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Abstract: This paper explores the automated detection of surface defects 

on 3-D printed products and concrete structures. They are the main factors 

to evaluate their quality in addition to dimension and roughness. Traditional 

detection by human inspectors is far from satisfactory. Manual inspection is 

time-consuming, error-prone and often leads to loss of resources. For this 

purpose, image processing and deep learning-based object detection 

adopted by Google Cloud Machine Learning (ML) Engine is used to detect 

surface defects. In the case of image processing, two approaches are presented 

in this paper. In both cases, pixels are being considered to differentiate a 

smooth or rough surface from a picture taken by a USB camera. For the deep 

learning- based solution, MobileNet -a base convolution neural network treated 

as an image feature extractor in combination with Single Shot MultiBox 
Detector (SSD) as an object detector hence MobileNet-SSD. The model was 

successfully trained on the Google Cloud ML Engine with the dataset of 

20000+ images. The review of the results confirms that with the help of 

MobileNet-SSD can automatically detect surface defects more accurately and 

rapidly than conventional deep learning methods.  

 

Keywords: Image Processing, Machine Learning, Tensor Flow, 3-D 

Printing, Additive Manufacturing 
 

Introduction 

There is a rise in the necessity for object detection in 

civil infrastructure (Jahanshahi and Masri, 2012) and the 

manufacturing sector (Delli and Chang, 2018) in recent 
years. For example, according to (Jia et al., 2004) in the 

aerospace and automotive industries, materials with 

defects in manufacturing processes are rejected because 

a minor defect in a manufactured part might result in a 

tragedy at a later stage. 3D printing has become a 

popular and practical opportunity for production, in other 

words, it tolerates additional manufacturing decisions 

because it can create complex geometrical shapes with 

the help of Computer-Aided Design (CAD) software 

(Thomas Campbell et al., 2011). While 3D printing has 

already contributed extensively to several technological 

advances in medicine and is emerging in many other 
fields like fashion design and architecture (White) new 

computer vision solutions, such as image processing and 

deep learning, has caught attention in different research 

areas (Lecun et al., 2015). 

Detecting defects by performing quality monitoring at 

various (critical) stages of the printing process not only 

helps in assuring corrective measures but also eliminates the 

waste of printing bad parts. An automatic quality check is 

particularly important for 3D printing machines used in 

mass production of the same part (Delli and Chang, 2018). 
Jovančević et al. used a similarity measure to 

compare projected geometric features from CAD models 
with detected ones in actual images. Present similarity 
measure for segments is modified to ellipses. This 
comparison enables the detection and data association 
processes for navigation and inspection tasks on aircraft 
parts (Jovančević et al., 2016). Roberson et al. (2013) 
developed a decision making and ranking model for 
selecting an appropriate 3D printer using Deng’s 
Similarity approach based on accuracy, printing time and 
product surface smoothness. Wang et al. (2016) 
proposed a segmentation method based on printing 
direction to improve surface quality as well as reduce 
printing error and time. Wu et al. widely presented a 
machine learning and image classification method to 
detect the infill defects in the 3D printing process. 
The method explored feature extraction and 
implementation of Naive Bayes Classifier and J48 
Decision Trees algorithms (Wu et al., 2016). 
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Civil infrastructure system asset represents one of the 

major fractions in the United States assets according to 

Wu et al., is estimated to be worth $20 trillion. These 

systems are subject to deterioration at an alarming rate 

(Zhishen et al., n.d.). Thus, effective methods for routine 

inspections and evaluation of the structures are needed to 
prolong their service life. 

Visual inspection is the main approach for the 

inspection of almost all infrastructure systems. It is an 

intuitive process that depends on an inspector’s 

training and focus, making it immensely prone to 

human error and sometimes raises safety issues for the 

inspectors. The evolution of the automated system can 

reduce these inadequacies (Arabi et al., 2020). 

Benning et al. introduced an automatic crack detection 

process based on photogrammetry to compute the 

defects of reinforced concrete surface structure. 
Photogrammetry is a non-contact measuring method 

that was utilized with an evaluation software to 

determine deformations in 2D. The crack pattern was 

extracted and improved using a finite element method 

(Benning et al., 2003). Chilukuri et al. (2019) used 

computer vision to help the elderly mobile users in virtual 

screening of directions using GPS, detection of uneven 

sidewalks, identifying the traffic signals and signboards. 

