

© 2020 Selorm Garfo, M.A. Muktadir and Sun Yi. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

Journal of Mechatronics and Robotics

Original Research Paper

Defect Detection on 3D Print Products and in Concrete

Structures Using Image Processing and Convolution Neural

Network

Selorm Garfo, M.A. Muktadir and Sun Yi

Department of Mechanical Engineering, North Carolina A&T State University, Greensboro, USA

Article history

Received: 06-04-2020
Revised: 30-04-2020
Accepted: 22-05-2020

Corresponding Author:
Sun Yi
Department of Mechanical
Engineering, North Carolina

A&T State University,
Greensboro, USA
Email: syi@ncat.edu

Abstract: This paper explores the automated detection of surface defects

on 3-D printed products and concrete structures. They are the main factors

to evaluate their quality in addition to dimension and roughness. Traditional

detection by human inspectors is far from satisfactory. Manual inspection is

time-consuming, error-prone and often leads to loss of resources. For this

purpose, image processing and deep learning-based object detection

adopted by Google Cloud Machine Learning (ML) Engine is used to detect

surface defects. In the case of image processing, two approaches are presented

in this paper. In both cases, pixels are being considered to differentiate a

smooth or rough surface from a picture taken by a USB camera. For the deep

learning- based solution, MobileNet -a base convolution neural network treated

as an image feature extractor in combination with Single Shot MultiBox
Detector (SSD) as an object detector hence MobileNet-SSD. The model was

successfully trained on the Google Cloud ML Engine with the dataset of

20000+ images. The review of the results confirms that with the help of

MobileNet-SSD can automatically detect surface defects more accurately and

rapidly than conventional deep learning methods.

Keywords: Image Processing, Machine Learning, Tensor Flow, 3-D

Printing, Additive Manufacturing

Introduction

There is a rise in the necessity for object detection in

civil infrastructure (Jahanshahi and Masri, 2012) and the

manufacturing sector (Delli and Chang, 2018) in recent
years. For example, according to (Jia et al., 2004) in the

aerospace and automotive industries, materials with

defects in manufacturing processes are rejected because

a minor defect in a manufactured part might result in a

tragedy at a later stage. 3D printing has become a

popular and practical opportunity for production, in other

words, it tolerates additional manufacturing decisions

because it can create complex geometrical shapes with

the help of Computer-Aided Design (CAD) software

(Thomas Campbell et al., 2011). While 3D printing has

already contributed extensively to several technological

advances in medicine and is emerging in many other
fields like fashion design and architecture (White) new

computer vision solutions, such as image processing and

deep learning, has caught attention in different research

areas (Lecun et al., 2015).

Detecting defects by performing quality monitoring at

various (critical) stages of the printing process not only

helps in assuring corrective measures but also eliminates the

waste of printing bad parts. An automatic quality check is

particularly important for 3D printing machines used in

mass production of the same part (Delli and Chang, 2018).
Jovančević et al. used a similarity measure to

compare projected geometric features from CAD models
with detected ones in actual images. Present similarity
measure for segments is modified to ellipses. This
comparison enables the detection and data association
processes for navigation and inspection tasks on aircraft
parts (Jovančević et al., 2016). Roberson et al. (2013)
developed a decision making and ranking model for
selecting an appropriate 3D printer using Deng’s
Similarity approach based on accuracy, printing time and
product surface smoothness. Wang et al. (2016)
proposed a segmentation method based on printing
direction to improve surface quality as well as reduce
printing error and time. Wu et al. widely presented a
machine learning and image classification method to
detect the infill defects in the 3D printing process.
The method explored feature extraction and
implementation of Naive Bayes Classifier and J48
Decision Trees algorithms (Wu et al., 2016).

Selorm Garfo et al. / Journal of Mechatronics and Robotics 2020, Volume 4: 74.84

10.3844/jmrsp.2020.74.84

75

Civil infrastructure system asset represents one of the

major fractions in the United States assets according to

Wu et al., is estimated to be worth $20 trillion. These

systems are subject to deterioration at an alarming rate

(Zhishen et al., n.d.). Thus, effective methods for routine

inspections and evaluation of the structures are needed to
prolong their service life.

