaways from this method are to avoid 2D identifiers

and focus on maximizing detection accuracy.

Sensor fuser boasted the best effective range, the most

robustness to external conditions, and the lowest

computational expense. The Velodyne LiDAR puck

introduces 3D coordinate data with a root mean square
error of 3 cm. For more information, see Velodyne

LiDAR PUCKTM (2015). This level of accuracy is

adequate for measuring certain agent parameters reliably,

such as velocity and relative position, as shown in Fig. (7).

The LiDAR also contributed to the increase in effective

Alan Kruger and Sun Yi / Journal of Mechatronics and Robotics 2025, Volume 9: 1.12

DOI: 10.3844/jmrsp.2025.1.12

8

range and allowed the camera to use a lower resolution for

higher efficiency. The 3-2D conversion is done in C++

and makes up the backbone of the accuracy of Sensor

Fuser. The experimental and expected signals had an
autocorrelation of 0.9986 and 0.9945 for x and y,

respectively. The cylindrical tags are lightweight enough

for a small drone to carry and allow for 360° yaw coverage

in both light and darkness. Decreasing the diameter of the

cylinder decreases the detection range and would be less

burdensome, than the AR tracker discussed.

The setup is not only difficult but also expensive and

heavy. The number of agents that can be supported is the

other drawback that limits its viability to only small

MASs. However, Sensor Fuser is still able to better detect

agents with more range, sampling frequency, and realistic

lighting expectations. Trust values, therefore, have the

flexibility to better represent the Trust of a wider variety

of applications and requirements. The main takeaway

from this method is to keep in mind the kind of MAS

desired before committing.

CNN Detector best-showcased simplicity and good

effective range in exchange for the high computational

load, as shown in Fig. (8). This is the only case using

Python and a good GPU. Thanks to the NVIDIA Pascal

GPU, the time delay is still very acceptable. Additionally,

the low resolution of the camera and lack of external

sensors also contributed to the achieved update frequency.

Without an adequate update frequency, applications that

depend on precise behaviors will not be happy.

Additionally, this case lacks the capabilities that the other

two demonstrated, but that can be added. CNN Detector

does not escape the need for modification to discriminate

agents. The data set required to train an agent to calculate

information such as Euler angles while being able to

discriminate robots would be a huge challenge.

Combining this challenge with the extra resolution and

needed depth data results in an embedded system that may

not achieve a real-time frequency. Without enough

measurable parameters, the agent’s trust value will not

optimally represent an agent. The main takeaway from this

method is to ensure that the parameters of interest are simple

enough to train for high accuracy. Additionally, users would

need to be prepared to acquire an appropriate data set.

This case study is meant to provide insight into the

challenges of acquiring robust observation data using on-

board real-time computing for Trust. For those using big

MASs in a lab setting with little effort, AR technology is

great. Those wanting more robust detection should consider

fusing a camera with compatible sensors. Lastly, those

wanting to get the most data with the least sensors possible

should consider using machine learning approaches.

Trust Evaluation Model

OLT was written in C++ and takes 4.5 µs to update

Trust per observation. This shows that OLT itself is

almost negligible in comparison to the observation

methods in terms of computation time. For the first 58 s

of the experiment, the agents behave in a predictable

manner, and trust increases as expected. Additionally,
performance trust values fluctuate in parallel where agent

3 is assigned to follow and maintain a gap of 0.8 m away

from agent 4. Once the defectiveness begins at 58.07 s in

Fig. (9), it takes about 2.93 s to begin lowering Trust. It

also took 5.93 seconds to lower it below the collaboration

threshold to stop the flow of fraudulent data. Compared to

the rise of Trust at the beginning of the experiment, the

gradient of Trust is purposefully much higher while

decreasing. This is because Mikulski et al. (2012) advised

Trust to decrease faster than it increases. With a higher

value assigned to the collaboration threshold, the sooner
bad behavior can be blocked. The trade-off is that a high

collaboration threshold also makes it more unlikely that

collaboration will happen. Agent 3 also became

disconnected from the network after about 13.53 seconds

since beginning to show oscillatory behavior.

