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Abstract: The objective is to develop a new control strategy for quadrotor 

types of Unmanned Aerial Systems (UAVs) that assist in closing the 

existing research gaps between the undesired uncertainties and current 

control systems. This research investigates a system modeling and the 

effectiveness of error elimination through adaptation in the change of the 

plant/system’s output. The UAV is controlled via Wi-Fi using MATLAB. 

Proportional-Integral-Derivative (PID) controller, the two degrees of 

freedom Proportional-Integral-Derivative (2DOF-PID) controller and the 

model reference Neural Network (NN) controller are used for the aircraft 

pitch control. External disturbances and modeling errors can lead to the 

instability and unpredictable behaviors of a system. Even though the 

disturbances cannot be avoided the effects of such disturbances can be 

reduced significantly by neural network-based adaptive controllers for 

high-performance tracking in the presence of the disturbances. The robust 

control systems with the adaptive control will improve navigation 

performance and operation for military, reconnaissance and surveillance 

applications. The application of a robust controller determines the 

performance by observing the system’s behavior to identify and reduce 

the unpredictable effects of disturbances and achieve a better behavior of 

the whole system. By observing the system, the neural network is suitably 

used to learn from a set of training patterns. System identification uses a 

neural network to capture the behavior of system dynamics, which assists 

the neural network to train itself to act as a controller. Moreover, the 

system’s performance of the controllers was tested using simulations to 

demonstrate the effectiveness in improving the speed and stability for the 

dynamic system. The presented work will produce a flexible, robust and 

effective control system model that provides additional stability and 

reduce the effects of disturbances. 

 

Keywords: UAV, PID, 2DOF-PID, Model Reference Adaptive Control 

(MRAC), Neural Network (NN) 
 

Introduction  

Effective control of a quadrotor type of Unmanned 

Aerial Vehicles (UAVs) have been the main focus of 

literature during recent years. These control systems 

are used for carrying out activities such as law 

enforcement surveillance, agricultural maintenance, 

acquiring movie and sports event footage (Horsman, 

2016). Moreover, UAVs are extremely important in 

various missions, such as military operations, search 

and rescue and serving as personal assistants (Armah, 

2018). One of the models for an unmanned aerial 

vehicle is the AR Drone 2.0, which is shown in Fig. 1 

(Matthews and Yi, 2019). The unmanned aerial 

vehicle systems have been used for military 

applications, and its technology and capabilities are 

evolving and expanding for more onboard intelligence 

and reconnaissance data applications.  

The focus of the research presented is the 

improvement of the control models with new 

compensators that provide a better and efficient 

aerodynamic structure for acute navigation and sensing 

operation for unmanned aerial vehicle systems. 

Moreover, the developed robust control systems will 

improve the reliability and stability of the unmanned 

aerial vehicle systems for military, reconnaissance and 

surveillance applications. The unmanned aerial vehicle 
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used for this study is the Aerosonde UAV System with 

six degrees freedom (Socas et al., 2015). The nonlinear 

model is described with 12 dynamic variables: body 

frame velocities (u,v,w), Euler angles,  , ,   angular 

velocities (p,q,r) and inertial positions (pN,pE,h). 

Consequently, the model depends on external forces 

(fx,fy,fz) and moments (l,m,n) (Sarhan and Qin, 2016). 

The applications of this specific drone system provide 

intelligence, surveillance, reconnaissance, 

communications relay and other applications in a single 

flight. The Aerosonde UAV has a long and effective 

history of performance in very harsh environments.  

The MATLAB/Simulink model provides a system by 

constructing mathematical models of dynamic systems 

from a measured input-output data (Armah, 2015). The 

model system is a set of interacting components 

subjected to various inputs and produces outputs to 

perform a specific function. The input of a model system 

affects the dynamics of the system and the output attributes 

the dynamics of the system. Moreover, the mathematical 

model has a relationship between the inputs and outputs of 

the system. The mathematical description of the model 

presents the relation between the inputs and outputs of the 

system and the connection to other systems. Whereas, it has 

an approximation of the real physical system to be 

controlled. The accuracy of a model depends on the specific 

needs and the use of the equation of motion that 

represents the mathematical description of the model. 