Visual inspection is the main approach for the

inspection of almost all infrastructure systems. It is an

intuitive process that depends on an inspector’s

training and focus, making it immensely prone to

human error and sometimes raises safety issues for the

inspectors. The evolution of the automated system can

reduce these inadequacies (Arabi et al., 2020).

Benning et al. introduced an automatic crack detection

process based on photogrammetry to compute the

defects of reinforced concrete surface structure.
Photogrammetry is a non-contact measuring method

that was utilized with an evaluation software to

determine deformations in 2D. The crack pattern was

extracted and improved using a finite element method

(Benning et al., 2003). Chilukuri et al. (2019) used

computer vision to help the elderly mobile users in virtual

screening of directions using GPS, detection of uneven

sidewalks, identifying the traffic signals and signboards.

Abdel-Qader et al. (2003) analyzed the effectiveness of

different edge detection methods for crack recognition and

classification in concrete pavements of bridges. They

deduced that the Fast Haar Transform (FHT) has the most
accurate crack detection potential contrary to Fast Fourier

transform, Sobel and Canny edge detection operators

(Bachmann et al., 2000). Tsao et al. (1994) designed image

analysis and expert system modulus to detect spalling and

transverse cracks in pavements. Another example,

(Jóźwik et al., 1999) generated a visual system that

could detect cracks in ferrites. Based on top-hat

transform (Salembier, 1990), detections are obtained

through unbalanced changes of brightness.
Cracks can be classified from other defects such as

grooves using k-Nearest Neighbors classifier (Duda et al.,
2001). This method is comprehensively considered robust
notwithstanding the existence of noise, as opposed to other
edge detection operators used for crack extraction.
Although almost all the mention machine learning
endeavors focused on providing solutions regarding object
detection, the computing time was disregarded.

Surface defect detections solve a lot of additive

manufacturing problems. For example, in the tiling

industry, pattern recognition and image processing

algorithms have been used to detect surface defects

(Karimi and Asemani, 2014). A basic for detecting the

image defect is the edge which is regarded as a boundary

between two dissimilar regions in an image and easy to

find (Elbehiery et al., 2005). To detect wood surface

defects, another study proposed an image segmentation

method called fuzzy min-max neural network for image

segmentation. This method grows boxes from a set of

pixels, to find the minimum bounded rectangle for each

defect present in the image. The rate of defect detection

is 95% and the area recognition rate is 94.4% which is

the measure of the quality of segmentation. Both results

are for a specific data set (Ruz et al., 2005).
Quality control plays an ever-increasing role in mass

production and preventing structure failure. Defects on
the surface are main factors to evaluate the quality of 3-
D printed products and concrete structures, therefore it
requires automated analysis to improve their quality
(Gordeev et al., 2018). Traditional visual surface
detection is still carried out by human operators whose
performance is generally inadequate, subjective and
variable (Zheng et al., 2002). According to some studies,
a human visual inspection can only catch around 60% to
75% of the significant defects (Schicktanz, 1993).
Therefore, developing automatic surface inspection
systems is in significant demand.

Based on considerable literature review, it is clear

that the performance for most of the studies in surface

defect detection needs to be further validated and

optimized. In efforts to train for object detection using a

local Computer Processing Unit (CPU) computer, we

found that the computational loads are substantially heavy

which takes CPU days to train. (Training refers to the

computer memory task in preparation for object

recognition). The project requirements include an active
subscription with Google Cloud, TensorFlow (Abadi et al.,

1983), Python and OpenCV. The experiment was

implemented using transfer learning of a pre-trained model

called SSD with MobileNet (Haridas and Sandhiya, 2018).

By enhancing the convolution neural network framework

and parameters with the aid of Google Cloud ML Engine.

The reason behind using Tensor Processing Unit (TPU) is

due to the Computer Processing Unit not being powerful

enough. This method can reach the requirements of

accuracy and accelerated training time in deployment. This

process was validated with the results showing the

classifying and tracking of surface defects.

Materials and Methods

As a 3-D printer, in this experiment, a MakerBot 3D

printer and a USB camera (13MP, FOV 75Degree

Autofocus USB Camera with Non-Distortion Lens) have

been used. Figure 1 shows the experimental setup.