Although agent 3 was the culprit of abnormalities,

Fig. (10) showed that it still trusted the drone and

patrolling UGV while misbehaving. This was situational,

and a defective agent could have mutually decreased

Trust. Agent 3 took much longer to trust agent 2, and that

is due to the vision-based approach. Considering that

agent 3 was busy chasing agent 4, it was not encountering
agent 2 as often as agent 2’s FOV contained agent 3. This

proves the importance of effective range and FOV in the

observation methods.

Fig. 8: CNN detector robustly detecting TurtleBot3

Fig. 9: Trust evaluations agent 2 gathered using OLT

Alan Kruger and Sun Yi / Journal of Mechatronics and Robotics 2025, Volume 9: 1.12

DOI: 10.3844/jmrsp.2025.1.12

9

Fig. 10: Trust evaluations agent 3 gathered using OLT

After triggering the defectivity in agent 3, the SLAM

became contaminated with poisonous and fraudulent data.

However, it stopped affecting the network when agent 3’s

Trust was less than the collaboration threshold. Figure (11a)

output contained 5.93 s of exposure to erroneous data for

reference. Figure (11b) shows the same agent’s SLAM

output without using a trust model to attenuate the fraudulent

data. It is essentially Fig. (11a) with about 22 s of exposure

to faulty boundary scans instead of 5.93 s.
In a SLAM mission, corrupt data sent around the

network can have infinite possibilities. Agents that use this

data to directly navigate in real-time and do not question

this data will be at risk of damaging themselves or others.

By paying upfront for the price of implementing a trust

algorithm, agents become resistant and selective towards

shared data that should be ignored. That is why the trust-

based result in Fig. (11a) appears cleaner than in Fig. (11b).

Another point about this comparison is the intricate

differences between Fig. (11a and c). Consider an

alternative where Trust is calculated by sending each other
the map data each agent collects. Comparing and verifying

the dense information is not only difficult, but one can see

the two agents’ SLAMs are not the same, even excluding

the corrupt data. Applications like this are situational, and

the designer needs to pick an appropriate input type. For

collaborative mapping using Trust, the vision-based

approach would be more effective and efficient than

analyzing all the transmitted data.

In a situation where computations and communications

cannot keep up with real-time applications, Figs. (12-13)

show how this would affect trust from each perspective. The

gradient of Trust is significantly reduced. As a result, the
agent arrives at the appropriate trust value much slower in

this case. Another effect is the loss of resolution in perceived

agent data with only one update per second. Not only did this

lead to fewer detections overall, but also more

misinterpretations. Abrupt and sudden movements would be

too fast to be registered at 1 Hz, and smooth movements

appeared to be choppy. This degree of agent data resolution

is unusable to calculate Trust appropriately in this example.

Therefore, accounting for time delay is critical to the

accuracy of perception-based trust algorithms.

Fig. 11: SLAM mission results

Fig. 12: Trust from agent 2 with excessive time delays in

observations

Alan Kruger and Sun Yi / Journal of Mechatronics and Robotics 2025, Volume 9: 1.12

DOI: 10.3844/jmrsp.2025.1.12

10

Fig. 13: Trust from agent 3 with excessive time delays in

observations

Discussion

Table (2) presents the relevant work that is most

comparable to OLT. Mikulski et al. (2012) showed the

standard of Trust algorithms with RoboTrust and offered

a great foundation for communicating simple signals
among the network. OLT was designed to bolster

RoboTrust's weakness of being vulnerable to adversarial

spoofing by introducing interpretation to behaviors that

cannot be hidden. Additionally, expanding to multiple

behaviors like (Zhou et al., 2015) gives a more holistic

view unlike the single stereotype used in RoboTrust.