The control’s objective defines the parameters to achieve 

the goal of a response of the system. These parameters 

are obtained using MATLAB and through numerical 

simulations. The feedback closed control loop that 

controls the system represents three concepts for a model 

system, which measure, compare and adjust the model 

system. The results will obtain a healthy, robust and 

well-functioning system, which use the neural network 

to optimize the performance and to achieve a better 

behavior response of the system. 

 

 
 
Fig. 1: Unmanned aerial vehicle 

This research will promote new ways of 

understanding the MRAC direct method approach to a 

high order adaptive control with the NN controller, 

the 2DOF-PID controller and the PID controller. 

Likewise, the simulation model of the UAV uses 

gamma and alpha values in the adaptive mechanism 

model for each specific controller. The NN controller 

performs plant identification and control design. The 

PID and 2DOF-PID controllers with traditional fixed 

parameters direct the plant with an applied 

disturbance to obtain the best performance analysis 

and robustness to external disturbances and model 

parametric uncertainty. This scope of work will 

produce a flexible, robust and effective control system 

model that provides additional stability and reduces the 

effects of disturbances. Moreover, the main component 

develops a robust control system and improves the 

reliability and stability of the UAV.  

Literature Review  

In the proposed research by Armah (2018), a tuned 

proportional-plus velocity combined with the Model 

Reference Adaptive Control (PV-MRAC) evaluates 

quadrotor types of UAVs which considers time delays in 

altitude control system (Armah, 2018). For research 

consideration, Eressa et al. (2016) observe the 

performance difference and similarity in model system 

dynamics and the observation of the efficiency of error 

elimination with less fluctuation and adaptability to set 

point variation between two controllers (Eressa et al., 

2016). The controllers were traditional fixed parameter PID 

controller and the model reference NN controller acquires 

new knowledge to advance new methods of understanding.  

In Sarhan and Qin’s research study, the adaptive PID 

control of UAV altitude dynamics is built on parameter 

optimization with fuzzy inference. Likewise, the proposed 

adaptive PID control is a combination of traditional PID 

and fuzzy logic control schemes (Sarhan and Qin, 2016). A 

simple adaptive control scheme based on Model Reference 

Adaptive Systems (MRAS) algorithm is developed for the 

asymptotic output tracking problems with changing 

system parameters and disturbances under guaranteeing 

stability, in which the adaptive adjusting law is derived by 

using the Lyapunov Theory (Cuong et al., 2013).  
According to Goel et al. (2016), it compares the 

MRAC and Modified MRAC scheme when the 

adaptation laws are designed using different approaches. 

Whereas, the controller parameter adaptation laws are 

designed based on the MIT Rule and Lyapunov Theory 

(Goel et al., 2016). According to Jain and Nigam (2013), 

the design of a controller for a second order system using 

the MRAC scheme uses the adaptive mechanism MIT 

Rule with the standardized algorithm to manage the 

changes in the reference signal. Therefore, this 
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adaptation law known to as the Modified MIT Rule 

(Jain and Nigam, 2013). Swarnkar et al. (2011a) discuss 

the application of model reference adaptive control 

scheme and the system performance compares the 

Lyapunov Rule and MIT Rule. The comparison was 

performed with different values of adaptation gain 

between two rules (Swarnkar et al., 2011a). The research 

in Swarnkar et al. (2011b) deals with the 

implementation of the MRAC system to second order 

models with varying adaptation gain values for which 

the MIT Rule is applied (Swarnkar et al., 2011b).  

In Dydek et al. (2013) research, the study investigates 

the approach of the application of direct and indirect 

model reference adaptive control to a lightweight low-cost 

quadrotor unmanned aerial vehicle platform. Whereas, the 

design of the adaptive controller is presented and 

followed by a comparison of flight test results using the 

existing linear and augmented adaptive controllers 

(Dydek et al., 2013). Ghaffar and Richardson report 

that a model reference adaptive control and a fixed gain 

LQR control were implemented in the height controller 

of a quadrotor that has parametric uncertainties due to 

the act of picking up an object of unknown dimension 

and mass (Ghaffar and Richardson, 2015). Therefore, 

in the presence of parametric uncertainties, the 

combination of adaptive and fixed gain control in the 

controller architecture can lead to improved monitoring 

results (Ghaffar and Richardson, 2015).  

