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Abstract: Automated	machinery	and	robotics	are	commonly	conventional	
multibody systems containing bearing components, which exhibit uncertain, 
discontinuous and complex tribological characteristics. These generate wear and 
fundamentally limit the precision of small scale motion due to the tribological 
effects being difficult to compensate for using model-based active control. 
However, they can be eliminated through the replacement of traditional bearing 
joints with flexure couplings, which offers a potential increase in the 
performance envelope. Initially a plain flexure coupling capable of large 
deformation is investigated, with a representative mathematical model derived 
based on large deformation Euler-Bernoulli theory which is validated using a 
bespoke experimental facility; proof of concept for the design of empirical 
controllers utilising experimental data is presented. Various designs of novel 
compound flexure couplings are conceived, comprising of multiple sections of 
spring steel. The presented compound flexure couplings are then characterised 
experimentally. A focused study of a two-compound flexure coupling-rigid body 
system is presented and the feasibility of generating open-loop feedfoward 
controllers from identified models is demonstrated in terms of accurate large 
displacement control. Including path correction in the presented control 
methodology reduces tracking errors by at least 62% and 71% in (x, y) directions, 
respectively, for the cases considered. 
 
Keywords: Feedforward Control, Flexure Coupling, Compound Flexure 
Coupling, Large Deformation 

 
Introduction 

Many automated systems used in robotic applications 
and manufacturing processes comprise of conventional 
mechanisms, made up of numerous rigid bodies connected 
through traditional translating and/or rotary joints. The 
efficiency, repeatability and precision of these automated 
systems are limited due to uncertain, discontinuous and 
complex tribological effects within the bearing joints, 
including friction, stiction, backlash, torque ripple and 
compliance. Degradation of the joint performance also 
occurs, typically over a period of operation due to wear and 
if a mechanism has multiple joints, the effects of the 
individual joints will be compounded, producing complex 
overall tribological effects. Therefore, the system’s 
capability to accurately follow a prescribed trajectory, either 
a displacement, velocity or acceleration profile, is limited. 

Currently, automated systems are generally used in 
industrial processes where the uncertainty in the small scale 
motion is inconsequential, such as the assembly and 
inspection of manufactured products. However, for high 
added-value components of complex systems, including 

those in the automotive and aerospace industries, it is 
imperative that manufacturing techniques are accurately 
controlled with repeatable motion. Therefore, introducing 
automation through robotics and sensing for these high 
added-value components must not compromise the 
current achievable precision and repeatability. 
However, it is difficult to compensate for the complex 
and uncertain nonlinear tribological effects in 
traditional bearing joints with active control. 

A novel approach to eliminate the source of small 
scale uncertain and discontinuous effects, is through new 
designs of multibody mechanisms, with joints comprising 
of flexure couplings, or compact deformable structures. 
These permit movement between the rigid bodies in the 
mechanism through elastic deformation, thus providing 
precise and frictionless motion in their workspace (Smith, 
2000; Howell, 2001), resulting in a smooth trajectory 
path. Additional benefits are that flexure couplings do not 
require lubrication nor are they subject to wear. 
Furthermore, the overall mechanisms are less complicated 
with a reduced number of parts. However, systems 
containing flexure couplings do introduce additional 
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degrees of freedom in which the system can experience 
dynamic motion. Although nonlinear, the mechanical 
characteristics are determinate. Hence, efficient, precise and 
repeatable motion of a mechanism containing flexure 
couplings should be feasible when regulated under suitable 
control strategies and actuation. These systems could be 
useful in robotic applications and manufacturing. 

In micro- and nano-positioning mechanisms, flexure 
couplings undergoing very small deflections are 
commonly used, for example see Chen et al. (2020) and 
their ability to achieve robust high precision movement 
without suffering from parasitic motion (Herfst et al., 
2015; Fantner et al., 2006) is key to their performance. 
Flexure couplings capable of large deflections have been 
implemented in robotic hands for grasping and dexterous 
manipulation (Liarokapis and Dollar, 2016; Odhner et al., 
2014) as well as objective identification (Spiers et al., 2016). 