Edge-Detection Method

To find out the printed model defects, two techniques

have been used whose basics are implemented through
image processing. A flow chart (Fig. 2) shows the

working principle of these techniques. In both cases,

pictures are taken manually after the printing of the

model. In first technique (experiment 1, 2, and 3) in

Fig. 3 to 5, the algorithm breaks the cropped picture

Selorm Garfo et al. / Journal of Mechatronics and Robotics 2020, Volume 4: 74.84

10.3844/jmrsp.2020.74.84

76

into four parts and calculate the number of pixels of

each part and compared for identifying surface

smoothness whereas in the second technique

(experiment 4, 5, and 6) in Fig. 6 to 8, the algorithm

breaks the RGB image into Grayscale image for

calculating white and black pixels.

Fig. 1: Experimental setup

Fig. 2: Flow chart of different stages of image analysis

Fig. 3: Experiment 1 (Surface roughness is higher compared to experiment 2 (Fig. 4) and 3 (Fig. 5))

Picture taken Cropping the

picture

Run the
algorithm

Make a decision

Compare higher

and lower pixel of
these 4 parts

Picture breaks

into 4 parts

RGB to white

and black pixel

Make a decision

Compare black

and white pixel of
different images

Count black and

white pixel

Selorm Garfo et al. / Journal of Mechatronics and Robotics 2020, Volume 4: 74.84

10.3844/jmrsp.2020.74.84

77

Fig. 4: Experiment 2 (Surface roughness is moderate compared to experiment 1 (Fig. 3) and 3 (Fig. 5))

Fig. 5: Experiment 3 (Surface roughness is lower compared to experiment 1 (Fig. 3) and 2 (Fig. 4))

Fig. 6: Experiment 4 (Surface roughness is higher compared to experiment 5 (Fig. 7) and 6 (Fig. 8))

Fig. 7: Experiment 5 (Surface roughness is moderate compared to experiment 4 (Fig. 6) and 6 (Fig. 8))

Selorm Garfo et al. / Journal of Mechatronics and Robotics 2020, Volume 4: 74.84

10.3844/jmrsp.2020.74.84

78

Fig. 8: Experiment 6 (Surface roughness is lower compared to experiment 4 (Fig. 6) and 5 (Fig. 7))

The number of white and black pixels between different

images decides whether the surface is smooth or not. In

both cases, python and OpenCV have been used.

Machine Learning Method

Model Development

The process flowchart is illustrated in Fig. 9. This

section describes setting up the dataset (images and

annotations) as described in Dataset Preparation

(Images and Annotations) section, Feature extraction

and object detection using MobileNet-SSD were

outlined in MobileNet Feature Extraction sections and

SSD Structure sections respectively. In Surface
Defects Detection using Mobilenet-SSD Detection

Model section, the framework of the model was

briefly described.

Dataset Preparation (Images and Annotations)

The 3-D prints images were obtained from taking

photos with a USB camera and a smartphone. The

images are saved as a jpeg format into a folder. A total of

20000+ images were taken. These images were

converted to 300300 pixels as inputs for training. After
visual inspection of these images and approval of the

quality, they are annotated.
LabelImg was the software used for labelling defects

in the dataset. LabelImg is a graphical image annotation
tool. It is written in Python and uses Qt for its graphical
interface. It operates by drawing a bottom box around
each object in each image and repeating the process for
all images. LabelImg saves a .xml file containing the
label data for each image.

These annotation files include the bounding box

coordinates where the specific wall crack or 3-D defect is

located in the image. They are converted into TFRecords.

MobileNet Feature Extraction

MobileNet model was developed to optimize deep

learning which requires real-time performance due to

lower hardware specifications. This network was
introduced to reduce the number of parameters while

optimizing accuracy. A default single filter is applied to

each neural input channel to begin feature extraction in

the MobileNet model. Figure 9 shows the basic

convolution block of MobileNet.