Methodology  

Modeling  

The importance of this model study is to enhance the 

UAV model with a high order of adaptive control to 

accommodate uncertainties. This will provide an 

improved and efficient aerodynamic structure for acute 

navigation and sensing operation for the fixed-wing 

UAV system. According to Eressa, the study applies the 

equation of motion only in the pitch direction. The pitch 

is in an upward direction, instead of the downward 

direction. The differential equation used is expressed as 

(Eressa et al., 2016):  

 

0.4988 13.8636 18.2386 ex x x        (1) 

 

The Equation 1 is transformed into the Laplace 

domain as: 

 

       2 0.4988 13.8636 18.2386 es x s sx s x s s        (2) 

 

Equation 1 represents the longitudinal dynamics of 

the UAV, which is simplified from the 5 th order to a 

2nd order approximated transfer function. In addition, 

the focus is to find a minimized order transfer 

function relating the elevator deflection e to pitch 

angle x. The initial condition is x(0) = 0 Therefore, a 

short period approximation is used. The input u(s) 

correlates with the elevator deflection e(s) and y(s) 

correlates with the pitch angle x(s), which is the 

measured output signal. in According to Eressa, work, 

the transfer function relates with the pitch angle x(s) to 

the elevator deflection e(s), which can be written in 

transfer form as (Eressa et al., 2016): 

 

 
 

  2

18.2386

0.4988 13.8636e

x s
G s

s s s




 

 
 (3) 

 

Transfer function in Equation 3 can be converted into 

the State-Space Matrix-Vector Form below: 

 

     
0.4988 13.8636 1

1.0000 0 0
x t x t u t

    
    
   

 (4) 

 

         0 18.2386 0y t x t u t   (5) 

 

In the matrices of Equation 4 and Equation 5, the 

rank of both controllability and observability matrices is 

2, which means it is controllable and observable. The 

disturbance can lead to the instability and uncertainty 

behaviors of a system. In addition, a disturbance is set to 

1 and is applied to the State-Space Matrix-Vector. The 

state space equation with a disturbance represents the 

plant/system of the UAV, which achieves a desired 

response of the UAV system. 
In Fig. 2, the plant is part of the model which is a 

mathematically complex that describes the system. It 

resembles the system itself and it represents the receiver 

and activates the signal. When the controller sends out 

the signal to define the behavior of the output and sets 

the connected parts of the system with the input and 

output variables. The role of the plant is to apply the 

dynamics of the output and for the system to be 

controlled, which displays a nonlinear and constant 

behavior. In addition, the controller sends the 

information to the plant and the plant activates or reacts 

on the information. Whereas, the new output is obtained. 

The input of the plant causes the measured values to 

track the desired values. The plant location demonstrates 

the output of the controller with the input of the plant. A 

plant’s description is controlled as the controller’s input 

(Ioannou and Baldi, 2010). The output of the plant is the 

reference signal, which generates the desired output of 

the system. This is why the plant is used to follow the 

model of the system in a precise manner as possible. The 

transfer function and state space vector form are examples 

of a plant, which can use the measured values for an UAV.  
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Fig. 2: Plant with disturbance 

 

 
 

Fig. 3: Model Reference Adaptive Controller (MRAC) 
 

Simulation  

In Fig. 3, three main elements of this model are the 

Reference Model, the Plant Model and the Adaptive 

Controller. It demonstrates the design and model 

adaptive controller using Simulink. Likewise, the 

Adaptive Controller has two subcomponents, which are 

the controller and the adaptive mechanism.  

Design of Control  

With the implementation of the different gamma 
values, the adaptation gain (𝛾), changes the learning 
rate and reduces the error between the plant and 
reference model outputs. Whereas, all the signals in 
the closed-loop plant are bound. The plant output 
tracks the desired set point as close as possible. 
Likewise, the adaptive control accommodates and 
includes the parametric uncertainties for the UAV. As 
,  and wn are represented as zeta and natural 
frequency. They are set to 1, 0.8 and 4.236 rad/sec, 
which receives suitable performances for both settling 
time and actuator effort (Eressa et al., 2016). Thus, 
the , and wn are used to determine the important 
values for the reference model and the values of the 

PID controllers. In this research approach, the main 
components of this model structure are expressed as 
follows:  