Predictions for systems comprising flexure joints and 
rigid bodies in series, forming pseudo-kinematic chains, 
can be obtained through simplified mathematical models. 
These models are typically based on pseudo-rigid-body 
models where the flexure couplings are represented as a 
serial-chain of rigid bodies, with passive elastic joint 
connections (Howell and Midha, 1994). Alternatively, an 
equivalent pin model has been studied which accounts for the 
non-stationary centre of rotation and varying radius in the 
flexure coupling (Guo and Lee, 2013). However, the flexure 
coupling has to be limited in length to obtain realistic 
predictions Venkiteswaran and Support (2016). The case of 
a four-bar link pendulum excited by gravity alone was 
examined by Lobontiu (2001), comprising two rigid links 
and two flexure couplings, however the flexure coupling 
deformation was assumed to be small. The effect of the 
flexure coupling geometry on its performance was examined 
by Ma et al. (2020) on typical small deformation notched 
flexure hinges, concluding the design and optimisation of 
notch shapes can have a significant effect on behaviour. 
Topology optimisation of flexure hinges with regards to 
stress constraints whilst maintaining the desired motion 
found that the results differ from the conventional hinges 
topologies (Liu et al., 2017). 

To achieve accurate predictions for a mechanism 
incorporating large deformation flexure couplings, the 
higher order nonlinear elastodynamics of the flexure 
couplings must be included. Steady state models based on 
nonlinear cantilever beams experiencing an external 
force, either tip concentrated and/or distributed loads, 
have been studied extensively, for example see Wang et al. 
(2008); Kimiaeifar et al. (2011); Argyris and Symeonidis 
(1981); Odhner and Dollar (2012); Rao et al. (1986); 
Shvartsman (2013); Ma and Chen (2016). However, there 
are limited studies of these being connected to rigid 
bodies, forming pseudo-kinematic chains. Recently, 
leading research presented a non-linear analytical 
approach, based on theories of bending (Henning et al., 
2021) under large deflections together with shear and lateral 

contraction in a unified form (Henning and Zentner, 2016), 
to compute the elasto-kinematic properties of planar 
compliant mechanisms. Accurate and fast analysis of 
multiple planar compliant mechanisms with distributed or 
concentrated compliance is achieved. A plain large 
deformation flexure coupling consisting of a single section 
of spring steel has been investigated by Bailey et al. (2018) 
for precision control in a two-flexure coupling-rigid body 
system. The control methodology was derived from a 
bespoke large deformation nonlinear mathematical model 
and results showed the advantages of flexure couplings 
included elimination of high frequency behaviour 
associated with the excitation of the nonlinear effects in 
conventional bearing components. Thus demonstrating 
flexure couplings have the potential to replace traditional 
revolute joints in robotic and other automated systems, 
provided they can sustain dynamic loading envelopes. 

This study considers the large deformation of compound 
Flexure Couplings (CFs), comprising of multiple sections 
and complex geometries, together with open-loop control 
methodologies for high precision multibody systems, based 
on identified models from experimental data. This control 
approach negates the need for complex and expensive 
models to be formulated for CFs, while still providing 
trajectory control of equal accuracy. Initially, a Plain Flexure 
coupling (PF) is examined, with a nonlinear mathematical 
model to demonstrate the challenges of modelling CFs and 
provides a proof of concept for designing open-loop 
feedforward controllers from experimental data. The open-
loop approach is preferred over traditional closed loop PID 
control due to potential problems associated with nonlinear 
behaviour. The CF designs are presented and their 
characterisation is assessed through experimental testing. A 
double-CF-rigid body system incorporating these flexure 
couplings is introduced with control methodology 
developed, based on an open-loop feedforward controller 
derived from experimental data. This methodology accounts 
for the nonlinear elastodynamics introduced by CFs. As such 
the designed controllers have the potential to regulate the 
actuation and achieve precise motion tracking, particularity 
when path correction is incorporated. The accuracy of 
controlling the trajectory of a multi-rigid body system 
containing CFs and PFs is examined through the use of a 
bespoke experimental facility to demonstrate their 
potential in motion control systems. In principle, the 
fatigue life of flexures could be assessed for number of 
cycles against deflection amplitude. Flexures used in 
voice coil actuators are rated for fatigue in this manner. 
However, the flexure design and system feedforward 
control are the main focus of this study. 