Rishwaraj et al. (2017) focused more on objective

completion; the experiment demonstrating OLT never

showcased objective completion but does allow for

visualizable objective completion to be incorporated. Das

and Islam (2012) inspired a lot of OLT’s reliance on

democratizing Trust throughout the network and
tendencies to be pessimistic about Trust. However, OLT

did not incorporate any of the sophisticated decay models

and load balancing schemes in an effort to maintain real-

time performance. Consider that OLT was simple and

robust enough to be implemented on a real multi-agent

system compared to the rest who simulated everything on

powerful PCs. Compared to all these works, OLT may

have inherited many of their strengths, but it also acquired

the assumption that success is naively visualizable as a

glaring weakness. However, naivety is still an unsolved

problem in Trust algorithms as a whole.

Conclusion

Trust not only impacts decision-making, but it also

protects the MAS. Many issues within the MAS

community still exist, such as natural agent deterioration

and adversarial attacks. This research demonstrates the

novelty of vision-based interaction analysis and how it

offers many defenses to current robotic MAS issues as an

alternative. Theoretically, this creates a range of

acceptable actions an agent can perform at a given time

without intruding on its freedom. This assumes an agent

is around witness agents that can enforce these rules when
broken. The big takeaway of this research is that trust

evaluation is not meant to be complex and resource-

demanding because a MAS has a simultaneous task at

hand. OLT was designed to work with a variety of parallel

inputs, including vision-based interactions.

This study is not perfect and does not provide an

answer to some aspects. First of all, some MAS

applications involve robots that never enter each other’s

sensory range. Another abuser of this system is the MITM

attack. If the adversary catches the TCP message and

modifies it before it reaches the recipient, the system will

fail. This can happen without a difference in the physical

behavior. Defects that do not show obvious abnormalities

can also pose a huge threat to this study.

Future research using advanced cybersecurity

techniques could more effectively tackle shortcomings

like the sniffing parasite and even MITM attack problems.

In the SLAM application explored in this study, the data

is very large and unpredictable. Future research could use

trust algorithms that combine different observation

sources. Other future works can minimize the complexity

of sensors needed to detect other agents to utilize more

lightweight and cheaper UAVs and UGVs. With

increasing security risks, using the agent’s own senses to

artificially understand its environment will increasingly

become of interest. As a result, agents will need to be

more distinguishable from the sensors. This can be done

through unique manufacturing or new research on

minimalistic agent identification modifications.

OmniLightTrust is not flawless, but it has unique

contributions that will eventually lead to MASs becoming

more than just experiments.

Acknowledgment

This research is funded by the ONR (Award No.

N00014-22-1-2724). The views and conclusions contained

herein are those of the authors and should not be interpreted

as necessarily representing the official policies or

endorsements, either expressed or implied, of the U.S.

Funding Information

The authors would like to thank the Office of Naval

Research (ONR) for their financial support for this research.

Author's Contributions

Alan Kruger: Contributed to the manuscript, technical

development, experimentation, and analysis of this research.

Sun Yi: Provided guidance, direction, review, and

coordination for this research.

Alan Kruger and Sun Yi / Journal of Mechatronics and Robotics 2025, Volume 9: 1.12

DOI: 10.3844/jmrsp.2025.1.12

11

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of the

other authors have read and approved the manuscript, and

that no ethical issues are involved.

References

Akintunde, M., Yazdanpanah, V., Salehi Fathabadi, A.,

Cirstea, C., Dastani, M., & Moreau, L. (2024).

Formal Specification of Actual Trust in Multiagent

Systems. HHAI 2024: Hybrid Human AI Systems for

the Social Good, 386, 22–35.

https://doi.org/10.3233/faia240179

Arnaldy, D., & Perdana, A. R. (2019). Implementation

and Analysis of Penetration Techniques Using the

Man-In-The-Middle Attack. 2019 2nd International

Conference of Computer and Informatics

Engineering (IC2IE), 188–192.

https://doi.org/10.1109/ic2ie47452.2019.8940872

Basheer, G. S., Ahmad, M. S., Tang, A. Y. C., & Graf, S.

(2015). Certainty, Trust and Evidence: Towards an

Integrative Model of Confidence in Multiagent

Systems. Computers in Human Behavior, 45, 307–315.

https://doi.org/10.1016/j.chb.2014.12.030

Bradski, G. (2000). The OpenCV Library. Dr. Dobb's

Journal of Software Tools, 120, 122–125.