The model’s basic convolution block is a depth-wise

separable convolution structure that was initially

proposed by (Sifre, 2014). For MobileNets, every input

channel is subjected to a single filter in the depthwise

convolution. The pointwise convolution then uses a 11
convolution to combine the information of the depthwise

convolution. A standard convolution both filters and

combines inputs into a new set of outputs in one step. It

is composed of Depthwise layers (Dw) and Pointwise
layers (Pw). It is a form of factorized convolutions have

in which the standard convolution is factored in the Dw

and Pw. The Dw are deep convolutional layers using 33
kernels, while the Pw are common convolutional layers

using 11 kernels.

Each result is treated by default mechanisms such

as Batch normalization (Bn) algorithm and the

activation function Rectified Linear Unit (ReLU) (Fig.

10). In this study, the activation function is replaced

as ReLU6. The feature map output for standard

convolution is calculated as:

, , , , , 1, 1,

, ,

k l n i j p n k i l j p

i j p

G K F     

where, G is the output feature map, K is the standard

convolutional kernel and F is the feature map. The

reasons behind the increased training speed and a

reduced amount of calculation are as follows.

For standard convolution, when the size and number

of input channels are 2

FD and M respectively, it is

required to have N filters with M channels and the size
2

KD before output in and feature images of size 2

KD . The

computation cost is 2

KD  M  N  2

FD where DK is

kernel size, DF is square input feature map spatial size,
M and N is the number of input channels and number of

output channels respectively.

Selorm Garfo et al. / Journal of Mechatronics and Robotics 2020, Volume 4: 74.84

10.3844/jmrsp.2020.74.84

79

Fig. 9: The flowchart of model

Fig. 10: Depthwise Convolution Block with depthwise and Pointwise layers followed by batchnorm and ReLU

Contrarily, stepwise separable convolution requires

M filters with one channel and the size of 2

FD . The

pointwise phase needs KN filters with M channels and

the size of 11. Depthwise convolution with one filter
per input channel (input depth) can be written as:

, , , , 1, 1,

,

ˆ ˆ
k l p i j p k i l j p

i j

G K F     

where, K̑ is the depthwise convolutional kernel of

size 2

KD  M where the pth filter in K̑ is subjected to the

pth channel in F to produce the pth channel of the filtered

output feature map G̑ (Howard et al., 2017). The

computation cost of depthwise separable convolution is
2

KD  M  2

FD + M  N  2

FD . It can be shown that

stepwise is reduced by of standard convolution

2

1 1

KN D
 of standard convolution (Li et al., 2018).

SSD Structure

The Single Shot Multibox detector is a regression

model, which utilizes features of various convolution

layers to produce classification regression and boundary
box regression. With each selected, we associate a set of

default bounding boxes. The default boxes tile the

feature Maps of different convolution layers. Each

bounding box predicts c class scores and 4 offsets

relative so the original default bounding box shape

yielding (c + 4)kmn outputs. Where c is number of

classes, k is Number of default bounding boxes, mn is

the feature map size. For each feature map, the scale of

the default boxes is expressed as:

    max min
min 1 1,

1
K

S S
S S k k m

m


   


 (1)

where m is the number of feature maps, Smin(0.2) and

Smax(0.9) are scale for the highest and lowest feature map

respectively, k is the number of defaults bounding boxes.

The 5 different types of width to height (aspect)

ratios are expressed as:

1 1
1,2,3, ,

2 3
ra

 
 
 

User uploads photo

for training data
Use SSD MobileNet checkpoint

for transfer learning

Upload TF files (dataset)
to cloud storage Train and deploy model

Save image to cloud storage

TensorFlow
Object detection

Install TensorFlow
Save labeled image to

cloud storage

Create TensorFlow (TF) files

Input
tensor

Output

tensor ReLU6 BN

11

Depthwise

convolution
ReLU6 BN

33

Depthwise
convolution

Selorm Garfo et al. / Journal of Mechatronics and Robotics 2020, Volume 4: 74.84

10.3844/jmrsp.2020.74.84

80

Fig. 11: MobileNet- SSD structure (Driaba et al., 2019)

And the width  a

k K rw S a and height

 a

k K rh S a for each default box.

Next, a default box 1k K KS S S 
  should be added

when the aspect ratio is 1 result in 6 default boxes per

feature map location. The center of each default box is

set to
0.5 0.5

,
k k

i j

f f

  
 
 
 

, where |f| is the size of the kth

feature units, i,j ϵ [0,|fk|].