Plain Flexure Coupling 
A PF which consists of monolithic material with suitable 

elastic properties for large elastic deformation is investigated. 
A mathematical model for the PF is derived using nonlinear 
Euler-Bernoulli large deformation beam theory (Bailey et al., 
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2018). The PF model details are introduced in this section to 
demonstrate the difficulty associated with modelling more 
complex (e.g., cross-) flexure coupling designs. 

A schematic of a PF is given in Fig. 1a, with the 
corresponding experimental PF shown in Fig. 1b, where the 
left hand side is fixed whilst the right hand side is actuated. 
The model is formulated assuming that a pair of forces and 
moment Ff  = (Ffx, Ffy, Ffθ)T are applied to the tip of the flexure 
at the centreline; Ffx  and Ffy  are imposed in the horizontal and 
vertical directions, respectively, regardless of the PF 
deflection. The PF tip deflection is denoted by the 
vector xf  = (xf , yf , θf )T and the arc length coordinate       
s = [0, lf ] is introduced in two-dimensional Euclidean 
space along the flexure centreline, with Cartesian 
coordinates at a given s defined by: 
 

 (1) 
 

Large deformation Euler-Bernoulli theory is utilised, in 
which it is assumed that deformation occurs primarily 
through bending with the axial and shear deformations 
assumed negligible due to the PF having significantly larger 
width and length than thickness. The bending moment M(s) 
at given length s is assumed to be proportional to the 
corresponding curvature, leading to the governing equation: 
 

 (2) 

 
where, E is the Young’s modulus and I the second 
moment of area. 

By differentiating Eq. (2) with respect to the arc length 
s and using relations dx/ds = cos θ and dy/ds = sin θ from 
(1), the governing equations for the PF are found. Setting 
θ = z1 and dθ/ds = z2, results in a set of first order ordinary 
differential equations: 
 

 (3) 

 
Corresponding boundary conditions are given by: 

 

 (4) 
 
since it is assumed the PF is fixed at s = 0 with zero angle 
and the curvature at the free end is as given in Eq. (2). 
This system of equations demonstrates that the PF can be 
characterised by the angle alone. 

The system of Eq. (3) and (4) can be solved with a 
suitable initial estimate, then using a finite difference method 
implementing a three-stage Lobatto IIIa formula. An 
interesting phenomenon of this problem is that there is a 
many-to-many relationship between the pair of forces and 

moment applied to the PF, Ff  and the resulting tip deflection, 
x f. Figure 2 shows multiple solutions for the set of forces and 
moments Ff  = (10 N, −1000 N, 10 Nm)T when different 
initial estimates are used. Alternatively, multiple sets of 
forces and moments applied to the PF can result in the same 
tip position. This phenomenon leads to the difficulty of 
modelling multi-sectioned compound Flexure Couplings 
(CFs), such as those in Fig. 3 for parallel and cross-over 
sections. This is due to the distribution of the external force 
Ff  at the tips of each of the sections, Ff1 and Ff2, being 
unknown. An additional complication is that the sections 
may not be placed in the same plane as each other, especially 
in the cross-over design. 

To validate the PF mathematical model, a bespoke 
research facility shown in Fig. 4 was used. The PF was made 
of fully hardened grade 301 stainless steel, which has a 
Young’s modulus of E = 193×109 Nm−2 and has dimensions 
of thickness of 0.4 mm and length and width of 30 mm, 
giving a second moment of inertia of I = 1.6 × 10−13 m4. 
Clamping the PF at both ends between blocks of aluminium 
together with incorporating dowling rods, prevented any 
unwanted movement. Actuation was provided by a lead 
screw actuator, which remains under compression at all 
times, imposes the force Ff  onto the PF tip, through a linkage 
mechanism. A linear bearing was used to support the actuator 
rod to minimise the effects of side loading. The linkage 
mechanism was modelled as a series of rigid bodies and 
perfect hinge joints as in Fig. 4 and assumed to be massless; 
l0 is the length of the actuator extension from the linear 
bearing to the first deep groove ball bearing; l1 is the length 
of the rigid body between the two deep groove ball bearings, 
which has angle ϕ to the horizontal; l2 is the length between 
the deep groove ball bearing and vertical rigid body, which 
has angle θf to the horizontal; lv is the length between the  
laser tracker targets; and lp is the distance between the PF tip 
and the upper laser tracker target. 