Chae, S., Seo, J., Yang, Y., & Han, T.-D. (2016). Color

Code AR: Large Identifiable Color Code-Based

Augmented Reality System. 2016 IEEE International

Conference on Systems, Man, and Cybernetics

(SMC), 002598–002602.

https://doi.org/10.1109/smc.2016.7844630

Chen, Y., Su, L., & Xu, J. (2018). Distributed Statistical

Machine Learning in Adversarial Settings. Abstracts

of the 2018 ACM International Conference on

Measurement and Modeling of Computer Systems,

96–96. https://doi.org/10.1145/3219617.3219655
Cheng, M., Yin, C., Zhang, J., Nazarian, S., Deshmukh,

J.V., & Bogdan, P. (2021). A General Trust

Framework for Multi-Agent Systems. Adaptive

Agents and Multi-Agent Systems.

Chun, G., & Guihan, L. (2009). A Method of Trust

Evaluation in Multiagent System. 2009 Third

International Symposium on Intelligent Information

Technology Application, 123–125.

https://doi.org/10.1109/iita.2009.315

Das, A., & Islam, M. M. (2012). SecuredTrust: A

Dynamic Trust Computation Model for Secured

Communication in Multiagent Systems. IEEE

Transactions on Dependable and Secure Computing,

9(2), 261–274.

https://doi.org/10.1109/tdsc.2011.57

Dekkata, S. C., Yi, S., Muktadir, M. A., & Garfo, S. (2023).

LiDAR-Based Obstacle Detection and Avoidance for

Navigation and Control of an Unmanned Ground Robot

Using Model Predictive Control. Journal of

Mechatronics and Robotics, 7(1), 27–41.

https://doi.org/10.3844/jmrsp.2023.27.41

Gautam, A., & Mohan, S. (2012). A Review of Research

in Multi-Robot Systems. 2012 IEEE 7th International

Conference on Industrial and Information Systems

(ICIIS), 1–5.

https://doi.org/10.1109/iciinfs.2012.6304778

Hallyburton, R. S., & Pajic, M. (2024). Bayesian Methods

for Trust in Collaborative Multiagent Autonomy.

CoRR, 2403, 16956.

https://doi.org/10.48550/ARXIV.2403.16956

Hardware for Every Situation. (2024). NVIDIA Developer.

https://developer.nvidia.com/embedded/

develop/hardware

Hata, A., & Wolf, D. (2014). Road Marking Detection

Using LIDAR Reflective Intensity Data and Its

Application to Vehicle Localization. 17th

International IEEE Conference on Intelligent

Transportation Systems (ITSC), 584–589.

https://doi.org/10.1109/itsc.2014.6957753

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A.,

Fathi, A., Fischer, I., Wojna, Z., Song, Y.,

Guadarrama, S., & Murphy, K. (2017).

Speed/Accuracy Trade-Offs for Modern

Convolutional Object Detectors. 2017 IEEE

Conference on Computer Vision and Pattern

Recognition (CVPR), 3296–3297.

https://doi.org/10.1109/cvpr.2017.351

Kurniawati, H., Yanzhu, D., Hsu, D., & Wee Sun, L. (2011).

Motion Planning Under Uncertainty for Robotic Tasks

with Long Time Horizons. The International Journal of

Robotics Research, 30(3), 308–323.

https://doi.org/10.1177/0278364910386986

Liu, X., Datta, A., Rzadca, K., & Lim, E.-P. (2009).

StereoTrust: A Group Based Personalized Trust

Model. Proceedings of the 18th ACM Conference on

Information and Knowledge Management, 7–16.

https://doi.org/10.1145/1645953.1645958

Liu, Y., Ma, S., Aafer, Y., Lee, W.-C., Zhai, J., Wang, W.,

& Zhang, X. (2018). Trojaning Attack on Neural

Networks. 25th Annual Network and Distributed

System Security Symposium (NDSS 2018), 1–15.

https://doi.org/10.14722/ndss.2018.23291

Mikulski, D. G., Lewis, F. L., Gu, E. Y., & Hudas, G. R.