The Jaccard overlap (intersection over union, IoU)

between area X and Y can be calculated as:

   

   

 ()
Areaof intersection

Jaccard Overlap IoU
Areaof union

Area X Area Y

Area X Area Y





If the IoU of default box and the ground truth box

(calibration box) is 0.5 or greater, it means the boxes

match in that category. The overall objective loss

function of the training is the weighted sum of

confidence losses Lconf(s,c) of the classification

regression and the localization loss of the bounding

box regression Lloc(r,l,g):

     
1

, , , , , , ,conf locL s r c l g L s c L r l g
N

   

where,  is the parameter to balance the confidence loss and
localization loss; s and r are the eigenvectors of confidence

loss and localization loss respectively; c is the classification,
l is the offset of predicted box, including the translational

offset of the center coordinate and scaling offset of the

height and width; g is the calibration box of the target actual

position; and N is the number of default boxes that match

the calibration boxes of this category.

Surface Defects Detection using Mobilenet-SSD

Detection Model

The complete model contains four (4) parts; the input

layer for importing converting the target image into an

array of pixels, the MobileNet based network employed

to extract significant image features and SSD which

utilizes MobileNet feature map outputs to produce

classification and bounded box regression and the output

layer for exportation of detection results. Figure 11

illustrates the structure of MobileNet-SSD.

Results and Discussion

From the results of experiments 1,2, and 3

(Table1), as the surface becomes smoother, the

difference between the maximum and minimum

values of pixels decreased. Conversely, the results of

experiments 4,5, and 6 (Table 2) shows that the

percentage of white pixels decreases while the

roughness of images (defects) decreases.

In deep learning model evaluation metrics, the

percentage of the images used in the current training

batch labeled with the correct class establishes training

accuracy. The evacuation accuracy is the accuracy of a

different group of images selected at random. The major

difference is that the training accuracy is based on

images that the network has been able to learn from so

the network can overfit to the noise in the training data.

A true measure of the performance of the network is to

measure its performance on a data set not contained in

the training data -- this is measured by the evacuation

accuracy (Donahue et al., 2014).
The network is overfitting if the training accuracy is

high, but the evacuation accuracy remains low. The

training's objective is to make the loss as small as
possible (Abadi et al., 1983).

Training and evaluation completed in approximately

33 min (Fig. 12).

Extra convolutional feature maps

Classifier: Conv: 33(3(Classes+4))

Classifier: Conv: 33(6(Classes+4))

MobileNet through
the last DSC module

Conv: 33(4(Classes+4)) 5

3

10

19 38

38 19 10
5 3

256

300

300

Image

512 1024 512 256 256

D
et

ec
ti

o
n

s:
 8

7
3

2
 p

er
 c

la
ss

N
o

n
-m

ax
im

u
m

 s
u
p

p
re

ss
io

n

Selorm Garfo et al. / Journal of Mechatronics and Robotics 2020, Volume 4: 74.84

10.3844/jmrsp.2020.74.84

81

The images set consists of 20000+ images of 2

different objects. The image set was tested by randomly

sampling a number of images to train the object

recognition and using the remaining images for testing.

After training, the model achieved 80% mean average

precision as illustrated in Fig. 13.
TensorBoard is a tool for providing common machine

learning metrics used to visualize the graph and

statistics, such as how the weights or accuracy varied

during training Fig. 13 and 14.

Mean Average Precision measures the model’s

percentage of correct predictions for all labels.

Intersection-over-Union (IoU) is specific to object

detection models. This measures the overlap between the

bounding box generated by the model and the

GroundTruth bounding box represented as a percentage.

The model achieved an 80% mean average position after
training. On the Images tab in TensorBoard the model’s

predictions for this image are on the left and on the right

the correct GroundTruth box.

The machine learning method presents a system

architecture, implemented model and analysis for

Google-Cloud based object detection. Object detection is

performed in the cloud using Google’s Cloud ML

Engine. We incorporated MobileNet-SSD from

TensorFlow (Abadi et al., 1983) - a pre-trained model

for transfer learning (Haridas and Sandhiya, 2018). Its

checkpoints from the already trained models are used

and then applied in our custom object detection task. The

advantage of it is instead of building the model from

scratch, a model trained for a similar problem can be

used as a starting point for training the network.