The effect of an actuator force of component F0 is to 
impose an equivalent force Ff  on the PF tip. By equilibrium: 
 

 (5) 

 
The angle ϕ and actuator extension l0 are defined by 

the geometry of the system: 
 

 (6) 

 
where κ is the offset of the linear bearing to the fixed end 
of the PF, as shown in Fig. 4. 
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Fig. 1: (a) Schematic diagram for a PF with force                            

Ff = (Ffx, Ffy, Ffq)T imposed at the tip and (b) Image of a 
PF fixed on the left and actuated on the right 

 

 
 
Fig. 2: Prediction of possible PF deflections with imposed                 

Ff = (10 N, −1000 N, 10 Nm)T for different initial solution 
estimates 

 
The input to the mathematical model is the actuator 

force component F0, however, in the experimental 
facility the lead screw actuator does not have force 
sensing capabilities, though does have inbuilt 
potentiometers to identify the actuator extension l0. 
Therefore, for control purposes F0 is implicit with the 
input being the actuator extension l0 and the output the 
deflection of the PF. Thus, experimental results were 
obtained by extending the actuator by increments of      
5 mm and recording the static position of the system 
using a 3D laser tracker, which had an accuracy of 
±0.02 mm, by utilising the four laser tracker targets 
shown in Fig. 4. 

 
 
Fig. 3: Schematic side view for multi-sectioned CFs with (a) 

Parallel and (b) Cross-over design with external force Ff 
and forces on the tip of the sections Ff1 and Ff2 

 
From the measured positions of the four targets, the PF tip 
deflection, (xf, yf, θf)T, can be identified. Corresponding 
theoretical predictions of the deformed PF were found by 
inputting a range of forces into the mathematical model and 
computing the PF tip deflection and actuator extension for 
the equivalent range of tip angle θf. Results for the 
actuation configuration of the PF in Fig. 4, are shown 
in Fig. 5. These demonstrate that for a given actuator 
extension, l0, there is a single PF tip deflection,            
(xf, yf, θf)T, showing good agreement between the 
theoretical predications and experimental results. 

Therefore, the experimental results shown in Fig. 5 can 
be utilised in a look-up table to identify the actuator 
extension, l0, needed to be imposed on the experimental 
facility to achieve one prescribed coordinate of the tip 
deflection position. For a system containing two PFs in 
series, where each PF is deformed by an independent 
actuator, two coordinates (xp, yp) at the end of the system can 
be prescribed. The associated look-up tables, each consisting 
of the two actuator extensions and end coordinates of the 
system are computed using the PF tip deflections in Fig. 5 
and geometry of the system. Therefore, an open-loop 
feedforward control methodology can be implemented 
which does not require a complex mathematical model to be 
used in its formulation. 

Compound Flexure Coupling 
The initial investigations of the PF, have shown that 

if the relationship between the actuator extension l0 and 
the PF tip deflection are known and there is a one-to-
one relationship for the actuation mechanism, then the 
PF tip deflection can be controlled. It is asserted that 
similar methodology can be used for a CF of similar 
dimensions, where each section of the CF is 
represented by a PF. However, due to the difficulty in 
deriving realistic and accurate models for CFs, the 
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relationship between the actuator extension l0 and CF tip 
deflection are assessed through experimental testing in this 
study. The choice of CF design is not unique and many 
options are available with varying levels of complexity. 
Rather than analysing every design mathematically, the 
approach taken was to use system identification based on 
measured characteristics to generate models. 

Three different CF designs were investigated which 
provide movement in two-dimensions and have the 
cross-over point in a central position, as shown in Fig. 
6. These were constructed from fully hardened grade 
301 stainless steel sections; CFa has three equal width 
sections, CFb has a middle section having twice the width of 
the outer sections and CFc has two equal width sections. 
Each section has a length of 30 mm and a thickness of 
0.4 mm and each design has an overall width of 30 mm. 
Spacers of height 2 mm were used to create the vertical 
separation, with two positioned between the sections at both 
ends, giving a total separation of 4 mm. 

Modifications to the CF designs shown in Fig. 6 are 
investigated for the triple-section configurations (CFa 
and CFb) when they have a common end point instead. 
The four possible modifications are shown in Fig. 7 for 
CFa. Suffices m1 and m3 denote having the cross-over 
point at the fixed end with two and one section(s) on 
the upper side, respectively. Suffices m2 and m4 denote 
having the cross-over point at the actuated end with two 
and one section(s) on the upper side, respectively. 
Modifications for the double-section CF were not 
investigated as these arrangements lead to torsional 
effects and significant out of plane motion. 