Reference Model  

A model can be defined as the reference model of a 

system that proceeds to function as an individual model 

and prevails in an entire parent model. The reference 

model determines a desired trajectory that the process 

output should follow for a given change in the set-point 

(Kasparian and Batur, 1998). It creates the plant’s output 

of the system to accomplish the desired response of the 

system. The reference model is designed for a given 

reference input signal and the output of the reference 

model represents the desired response the plant output 

should follow (Ioannou and Baldi, 2010). Specifically, 

the output of the system should relate to feedback from a 

reference model. This shapes the desired values that 

combine into adaptable limitations to generate the plant 

feedback to equal the feedback of the reference model. It 

utilizes the reference model in selecting a plant model in 

which the description and dynamics are well known in 

order to create the neural networks.  
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For the reference model, the natural frequency and 

zeta determine the transfer function. The reference 

model displays a transient response, which is a second 

order system transfer function used as the desired 

response. The equation for natural frequency and zeta are 

expressed as:  
 

2

2 22

n

n n

w
y u

s w s w


 
 (6) 

 
Where:  

wn = The natural frequency (rad/sec)  

 = The damping ratio (zeta)  

u = The control signal  

y = The measured signal output  
 

Equation 6 correlates with Fig. 4, which displays the 

values implemented in the reference model block. 

Moreover, the reference model is an input and a random 

reference of the PID, 2DOF-PID and NN controller, 

which produces the actual response on the system. Hence, 

the NN optimizes the input of the plant’s behavior response 

of the system. In other words, the NN demonstrates a 

different response from the actual response.  

Controller  

The controller is created and it is defined by a set of 

adjustable parameters for the plant system, the general 

function of the controller maintains the controlled 

variable near its desired value when these parameters 

occur (Palm, 2014). The design of a controller can alter 

or modify the behavior and the response of an unknown 

plant to meet certain performance requirements are 

tedious and a challenging problem in many control 

applications (Ioannou and Baldi, 2010). The controller is 

designed to meet the performance requirements for the 

plant and sends the information to the plant (Ioannou and 

Baldi, 2010). In other words, a good controller makes a 

good model of the system. Hence, the controller can be 

applied in an open loop system and closed loop system. 

The plant is the output of the controller and the input of 

the controller is the reference signal. The importance of 

the controller is to perform the transformation (Janert, 

2013). For the 2DOF-PID controller, the controller is 

implemented by using the approach introduced in 

Eressa et al. (2016). In Equation (6), it correlates with 

Fig. 3, which displays the values implemented in the 

reference model block. Input and Output equation of the 

two degrees of freedom PID controller is given:  

 

     ( ) ( )p i du t k y t k r t y t k y     (7) 

 

Where: 

kp = The proportional gain 

ki = The integrator gain 

kd = The derivative gain 

t = The time (sec) 

r = The reference desired signal input 
 

The desired closed loop response is used to determine 

the PID parameters with ,  and wn, which are the free 

parameters shown as: 
 

 
  

2

2 22

n
n

n n n

w
y s w

s w s s w s w


 


  
 (8) 

 

This particular  is a derivative filter constant 

(Alfaro and Vilanova, 2016). In the Eressa et al. (2016) 

paper, the characteristic equation is used to determine the 

PID parameters (Eressa et al., 2016). It uses three 

mathematical control functions and applies them to input 

signals for desired outputs (Aamir, 2013). Proportional 

term value determines the response of the system 

towards current error (Aamir, 2013). Integral term value 

fastens the response and reduces the error. Thus, the 

derivative part reduces overshoots and oscillations. For 

the PID controller, it is simple and robust over a wide 

range of operating conditions. It has easy adjustment and 

high reliability (Cuong et al., 2013). It is often the first 

choice for a new controller design (Cuong et al., 2013). 