Abdel-Qader et al. (2003) analyzed the effectiveness of 

different edge detection methods for crack recognition and 

classification in concrete pavements of bridges. They 

deduced that the Fast Haar Transform (FHT) has the most 
accurate crack detection potential contrary to Fast Fourier 

transform, Sobel and Canny edge detection operators 

(Bachmann et al., 2000). Tsao et al. (1994) designed image 

analysis and expert system modulus to detect spalling and 

transverse cracks in pavements. Another example, 

(Jóźwik et al., 1999) generated a visual system that 

could detect cracks in ferrites. Based on top-hat 

transform (Salembier, 1990), detections are obtained 

through unbalanced changes of brightness. 
Cracks can be classified from other defects such as 

grooves using k-Nearest Neighbors classifier (Duda et al., 
2001). This method is comprehensively considered robust 
notwithstanding the existence of noise, as opposed to other 
edge detection operators used for crack extraction. 
Although almost all the mention machine learning 
endeavors focused on providing solutions regarding object 
detection, the computing time was disregarded. 

Surface defect detections solve a lot of additive 

manufacturing problems. For example, in the tiling 

industry, pattern recognition and image processing 

algorithms have been used to detect surface defects 

(Karimi and Asemani, 2014). A basic for detecting the 

image defect is the edge which is regarded as a boundary 

between two dissimilar regions in an image and easy to 

find (Elbehiery et al., 2005). To detect wood surface 

defects, another study proposed an image segmentation 

method called fuzzy min-max neural network for image 

segmentation. This method grows boxes from a set of 

pixels, to find the minimum bounded rectangle for each 

defect present in the image. The rate of defect detection 

is 95% and the area recognition rate is 94.4% which is 

the measure of the quality of segmentation. Both results 

are for a specific data set (Ruz et al., 2005). 
Quality control plays an ever-increasing role in mass 

production and preventing structure failure. Defects on 
the surface are main factors to evaluate the quality of 3-
D printed products and concrete structures, therefore it 
requires automated analysis to improve their quality 
(Gordeev et al., 2018). Traditional visual surface 
detection is still carried out by human operators whose 
performance is generally inadequate, subjective and 
variable (Zheng et al., 2002). According to some studies, 
a human visual inspection can only catch around 60% to 
75% of the significant defects (Schicktanz, 1993). 
Therefore, developing automatic surface inspection 
systems is in significant demand. 

Based on considerable literature review, it is clear 

that the performance for most of the studies in surface 

defect detection needs to be further validated and 

optimized. In efforts to train for object detection using a 

local Computer Processing Unit (CPU) computer, we 

found that the computational loads are substantially heavy 

which takes CPU days to train. (Training refers to the 

computer memory task in preparation for object 

recognition). The project requirements include an active 
subscription with Google Cloud, TensorFlow (Abadi et al., 

1983), Python and OpenCV. The experiment was 

implemented using transfer learning of a pre-trained model 

called SSD with MobileNet (Haridas and Sandhiya, 2018). 

By enhancing the convolution neural network framework 

and parameters with the aid of Google Cloud ML Engine. 

The reason behind using Tensor Processing Unit (TPU) is 

due to the Computer Processing Unit not being powerful 

enough. This method can reach the requirements of 

accuracy and accelerated training time in deployment. This 

process was validated with the results showing the 

classifying and tracking of surface defects. 

Materials and Methods 

As a 3-D printer, in this experiment, a MakerBot 3D 

printer and a USB camera (13MP, FOV 75Degree 

Autofocus USB Camera with Non-Distortion Lens) have 

been used. Figure 1 shows the experimental setup. 

Edge-Detection Method 

To find out the printed model defects, two techniques 

have been used whose basics are implemented through 
image processing. A flow chart (Fig. 2) shows the 

working principle of these techniques. In both cases, 

pictures are taken manually after the printing of the 

model. In first technique (experiment 1, 2, and 3) in 

Fig. 3 to 5, the algorithm breaks the cropped picture 
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into four parts and calculate the number of pixels of 

each part and compared for identifying surface 

smoothness whereas in the second technique 

(experiment 4, 5, and 6) in Fig. 6 to 8, the algorithm 

breaks the RGB image into Grayscale image for 

calculating white and black pixels. 
 

 
 

Fig. 1: Experimental setup 
 

 
 

Fig. 2: Flow chart of different stages of image analysis 

 

 
 

Fig. 3: Experiment 1 (Surface roughness is higher compared to experiment 2 (Fig. 4) and 3 (Fig. 5)) 
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Fig. 4: Experiment 2 (Surface roughness is moderate compared to experiment 1 (Fig. 3) and 3 (Fig. 5)) 

 

 
 

Fig. 5: Experiment 3 (Surface roughness is lower compared to experiment 1 (Fig. 3) and 2 (Fig. 4)) 

 

 

 
Fig. 6: Experiment 4 (Surface roughness is higher compared to experiment 5 (Fig. 7) and 6 (Fig. 8)) 

 

 
 

Fig. 7: Experiment 5 (Surface roughness is moderate compared to experiment 4 (Fig. 6) and 6 (Fig. 8)) 
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Fig. 8: Experiment 6 (Surface roughness is lower compared to experiment 4 (Fig. 6) and 5 (Fig. 7)) 

 

The number of white and black pixels between different 

images decides whether the surface is smooth or not. In 

both cases, python and OpenCV have been used. 