While we are encouraged by initial results i.e., Fig.
15a and 15b, much remains to be done to allow such a

system to be scaled up for many other datasets.

Deep learning models have two discrete

computational components: Training and inference

(Benning et al., 2003). Because Cloud TPUs are used

to accelerate this training, the config file must relate

specifically to TPU training.

The training process was carried out on the following

hardware: GeForce TITAN X graphics processing unit

(GPU), Intel Core i7 3.2 GHz, 16 GB memory processor.

TensorFlow-GPU 1.12, CUDA 10.0, Anaconda 3 were

the software used.

Image processing and machine learning methods can

be used in different situations, for example for a small

model which takes a short time to print a 3D model we

can use image processing but for the bigger model where

it takes a longer time we can use machine learning to

save resources. Also, image processing is better for more

varying images and thus can be deployed in other

projects in contrast machine learning.

Table 1: Output of experiments 1,2, and 3

Experiment Pixels (Part A) Pixels (Part B) Pixels (Part C) Pixels (Part D) Diff. between max. and min

1 161,352 161,850 162,324 162,825 1,473
2 68,907 68,907 69,576 69,576 669
3 73,875 73,875 74,466 74,466 591

Table 2: Output of experiments 4,5, and 6

Experiment No. of black pixels (0,0,0) No. of white pixels (255,255,255) Percentage of white pixels (%)

4 133,166 18,805 12.37
5 232,824 2,423 1.02
6 98,516 378 0.38

Fig. 12: Compute time of training

Selorm Garfo et al. / Journal of Mechatronics and Robotics 2020, Volume 4: 74.84

10.3844/jmrsp.2020.74.84

82

Fig. 13: Model accuracy vs steps

Fig. 14: Localization loss at ≈ 29103 step

(a)

0 0.04 0.08 0.12 0.16

A
cc

u
ra

cy

0.9

0.7

0.5

0.3

0.1

Step (axis-Relative)

mAP
Tag: DetectionBoxes_ Precision/mAP

Loss/localization_loss
Tag: Losses/loss/localization_loss

0.8

0.6

0.4

0.2

0

L
o

ss

0 5k 10k 15k 20k 25k

Steps

Selorm Garfo et al. / Journal of Mechatronics and Robotics 2020, Volume 4: 74.84

10.3844/jmrsp.2020.74.84

83

(b)

Fig. 15: (a) Defective areas(cracks) are marked out by a bounding box; (b): Bounding boxes of 3-D defects

Conclusion and Future Work

While results of edge detector experiments may vary
depending on many factors like the position of the
camera, light intensity and the color of the 3D objects,
pixel intensity comparisons assist in identifying surface
discontinuities and defects.

The deep learning model was successfully trained on
the Google Cloud ML Engine with the dataset of 20000+
images. With the help of MobileNet-SSD, the outputs,
each one showing high training accuracy and evaluation
accuracy. The use of robust machine learning algorithms
along with image processing techniques to automatically
detect defects (surface and cracks) in 3-D printed
products and concrete structures has a great potential to
affect how quality control is maintained. It was
discovered that the use of Google Cloud ML Engine and
MobileNet-SSD was able to significantly improve the
accuracy and training time of the model. When the
model was deployed, the model was able to perform
real-time defect detection from video footage with the
highest accuracy. Clearly, the key to improving image
processing and object detection algorithms is to create
ensembles from multiple diverse models. More training
images, especially of minute 3D surface defects and wall
cracks, could be used to further train and enhance the
models. A larger dataset would also allow for the
detection of a greater number of defect categories,
permitting the identification of unique brands of the
defect. Furthermore, a higher-resolution camera would
allow for a more accurate and faster analysis of the
footage. If the research of this project is continued, the
defect detection system could be implemented into real-
world applications such as mass product inspection.
With the installation of an Inertial Measurement Unit
(IMU) and depth camera, robots and drones could report
the precise location of early-stage wall cracks to prevent
structural failure. Additionally, drones could be
programmed with autonomous flight features to easily
navigate around and find 3D surface defects without
relying on traditional detection by human inspectors.