The development of the PID controller design has 

advanced from mechanical devices to digital devices, but 

the control algorithm is almost the same (Cuong et al., 

2013). In the time domain, the Input and Output equation 

of the PID controller is given: 
 

      /p i d
deu t k e t k e t dt k

dt
    (9) 

 
In the Laplace Transform of the s-domain, the 

equation of the PID controller is represented as: 
 

       
1

p i dU s K E s K E s K sE s
s

    (10) 

 
In addition, E(s) = Y(s)-U(s) and the controller is 

equivalent to the equation given as: 
 

     U s C s E s  (11) 

 
where, G(s) is the transfer function is given by Equation 

3 and C(s) is: 

 

 
 2

d p ik s k s k
C s

s

 
  (12) 

 
The combined system of G(s) and C(s) are regular 

functions that act on the tracking error E(s) to obtain the 

output Y(s). The closed loop arrangement of the transfer 

function summarizes as: 



Mackenzie T. Matthews and Sun Yi / Journal of Mechatronics and Robotics 2019, Volume 3: 571.588 

10.3844/jmrsp.2019.571.588 

 

576 

 
   

   
 

*

1 *

C s G s
Y s R s

C s G s



 (13) 

 

Substitute Equation 3 and Equation 12 into Equation 

13, the closed loop transfer function from Y(s) to R(s) is 

expressed as: 

 

 

 

 

 

Y s N s

R s D s
  (14) 

 

The desired closed-loop response correlates with the 

reference model is used to determine the PID parameters 

with the  and wn, which are the free parameters and 

shown in Equation 6. The PID parameters are 

determined by using the desired characteristic 

poles/roots, which are determined and expressed as: 

 
2* 1n ns W W i      (15) 

 

Since it is the third order in the closed-loop transfer 

function plant. It assumes to add another desired 

root/eigenvalue of -1 to help compare the characteristics 

D(s) of the closed loop transfer function to the 

denominator of the reference model.  

The NN Controller is one of the popular neural 

network architectures for prediction and control that was 

been implemented in the NN Toolbox™ software as 

shown in Fig. 6. The model reference controller is a 

neural network trained to control a plant to follow a 

reference model (Suzuki, 2011).  
The neural model reference control architecture uses 

two neural networks: the controller network and the 
plant model network as shown in Fig. 5. Whereas, the 
plant model is identified first and the controller is trained 
for the plant output to follow the reference model output 
(Suzuki, 2011). The neural network estimates and 
predicts the output of the system while working with the 
plant. In other words, the neural network works with the 
plant of the model system and applies the exact same 
operations to the plant.  

The neural network process model is needed to obtain 
an estimate of the sensitivity of the plant in regards to its 
inputs and provides the information needed for the plant 
(Kasparian and Batur, 1998). Therefore, a neural network is 
designed to identify the plant and learns the plant behavior 
through some form of training. In addition, the neural 
network acts as the controller, which develops and trains to 
understand the plant behavior. Hence, the plant of the 
system feedback traces the reference model.  

Neural networks have been successfully used to 
model linear, nonlinear and inverse dynamics of systems 
(Kasparian and Batur, 1998). The neural network 
controller consists of two neural networks, which deals 
with the plant identification and control design to 
stabilize the system’s response. The neural network 

predicts the output of the function by observing the 
behavior of the system and investigates the performance 
by observing the system’s behavior. By observing the 
system’s behavior, the neural network is suitably 
attained by a process of adaptation or learning from a set 
of training patterns.  

Neural networks are suitable for modeling and 

function approximation purposes with the action. The 

two neural network architecture and data processing 

steps are comparable. However, the number of delayed 

inputs are different (Eressa et al., 2016). Whereas, y[k-

n] for n = 0,1,2 are current/delayed plant outputs; C[k-

n] for n = 0,1,2 are current/delayed controller outputs; 

u[k-n] for n = 0,1,2 are delayed plant inputs; r[k-n] for 

n = 0,1,2 are delayed input reference; f(.) is a nonlinear 

mapping function (Eressa et al., 2016). The neural 

network controller’s focus is to control the operation of 

the overall behavior of the reference model, which is 

trained by the plant.  