Machine Learning Method 

Model Development 

The process flowchart is illustrated in Fig. 9. This 

section describes setting up the dataset (images and 

annotations) as described in Dataset Preparation 

(Images and Annotations) section, Feature extraction 

and object detection using MobileNet-SSD were 

outlined in MobileNet Feature Extraction sections and 

SSD Structure sections respectively. In Surface 
Defects Detection using Mobilenet-SSD Detection 

Model section, the framework of the model was 

briefly described. 

Dataset Preparation (Images and Annotations) 

The 3-D prints images were obtained from taking 

photos with a USB camera and a smartphone. The 

images are saved as a jpeg format into a folder. A total of 

20000+ images were taken. These images were 

converted to 300300 pixels as inputs for training. After 
visual inspection of these images and approval of the 

quality, they are annotated. 
LabelImg was the software used for labelling defects 

in the dataset. LabelImg is a graphical image annotation 
tool. It is written in Python and uses Qt for its graphical 
interface. It operates by drawing a bottom box around 
each object in each image and repeating the process for 
all images. LabelImg saves a .xml file containing the 
label data for each image. 

These annotation files include the bounding box 

coordinates where the specific wall crack or 3-D defect is 

located in the image. They are converted into TFRecords. 

MobileNet Feature Extraction 

MobileNet model was developed to optimize deep 

learning which requires real-time performance due to 

lower hardware specifications. This network was 
introduced to reduce the number of parameters while 

optimizing accuracy. A default single filter is applied to 

each neural input channel to begin feature extraction in 

the MobileNet model. Figure 9 shows the basic 

convolution block of MobileNet. 

The model’s basic convolution block is a depth-wise 

separable convolution structure that was initially 

proposed by (Sifre, 2014). For MobileNets, every input 

channel is subjected to a single filter in the depthwise 

convolution. The pointwise convolution then uses a 11 
convolution to combine the information of the depthwise 

convolution. A standard convolution both filters and 

combines inputs into a new set of outputs in one step. It 

is composed of Depthwise layers (Dw) and Pointwise 
layers (Pw). It is a form of factorized convolutions have 

in which the standard convolution is factored in the Dw 

and Pw. The Dw are deep convolutional layers using 33 
kernels, while the Pw are common convolutional layers 

using 11 kernels. 

Each result is treated by default mechanisms such 

as Batch normalization (Bn) algorithm and the 

activation function Rectified Linear Unit (ReLU) (Fig. 

10). In this study, the activation function is replaced 

as ReLU6. The feature map output for standard 

convolution is calculated as: 

 

, , , , , 1, 1,

, ,

k l n i j p n k i l j p

i j p

G K F       

 

where, G is the output feature map, K is the standard 

convolutional kernel and F is the feature map. The 

reasons behind the increased training speed and a 

reduced amount of calculation are as follows. 

For standard convolution, when the size and number 

of input channels are 2

FD  and M respectively, it is 

required to have N filters with M channels and the size 
2

KD  before output in and feature images of size 2

KD . The 

computation cost is 2

KD   M  N  2

FD  where DK is 

kernel size, DF is square input feature map spatial size, 
M and N is the number of input channels and number of 

output channels respectively. 
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Fig. 9: The flowchart of model 

 

 
 

Fig. 10: Depthwise Convolution Block with depthwise and Pointwise layers followed by batchnorm and ReLU 
 

Contrarily, stepwise separable convolution requires 

M filters with one channel and the size of 2

FD . The 

pointwise phase needs KN filters with M channels and 

the size of 11. Depthwise convolution with one filter 
per input channel (input depth) can be written as: 
 

, , , , 1, 1,

,

ˆ ˆ
k l p i j p k i l j p

i j

G K F       

 
where, K̑ is the depthwise convolutional kernel of 

size 2

KD   M where the pth filter in K̑ is subjected to the 

pth channel in F to produce the pth channel of the filtered 

output feature map G̑ (Howard et al., 2017). The 

computation cost of depthwise separable convolution is 
2

KD  M  2

FD + M  N  2

FD . It can be shown that 

stepwise is reduced by of standard convolution 

2

1 1

KN D
 of standard convolution (Li et al., 2018). 