Compound Flexure Characterisation 
Each of the CF designs were studied to identify the CF 

tip deflection as a function of actuator extension l0. The 
actuator rod was retracted and extended in increments of 
5 mm to ±45 mm from the horizontal position, where         
θf = 0 at the reference extension of 0 mm. At each 
increment the deflection of the CF was inferred from the 
3D laser tracker target measurements. 

Figure 8 shows all CF and PF tip positions for 
actuator extensions over a range of ±45 mm together 
with the differences between the PF and CF tip 
positions, (xPF - xCF, yPF - yCF). The results show that 
designs CFa, CFb and CFc have a similar tip position, 
following the trend of the PF profile, but with a horizontal 
offset. The difference is between 0.2 - 0.6 mm across the full 
actuator stroke and arises due to the CFs having a shorter 
length along the centreline in the x direction arising from the 
initial curvature of the sections due to the vertical separation 
at the clamped ends. 

Figures 8b and c indicate that the cross-over point of 
the CFs has a significant effect on the CF performance, 
with modifications m1 and m3 having similar behaviour, 
as do m2 and m4. When the cross-over point is at the fixed 

end for modifications m1 and m3, Fig. 8b1 shows the 
flexure behaves in a similar way as an unmodified design, 
but with a greater range of motion for the same actuator 
extension range. This results in the difference between the 
PF and CF tip positions Fig. 8b2 becoming larger, further 
from the horizontal position. Placing the cross-over point at 
the actuated end for modifications m2 and m4 (Fig. 8c1), 
leads to a smaller deflection of the CF for the same actuator 
extension range with significantly different behaviour. 
Figure 8c2 highlights the sharp and distinct changes at the 
horizontal position, most likely due to a buckling effect. 
Thus, for smooth controlled motion, CFs with no 
modification or modifications m1/m3 would be ideal. 

The characteristics of CFa and CFb and their 
respective modifications, are very similar, thus only 
CFa will be examined in subsequent investigations. Figures 
9 and 10 give the flexure coupling deformations for the 
minimum and maximum actuator extension (±45 mm) for 
CFa, CFc and PF and CFam3 and CFam4, respectively. 
Figure 9 shows that the sections in CFa and CFc have similar 
deformations, with all sections having unidirectional 
bending. However, CFc experiences torsional effects due to 
the design imposing a moment on the flexure clamp at the 
actuated end. This causes out of plane motion, which will be 
amplified when additional CFs and rigid bodies are 
connected in series. It is for this reason that the design CFc 
was not taken further. To prevent torsional effects, a moment 
on the actuated flexure clamp must be avoided; designs must 
be symmetrical about the mid-point of the flexure coupling 
width. The effect of modifying the cross-over point to be at 
an end of the CF gives rise to sections having either 
unidirectional or multidirectional bending, depending on 
the section orientation as shown in Fig. 10. For 
example, for CFam4, when there is minimum actuator 
extension the sections that join the cross-over point 
from below has multidirectional bending, whereas the 
section that joins the cross-over point from above has 
unidirectional bending. The converse is true for the 
case of maximum actuator extension. 

Two Flexure Coupling Rigid Body System 
Having characterised the different CF designs, open-loop 

feedforward control methodologies can be formulated and 
implemented on the research facility to examine the resultant 
achievable precision for the CF designs. Figure 11 shows the 
experimental facility comprising of two CFs interconnected 
between two nominally rigid body links, consisting of 
lengths of aluminium profile and flexure clamps. The first 
CF is fixed to an aluminium profile support structure 
connected to a bedplate. Both CFs are deflected by lead 
screw actuators and linkage mechanisms, with linear 
bearings used to minimise side loads. The first actuator is 
fixed within the support structure while the second actuator 
is attached to the first rigid body link. 
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Fig. 4: Experimental facility for single flexure coupling with CAD diagram showing dimensions of the actuation mechanism 
 

 
 
Fig. 5: Theoretical prediction (- -) together with experimental data (×) and best fit line (-) for a PF when the actuator is extended in 

increments of 5 mm; (a) Tip angle θf against actuator extension l0, (b) Horizontal tip coordinate xf against actuator extension l0 
and (c) Vertical tip coordinate yf against actuator extension l0 

 
Control Methodology 

To precisely control the two-CF-rigid body system, 
bespoke controllers are developed for each CF design. 
Open-loop feedforward control methodologies are 
formulated from the experimental data such that the 

end position of the two-CF-rigid body system follows 
a prescribed trajectory. It is assumed that both CF   
joints behave identically, given that they have the    
same design. 