In our future work, we will seek to improve each
aspect of the system. For image recognition, more details

of the surface defects will be pursued in addition to
incorporate more sophisticated analysis of these defects
as they are data specific.

Acknowledgement

Thanks to Dr. Salil Desai and Santosh Kumar
Parupelli, who assisted in printing 3D objects.

Funding Information

The authors gratefully acknowledge the support of

the Department of Energy/National Nuclear Security

Administration (DOE/NNSA) for funding this project

(Award number: DE-NA0003686), and NSF

Engineering Research Center.

Author’s Contributions

All authors equally contributed to this work.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Abadi, M., A. Agarwal, E.B.P. Barham, A.D.Z. Chen and

C. Citro et al., 1983. TensorFlow: Large-scale machine

learning on heterogeneous systems. Methods Enzymol.
Abdel-Qader, I., O. Abudayyeh and M.E. Kelly, 2003.

Analysis of edge-detection techniques for crack
identification in bridges. J. Comput. Civil Eng.

Arabi, S., A. Haghighat and A. Sharma, 2020. A deep-

learning-based computer vision solution for

construction vehicle detection. Comput. Aided Civil

Infrastructure Eng.

Bachmann, G., L. Narici and E. Beckenstein, 2000.

Fourier and Wavelet Analysis. 1st Edn., Springer,

New York, ISBN-13: 978-1-4612-6793-5.

Selorm Garfo et al. / Journal of Mechatronics and Robotics 2020, Volume 4: 74.84

10.3844/jmrsp.2020.74.84

84

Benning, W., S. Görtz, J. Lange, R. Schwermann and R.
Chudoba, 2003. Development of an algorithm for
automatic analysis of deformation of reinforced
concrete structures using photogrammetry. VDI
Berichte, 1757: 411-418.

Chilukuri, D., S. Yi and Y. Seong, 2019. Computer vision
for vulnerable road users using machine learning. J.
Mech. Robot., 3: 33-41.

 DOI: 10.3844/JMRSP.2019.33.41
Delli, U. and S. Chang, 2018. Automated process

monitoring in 3d printing using supervised machine
learning. Proc. Manufactur., 26: 865-70.

 DOI: 10.1016/J.PROMFG.2018.07.111
Donahue, J., Y. Jia, O. Vinyals, J. Hoffman and N.

Zhang et al., 2014. DeCAF: A deep convolutional
activation feature for generic visual recognition.
Proceedings of the 31st International Conference on
Machine Learning, (CML’ 14), PMLR.

Driaba, A., A. Gordeev and V. Klyachin, 2019.
Recognition of various objects from a certain
categorical set in real time using deep convolutional
neural networks. CEUR Work. Proc., 2500: 4-9.

Duda, R.O., P.E. Hart and D.G. Stork, 2001. Pattern
Classification. 2nd Edn., Wiley, NY,

 ISBN-13: 978-0-471-05669-0.
Elbehiery, H., A. Hefnawy and M. Elewa, 2005. Surface

defects detection for ceramic tiles using image
processing and morphological techniques.
Proceedings of the 3rd World Enformatika
Conference, Apr. 27-29, Istanbul, Turkey, 158-62.
DOI: 10.5281/ZENODO.1084534

Gordeev, E.G., A.S. Galushko and V.P. Ananikov,
2018. Improvement of quality of 3D printed
objects by elimination of microscopic structural
defects in fused deposition modeling. PLoS ONE,
13: e0198370-e0198370.

 DOI: 10.1371/JOURNAL.PONE.0198370
Haridas, N. and S. Sandhiya, 2018. Traffic light detection

using the TensorFlow object detection API.
Howard, A.G., M. Zhu, B. Chen, D. Kalenichenko and W.

Wang et al., 2017. MobileNets: Efficient convolutional
neural networks for mobile vision applications.

Jahanshahi, M.R. and S.F. Masri, 2012. Adaptive vision-
based crack detection using 3D scene reconstruction
for condition assessment of structures. Automat.
Constr., 22: 567-576.