SSD Structure 

The Single Shot Multibox detector is a regression 

model, which utilizes features of various convolution 

layers to produce classification regression and boundary 
box regression. With each selected, we associate a set of 

default bounding boxes. The default boxes tile the 

feature Maps of different convolution layers. Each 

bounding box predicts c class scores and 4 offsets 

relative so the original default bounding box shape 

yielding (c + 4)kmn outputs. Where c is number of 

classes, k is Number of default bounding boxes, mn is 

the feature map size. For each feature map, the scale of 

the default boxes is expressed as: 

 

    max min
min 1 1,

1
K

S S
S S k k m

m


   


 (1) 

 
where m is the number of feature maps, Smin(0.2) and 

Smax(0.9) are scale for the highest and lowest feature map 

respectively, k is the number of defaults bounding boxes. 

The 5 different types of width to height (aspect) 

ratios are expressed as: 

 

1 1
1,2,3, ,

2 3
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Fig. 11: MobileNet- SSD structure (Driaba et al., 2019) 
 

And the width  a

k K rw S a  and height 

 a

k K rh S a  for each default box. 

Next, a default box 1k K KS S S 
   should be added 

when the aspect ratio is 1 result in 6 default boxes per 

feature map location. The center of each default box is 

set to 
0.5 0.5

,
k k

i j

f f

  
 
 
 

, where |f| is the size of the kth 

feature units, i,j ϵ [0,|fk|]. 

The Jaccard overlap (intersection over union, IoU) 

between area X and Y can be calculated as: 
 

   

   

 ( )
Areaof intersection

Jaccard Overlap IoU
Areaof union

Area X Area Y

Area X Area Y





 

 
If the IoU of default box and the ground truth box 

(calibration box) is 0.5 or greater, it means the boxes 

match in that category. The overall objective loss 

function of the training is the weighted sum of 

confidence losses Lconf(s,c) of the classification 

regression and the localization loss of the bounding 

box regression Lloc(r,l,g): 
 

     
1

, , , , , , ,conf locL s r c l g L s c L r l g
N

   
 

 

where,  is the parameter to balance the confidence loss and 
localization loss; s and r are the eigenvectors of confidence 

loss and localization loss respectively; c is the classification, 
l is the offset of predicted box, including the translational 

offset of the center coordinate and scaling offset of the 

height and width; g is the calibration box of the target actual 

position; and N is the number of default boxes that match 

the calibration boxes of this category. 

Surface Defects Detection using Mobilenet-SSD 

Detection Model 

The complete model contains four (4) parts; the input 

layer for importing converting the target image into an 

array of pixels, the MobileNet based network employed 

to extract significant image features and SSD which 

utilizes MobileNet feature map outputs to produce 

classification and bounded box regression and the output 

layer for exportation of detection results. Figure 11 

illustrates the structure of MobileNet-SSD. 

Results and Discussion 

From the results of experiments 1,2, and 3 

(Table1), as the surface becomes smoother, the 

difference between the maximum and minimum 

values of pixels decreased. Conversely, the results of 

experiments 4,5, and 6 (Table 2) shows that the 

percentage of white pixels decreases while the 

roughness of images (defects) decreases. 

In deep learning model evaluation metrics, the 

percentage of the images used in the current training 

batch labeled with the correct class establishes training 

accuracy. The evacuation accuracy is the accuracy of a 

different group of images selected at random. The major 

difference is that the training accuracy is based on 

images that the network has been able to learn from so 

the network can overfit to the noise in the training data. 

A true measure of the performance of the network is to 

measure its performance on a data set not contained in 

the training data -- this is measured by the evacuation 

accuracy (Donahue et al., 2014). 
The network is overfitting if the training accuracy is 

high, but the evacuation accuracy remains low. The 

training's objective is to make the loss as small as 
possible (Abadi et al., 1983). 

Training and evaluation completed in approximately 

33 min (Fig. 12). 
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The images set consists of 20000+ images of 2 

different objects. The image set was tested by randomly 

sampling a number of images to train the object 

recognition and using the remaining images for testing. 

After training, the model achieved 80% mean average 

precision as illustrated in Fig. 13. 
TensorBoard is a tool for providing common machine 

learning metrics used to visualize the graph and 

statistics, such as how the weights or accuracy varied 

during training Fig. 13 and 14. 

Mean Average Precision measures the model’s 

percentage of correct predictions for all labels. 