Nicola Y. Bailey et al. / Journal of Mechatronics and Robotics 2021, Volume 5: 33.46 
10.3844/jmrsp.2021.33.46 
 

39 

  
(a) CFa; triple-section with internal cross-over point 

  
(b) CFb; triple-section with internal cross-over point 

  
(c) CFc; double-section with internal cross-over point 

 
Fig. 6: Designs of CF having internal cross-over points 
 
Therefore, the end position of the two-CF-rigid body 
system can be calculated, using the geometry of the 
system, over the range of both actuator extensions           
-45 mm ≤ (l01, l02) ≤ 45 mm, where subscripts 1 and 2 
denote the first and second actuator, respectively. 

  
(a) CFam1; triple-section (2 upper) with cross-over point at left fixed end 

  
(b) CFam2; triple-section (2 upper) with cross-over point at right actuated end 

  
(c) CFam3; triple-section (1 upper) with cross-over point at left fixed end 

  
(d) CFam4; triple-section (1 upper) with cross-over point at right actuated end 

 
Fig. 7: Designs of CF having a common end point 

 

  
Fig. 8: (1) CF and PF tip positions (x, y) together with (2) Differences between the PF and CF tip positions (xPF -xCF, yPF -yCF) for (a) 

Internal, (b) Fixed end and (c) Actuated end cross-over point for actuator extensions ±45 mm
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(a) CFa; actuator extension -45 mm 

  
(b) CFa; actuator extension +45 mm 

  
(c) CFc; actuator extension -45 mm 

  
(d) CFc; actuator extension +45 mm 

  
(e) PF; actuator extension -45 mm 

  
(f) PF; actuator extension +45 mm 

 
Fig. 9: Deformation of CFa, CFc and PF for minimum and 

maximum actuator extension (±45 mm); side and 
angled views 

 
Two look-up tables are generated, such that for given 
values of l01 and l02, the end position coordinates of the 
two-CF-rigid body system, (xe, ye), can be identified. 
The end coordinates can be written as continuous 
functions of the actuator extensions, xe = f (l01, l02) and 
ye = g (l01, l02). 

  
(a) CFam3; actuator extension -45 mm 

  
(b) CFam3; actuator extension +45 mm 

  
(c) CFam4; actuator extension -45 mm 

  
(d) CFam4; actuator extension +45 mm 

 
Fig. 10: Deformation of CFam3 and CFam4 for minimum 

and maximum actuator extension (±45 mm); side 
and angled views 

 
The look-up tables were then exploited to find the 

actuator extensions needed for a prescribed end position of 
the system. For example, given a desired end position of 
xp = 1015 mm, yp = 0 mm, a contour from each of the look-
up tables is found where xe = xp and ye = yp. The two resulting 
contours have been superimposed in Fig. 12 and the points at 
which the two contour plots intersect are the actuator 
extensions needed to achieve the desired end position (xp, yp). 
There are two solutions, depending on whether the system is 
positioned above or below the horizontal. This methodology 
can then be utilised for each position along the trajectory to 
identify the necessary actuator extension for the end of the 
two-CF-rigid body system to follow the desired trajectory. 
The dynamic effects of the system are assumed negligible as 
the system is moving relatively slowly. 

Trajectory Control 
An experimental programme was undertaken to 

examine the different CFs and their ability to follow a 
prescribed trajectory. 
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Fig. 11: Experimental facility for two-flexure-coupling rigid body system 
 
Feedforward controllers were developed for each of the 
triple-section CFs, together with the PF. The extension of the 
actuator extension was controlled over time using proprietary 
hardware and controllers designed in the control 
methodology section. The end position of the system was 
measured over the complete movement using the 3D laser 
tracker target positioned at the end of the second rigid body 
link (xe, ye) as shown in Fig. 11. 