(2012). Trust Method for Multiagent Consensus. SPIE

Defense, Security and Sensing, 83870E-83870E.

https://doi.org/10.1117/12.918927

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote,

T., Leibs, J., Wheeler, R., & Ng, A. Y. (2009). Ros:

An Open-Source Robot Operating System. ICRA

Workshop on Open-Source Software, 1–6.

https://doi.org/10.3233/faia240179
https://doi.org/10.1109/ic2ie47452.2019.8940872
https://doi.org/10.1016/j.chb.2014.12.030
https://doi.org/10.1109/smc.2016.7844630
https://doi.org/10.1145/3219617.3219655
https://doi.org/10.1109/iita.2009.315
https://doi.org/10.1109/tdsc.2011.57
https://doi.org/10.3844/jmrsp.2023.27.41
https://doi.org/10.1109/iciinfs.2012.6304778
https://doi.org/10.48550/ARXIV.2403.16956
https://doi.org/10.1109/itsc.2014.6957753
https://doi.org/10.1109/cvpr.2017.351
https://doi.org/10.1177/0278364910386986
https://doi.org/10.1145/1645953.1645958
https://doi.org/10.14722/ndss.2018.23291
https://doi.org/10.1117/12.918927

Alan Kruger and Sun Yi / Journal of Mechatronics and Robotics 2025, Volume 9: 1.12

DOI: 10.3844/jmrsp.2025.1.12

12

Rishwaraj, G., Ponnambalam, S. G., & Kiong, L. C.

(2017). An Efficient Trust Estimation Model for

Multiagent Systems Using Temporal Difference

Learning. Neural Computing and Applications,

28(S1), 461–474.

https://doi.org/10.1007/s00521-016-2354-0

Ros Wiki Org. (2016). Wiki.ros.org. ar-track-alvar.

Ros Wiki.

http: //wiki.ros.org/ar_track_alvar

Rusu, R. B., & Cousins, S. (2011). 3D is Here: Point

Cloud Library (PCL). 2011 IEEE International

Conference on Robotics and Automation, 1–4.

https://doi.org/10.1109/icra.2011.5980567

Shakshuki, E., & Reid, M. (2015). Multiagent System

Applications in Healthcare: Current Technology

and Future Roadmap. Procedia Computer Science,

52, 252–261.

https://doi.org/10.1016/j.procs.2015.05.071

Toda, Y., & Kubota, N. (2013). Self-Localization Based

on Multiresolution Map for Remote Control of

Multiple Mobile Robots. IEEE Transactions on

Industrial Informatics, 9(3), 1772–1781.

https://doi.org/10.1109/tii.2013.2261306

Velodyne LiDAR PUCKTM. (2015). AMTECHS Co., Ltd.,

https://www. amtechs.co.jp/product/VLP-16-Puck

Wei, P., Cagle, L., Reza, T., Ball, J., & Gafford, J. (2018).

LiDAR and Camera Detection Fusion in a Real-Time

Industrial Multi-Sensor Collision Avoidance System.

Electronics, 7(6), 84.

https://doi.org/10.3390/electronics7060084

Wiki. Ros. Org. (2016). Ethzasl-Icp-Mapping. ROS Wiki.

http:// wiki.ros.org/ethzasl-icp-mapping

Zhou, P., Gu, X., Zhang, J., & Fei, M. (2015). A Priori

Trust Inference with Context-Aware Stereotypical

Deep Learning. Knowledge-Based Systems, 88, 97–106.

https://doi.org/10.1016/j.knosys.2015.08.003

https://doi.org/10.1007/s00521-016-2354-0
https://wiki.ros.org/
https://wiki.ros.org/ar_track_alvar
https://doi.org/10.1109/icra.2011.5980567
https://doi.org/10.1016/j.procs.2015.05.071
https://doi.org/10.1109/tii.2013.2261306
https://www/
https://amtechs.co.jp/product/VLP-16-Puck
https://doi.org/10.3390/electronics7060084
https://wiki.ros.org/ethzasl_icp_mapping
https://doi.org/10.1016/j.knosys.2015.08.003