Intersection-over-Union (IoU) is specific to object 

detection models. This measures the overlap between the 

bounding box generated by the model and the 

GroundTruth bounding box represented as a percentage. 

The model achieved an 80% mean average position after 
training. On the Images tab in TensorBoard the model’s 

predictions for this image are on the left and on the right 

the correct GroundTruth box. 

The machine learning method presents a system 

architecture, implemented model and analysis for 

Google-Cloud based object detection. Object detection is 

performed in the cloud using Google’s Cloud ML 

Engine. We incorporated MobileNet-SSD from 

TensorFlow (Abadi et al., 1983) - a pre-trained model 

for transfer learning (Haridas and Sandhiya, 2018). Its 

checkpoints from the already trained models are used 

and then applied in our custom object detection task. The 

advantage of it is instead of building the model from 

scratch, a model trained for a similar problem can be 

used as a starting point for training the network. 

While we are encouraged by initial results i.e., Fig. 
15a and 15b, much remains to be done to allow such a 

system to be scaled up for many other datasets. 

Deep learning models have two discrete 

computational components: Training and inference 

(Benning et al., 2003). Because Cloud TPUs are used 

to accelerate this training, the config file must relate 

specifically to TPU training. 

The training process was carried out on the following 

hardware: GeForce TITAN X graphics processing unit 

(GPU), Intel Core i7 3.2 GHz, 16 GB memory processor. 

TensorFlow-GPU 1.12, CUDA 10.0, Anaconda 3 were 

the software used. 

Image processing and machine learning methods can 

be used in different situations, for example for a small 

model which takes a short time to print a 3D model we 

can use image processing but for the bigger model where 

it takes a longer time we can use machine learning to 

save resources. Also, image processing is better for more 

varying images and thus can be deployed in other 

projects in contrast machine learning. 

 
Table 1: Output of experiments 1,2, and 3 

Experiment Pixels (Part A) Pixels (Part B) Pixels (Part C) Pixels (Part D) Diff. between max. and min 

1 161,352 161,850 162,324 162,825 1,473 
2 68,907 68,907 69,576 69,576 669 
3 73,875 73,875 74,466 74,466 591 

 
Table 2: Output of experiments 4,5, and 6 

Experiment No. of black pixels (0,0,0) No. of white pixels (255,255,255) Percentage of white pixels (%) 

4 133,166 18,805 12.37 
5 232,824 2,423 1.02 
6 98,516 378 0.38 

 

 
 

Fig. 12: Compute time of training 
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Fig. 13:  Model accuracy vs steps 

 

 

 
Fig. 14: Localization loss at ≈ 29103 step 
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(b) 

 
Fig. 15: (a) Defective areas(cracks) are marked out by a bounding box; (b): Bounding boxes of 3-D defects 

 

Conclusion and Future Work 

While results of edge detector experiments may vary 
depending on many factors like the position of the 
camera, light intensity and the color of the 3D objects, 
pixel intensity comparisons assist in identifying surface 
discontinuities and defects. 

The deep learning model was successfully trained on 
the Google Cloud ML Engine with the dataset of 20000+ 
images. With the help of MobileNet-SSD, the outputs, 
each one showing high training accuracy and evaluation 
accuracy. The use of robust machine learning algorithms 
along with image processing techniques to automatically 
detect defects (surface and cracks) in 3-D printed 
products and concrete structures has a great potential to 
affect how quality control is maintained. It was 
discovered that the use of Google Cloud ML Engine and 
MobileNet-SSD was able to significantly improve the 
accuracy and training time of the model. When the 
model was deployed, the model was able to perform 
real-time defect detection from video footage with the 
highest accuracy. Clearly, the key to improving image 
processing and object detection algorithms is to create 
ensembles from multiple diverse models. More training 
images, especially of minute 3D surface defects and wall 
cracks, could be used to further train and enhance the 
models. A larger dataset would also allow for the 
detection of a greater number of defect categories, 
permitting the identification of unique brands of the 
defect. Furthermore, a higher-resolution camera would 
allow for a more accurate and faster analysis of the 
footage. If the research of this project is continued, the 
defect detection system could be implemented into real-
world applications such as mass product inspection. 
With the installation of an Inertial Measurement Unit 
(IMU) and depth camera, robots and drones could report 
the precise location of early-stage wall cracks to prevent 
structural failure. Additionally, drones could be 
programmed with autonomous flight features to easily 
navigate around and find 3D surface defects without 
relying on traditional detection by human inspectors. 

In our future work, we will seek to improve each 
aspect of the system. For image recognition, more details 

of the surface defects will be pursued in addition to 
incorporate more sophisticated analysis of these defects 
as they are data specific. 
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