The desired trajectory of the end of the two-CF-rigid 
body system is that of a straight line between +200 mm 
and −200 mm over 14 s following a sine curve trajectory, 
yp = 0.2sin (2πt +π/2) mm, at xp = 1015 mm. The 3D laser 
tracker was used to measure the resultant dynamic end 
position for all cases investigated. The linear actuators 
used to drive the system exhibited substantially non-
ideal performance, including drift, backlash and 
vulnerability to signal noise. Therefore, to ensure that 
the actuators followed the feedforward control path as 
closely as possible, they were operated under a 
proportional feedback loop. The actual actuator 
extensions were measured by onboard potentiometers 
and this signal was then subtracted from that of the 
extension command for the feedforward control 
scheme. An error signal was then formed and it was this 
signal on which the feedback loop operated. The gain 
value used in the feedback loop was a compromise 
between being sufficiently small to avoid amplifying 
imperfections in the actuator characteristics and 
adequately large to enable the system to have 
favourable tracking performance. 

Initially, CFa, CFb and the PF were examined under 
their respective feedforward control, with the end position 
of the two-CF-rigid body system given in Fig. 13. The 
results show that the paths taken by the end of the system 
for the CFa, CFb and PF are close to that of the desired 
trajectory, but have some error: 

 (7) 

 
where g is a flexure coupling-dependent function. The 
maximum error from the straight line is ∼ 3 mm in the x 
direction and ∼ 15 mm in the y direction. 

The resulting trajectories for the CFa and CFb 
modifications under feedforward control derived from 
their respective empirical data are shown in Fig. 14 and 
15. Modifications m1 and m3 have similar behaviour 
for each CF, as do m2 and m4. CFa and CFb 
modifications follow similar trends but with small variations 
for y < 0. For all CFa and CFb modifications, the maximum 
error is ∼ 4 mm in the horizontal and ∼ 15 mm in the vertical, 
with CFa giving a larger error than CFb, in general. 

The open-loop feedforward control is based on an 
identified system model, which may possess some 
uncertainty due to a number of factors. These include 
imperfect actuator control, the static data utilised in the 
look-up table being taken without the rigid bodies 
attached, look-up table interpolation errors and the 
modular system having minor differences when 
assembled with the different CFs. Additional path 
correction may be implemented to achieve more 
accurate tracking. 

The system with a CFa, CFb and PF was 
investigated to examine if improvements in the 
feedforward control could lead to better resultant path 
trajectories. To account for errors in the feedforward 
control, a new modified feedforward control scheme 
was derived with path correction: 
 

 (8) 
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Fig. 12: Contour for values of the first and second actuator extensions, l01 and l02, respectively, for xe = xp = 1015 mm and ye = yp = 0 mm 
 

 
 

Fig. 13: Dynamic trajectories at the end of the two-CF-rigid body system for (a) CFa, (b) CFb and (c) PF 
 

This new demand trajectory (xp + εx, yp + εy) was then 
used with the same control methodology to identify adjusted 
displacement profiles for the actuator rods. Figure 16 shows 
the original and adjusted trajectories of the CFa, CFb and PF 
cases, with Fig. 17 showing the errors in the vertical and 
horizontal planes against time. The corresponding maximum 
errors for each case in the horizontal and vertical planes are 
given in Table 1, for both the original and adjusted 

trajectories. The results show a significant improvement in 
performance with the modified feedforward control scheme 
with path correction (adjusted) where the maximum error 
from the desired trajectory being reduced by at least 73% and 
71% in the (x, y) directions, for a CF and by 62% and 86% in 
the (x, y) directions, for a PF. The remaining errors between 
the demand trajectory and the realised paths are residual from 
the non-smooth actuation/actuator capabilities.
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Fig. 14: Dynamic trajectories at the end of the two-CF-rigid body system for (a) CFam1 and CFam3 and (b) CFam2 and CFam4 
 

 
 

Fig. 15: Dynamic trajectories at the end of the two-CF-rigid body system for (a) CFbm1 and CFbm3 and (b) CFbm2 and CFbm4 
 