 DOI: 10.1016/J.AUTCON.2011.11.018
Jia, H., Y.L. Murphey, J. Shi and T.S. Chang, 2004. An

intelligent real-time vision system for surface defect
detection. Proceedings of the International Conference
on Pattern Recognition, Aug. 26-26, IEEE Xplore
Press, UK. DOI: 10.1109/ICPR.2004.1334512

Jovančević, I., I. Viana, J.J. Orteu, T. Sentenac and S.
Larnier, 2016. Matching CAD model and image
features for robot navigation and inspection of an
aircraft. Proceedings of the 5th International
Conference on Pattern Recognition Applications and
Methods, (RAM’ 16), Rome, Italy.

Jóźwik, A., M. Nieniewski, L. Chmielewski and M.
Skłodowski, 1999. Morphological detection and
feature-based classification of cracked regions in
ferrites. Mach. Graph. Vis., 8: 699-712

Karimi, M.H. and D. Asemani, 2014. Surface defect
detection in tiling industries using digital image
processing methods: Analysis and evaluation. ISA
Trans., 53: 834-844.

 DOI: 10.1016/J.ISATRA.2013.11.015
Lecun, Y., Y. Bengio and G. Hinton, 2015. Deep

learning. Nature, 521: 436-444.
 DOI: 10.1038/NATURE14539
Li, Y., H. Huang, Q. Xie, L. Yao and Q. Chen, 2018.

Research on a surface defect detection algorithm
based on MobileNet- SSD. Applied Sci., 8:
1678-1678. DOI: 0.3390/APP8091678

Roberson, D.A., D. Espalin and R.B. Wicker, 2013. 3D
printer selection: A decision-making evaluation and
ranking model. Virtual Phys. Prototyp., 8: 201-212.
DOI: 10.1080/17452759.2013.830939

Ruz, G.A., P.A. Estévez and C.A. Perez, 2005. A
neurofuzzy color image segmentation method for
wood surface defect detection. Forest Products J.,
55: 52-58.

Salembier, P., 1990. Comparison of some morphological
segmentation algorithms based on contrast
enhancement: Application to automatic defect
detection.

Schicktanz, K., 1993. Automatic fault detection possibilities
on nonwoven fabrics. Melliand Textilberichte.

SIfre, L., 2014. Rigid-motion scattering for image
classification. PhD Thesis.

Thomas Campbell, C.W., O. Ivanova and B. Garrett,
2011. Could 3D printing change the world?
Atlantic Council.

Tsao, S., N. Kehtarnavaz, P. Chan and R. Lytton, 1994.
Image-based expert-system approach to distress
detection on CRC pavement. J. Trans. Eng.

Wang, W.M., C. Zanni and L. Kobbelt, 2016. Improved
surface quality in 3D printing by optimizing the
printing direction. Comput. Graph. Forum., 35:
59-70. DOI: 10.1111/CGF.12811.

White, G., The pros and cons of 3D printing.
https://www.manufacturingglobal.com/

Wu, M., V.V. Phoha, Y.B. Moon and A.K. Belman,
2016. Detecting malicious defects in 3D printing
process using machine learning and image
classification. ASME Int.

Zheng, H., L.X. Kong and S. Nahavandi, 2002. Automatic
inspection of metallic surface defects using genetic
algorithms. J. Mater. Proc. Technol., 125: 427-433.
DOI: 10.1016/S0924-0136(02)00294-7

Zhishen, W., J. Zhang and M. Noori, 2018. Fiber- Optic
Sensors for Infrastructure Health Monitoring. 1st Edn.,
Momentum Press, ISBN-10: 194561224X, pp: 186.

https://doi.org/10.3844/jmrsp.2019.33.41
https://doi.org/10.5281/zenodo.1084534
https://doi.org/10.1371/journal.pone.0198370
https://doi.org/10.1016/j.autcon.2011.11.018
https://doi.org/10.1109/ICPR.2004.1334512
https://doi.org/10.1016/j.isatra.2013.11.015
https://doi.org/10.1038/nature14539
https://doi.org/10.3390/app8091678
https://doi.org/10.1080/17452759.2013.830939
https://doi.org/10.1111/cgf.12811
http://www.manufacturingglobal.com/
http://www.manufacturingglobal.com/
https://doi.org/10.1016/S0924-0136(02)00294-7