Table 1: Maximum errors from the desired trajectory for CFa, CFb and PF in horizontal (x) and vertical planes (y) for the original 

and adjusted trajectories 
 Original  Adjusted  % Reduction 
 ----------------------------------- ----------------------------------- --------------------------- 
Design x (mm) ay (mm) x (mm) y (mm) x y 
CFa 2.59 14.8 0.705 4.29 73 71 
CFb 1.94 11.9 0.445 2.32 77 80 
PF 1.72 22.9 0.647 3.20 62 86 
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Fig. 16: Dynamic trajectories at the end of the two-CF-rigid body system under adjusted control for (a) CFa, (b) CFb and (c) PF 

 

  
Fig. 17: Errors in the dynamic trajectories at the end of the two-CF-rigid body system in the vertical and horizontal planes against time 

under adjusted control for (a) CFa, (b) CFb and (c) PF 
 
Table 2: Key features of the different designs and modifications considered 
Design Advantages Disadvantages 
PF Simple design/construction Least robust 
  Extra degrees of freedom 
CFa More resistant to torsion More complex design 
CFb Pivot point moves less  End clamping more intricate 
 Section width insignificant 
 Least error in trajectory 
CFc - Torsion/out of plane motion  
  Not feasible 
m1/m3 Largest range of motion - 
m2/m4 - Smallest range of motion 
  Sharp transition through θ = 0 
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Discussion 
From the current work, the following outcomes should be 

highlighted, which are summarised in Table 2. The CFc 
flexure should not be used because it experiences torsional 
effects, thus out of plane motion, due to the design imposing 
a moment on the flexure clamp at the actuated end. From 
examining the CFa and CFb flexure, along with their 
modifications, it can be concluded that the widths of 
individual sections do not have a significant difference on the 
CF behaviour, provided the overall width remains the same. 
Analysing the effect of the cross-over point position 
demonstrates that when the cross-over point is at the actuated 
end (modifications m2 and m4), the flexure coupling has 
sharp and distinct changes at the horizontal point, together 
with a reduced range of motion, resulting in it being non-
ideal for use. A CF with the cross-over point at the fixed end 
(modifications m1 and m3), has a larger range of motion than 
when the cross-over point is at the centre, but either would 
be appropriate to use, along with a PF. The advantages of the 
CF are that they are more resistant to torsional effects, the 
pivot moves less along the length of the flexure, giving a 
better representation of a traditional hinge and has multiple 
sections in case of one section failing. However, they have a 
more complex design/construction than a PF, but a PF has 
extra degrees of freedom due to the larger width allowing for 
greater potential torsional effects. 

Conclusion 
Compound Flexure couplings (CFs), comprising 

multiple sections of spring steel, have been analysed 
together with a Plain Flexure coupling (PF). During the 
theoretical study of a PF based on large deformation 
Euler-Bernoulli theory, it was identified that there is a 
many-to-many relationship between the pair of forces 
and moment applied to the tip of the flexure and the 
resulting tip deflection. Therefore, modelling of a CF 
is not straightforward and as such different designs of 
the CFs were characterised using a bespoke 
experimental facility. Appropriate designs of CFs can 
be used to prevent torsion and out of plane motion. 
Furthermore, the range of deflection of the CFs for given 
actuator extensions is significantly affected by the cross-
over point of the flexure sections. However, the widths of 
the sections have a negligible effect on the CF behaviour. 

The behaviour of a PF was examined with the 
deflection identified by experimental measurements and 
predicted by the theoretical models shown to have good 
agreement. Therefore, the feedforward control 
methodology is based on identified models using 
experimental data; this control approach negates the need 
for complex and expensive models to be formulated for 
CFs, while still providing control of equal accuracy. The 
ability to control a two-CF-rigid body system was 

investigated through feedforward control based on the 
static test data and proportional feedback of actuator rod 
extensions. Controllers were formulated for each CF design 
and implemented in the system for the end point to follow a 
vertical straight line. Applying the corresponding 
feedforward control to the system containing the CFs or PF 
gave the realised trajectories and tracking errors. These 
trajectories were repeatable over multiple cycles. Reduction 
of the realised tracking errors with the CFs and PF was 
achieved using adjusted input profiles for the actuator 
extensions, derived from the initial realised trajectories, with 
reductions in tracking errors by at least 73% and 71% in 
the (x, y) directions, respectively, for the CFs considered and 
by 62% and 86% in (x, y) directions, respectively, for a PF. 
Therefore, it has been demonstrated that systems containing 
CFs can be controlled through feedforward control schemes, 
without any necessity of modelling of the complex CFs. 
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