Adaptive Mechanism with Modified MIT Rule  

The PID, 2DOF-PID and NN controllers output are 
U, which operates with the adaptive mechanism output 
(theta) expressed as:  
 

*

2 *

*

U Upid theta

U U dofpid theta

U Unn theta





 

 (16) 

 
The MIT Rule was first developed in 1960 by the 

researchers of Massachusetts Institute of Technology 

(MIT) and used to design the autopilot system for 

aircrafts (Jain and Nigam, 2013). According to the MIT 

Rule, the (e) presents the error between the outputs of the 
plant and the reference model. Theta (θ) is the adjustable 

parameter. In the MIT Rule, a cost function is defined as: 
 

 
2

2
eJ    (17) 

 

Parameter  represents the output that is adjusted in 

such a manner. Therefore, the cost function is minimized 

to zero based on the plant output (Y) and reference model 

output (Ym). The change in the parameter is kept in the 

direction of the negative gradient of J (Alfaro and 

Vilanova, 2016): 
 

J e
e

t


 

 

  
   

  
 (18)  

 
Where: 

e






 = The sensitivity derivative of the system  

 = The unknown theta parameter output  

 = The gamma value 
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Fig. 4: Reference model 

 

 
 

Fig. 5: Model reference neural network controller 

 

 
 

Fig. 6: Neural network controller 
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The sensitivity derivative of the system demonstrates 

how the error is adjusting with the change in the 

parameter  from Equation 18. It displays the change in 

the parameter  with the change in time with the cost 

function J() that will decrease to zero (Swathi and 

Ramesh, 2017). The gamma value is present as /s, 

which is used to see the system's effect and to produce a 

learning curve to minimize the error between the outputs 

of the plant and the reference model. The Modified MIT 

Rule can be used to design a controller for any system 

with a Modified MRAC scheme. In addition, it uses 

normalized algorithm to handle variations in the 

reference signal. Therefore, it is applied in the adaptation 

mechanism to be used with the MIT Rule to develop the 

modified control law, which works with the adaption 

gain to be modified in Fig. 7. The reason for the MRAC 

with the Modified MIT Rule is because the feedback 

controllers have some problems regarding the changes in 

the environmental conditions and the variation in the 

character of the disturbances. 

In Fig. 7, it illustrates the adaptive mechanism model 

with a modified control law block. It adjusts the 

parameters in the control law. The Adaptation Law 

searches for the parameters that the response of the plant 

should be the same as the reference model. It is designed 

to guarantee the stability of the control system as well as 

conversance of tracking error to zero (Swarnkar et al., 

2011b). The gamma value is present as /s, which is 

applied to see the effect of the system. The output of 

theta () is predicated on the error (e) between plant 

output (Y) and reference model output (Ym). 

The MIT Rule is very sensitive to changes in the 

amplitude of the reference input. The system may 

become unstable if it has large values of reference 

input. Thus, the use of the normalized algorithm is 

applied with the MIT Rule to create a control law to 

protect against dependence on the amplitude of the 

signal. With normalization, the MIT rule can make the 

plant follow the model as accurately as possible. The 

normalized algorithm modifies the adaption. The 

Adaption Law is expressed: 
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where, o = known theta parameter output. 

where, 
e








 and  0    is introduced to remove 

the difficulty of zero division when  is small (Jain 

and Nigam, 2013). Take into consideration, the 

gamma and alpha are set to 0.5 and 0.1. The NN 

controller acts as the controller to direct the plant, 

which is one of the components for the MRAC. In 

addition, it operates with the adaptive mechanism 

output (theta) that is used to define the controller law. 

The value of  is primarily dependent on adaptation 

gain (Jain and Nigam, 2013). 

 

 
 

Fig. 7: Adaptive Mechanism with Modified MIT Rule 

alpha 

Ym2 
gamma 

gamma 
1

s
  

theta 
theta 

1 

1 

2 

3 

e1 

 
Ym1 



Mackenzie T. Matthews and Sun Yi / Journal of Mechatronics and Robotics 2019, Volume 3: 571.588 

10.3844/jmrsp.2019.571.588 

 

579 

Validation and Observation  

The simulation results are produced in MATLAB 

for analysis of control schemes for the pitch direction 

response of a UAV given in the pulse generator’s 

response. The performance is measured in terms of rise 

time (Tr), settling time (Ts), overshoot (%Os) and peak 

for the pitch direction response of a UAV. The results 

are shown in Fig. 8 and 9 and Fig. 18 represents the 

responses of the 2DOF-PID controller, PID controller 

and (NN) controller with and without the adaptive 

control. During trial and error, the change gamma and 

alpha values were key to obtain the desired response, 

which assumes that the gamma is set to 0.5 and alpha is 

set to 0.1 for all three controllers with and without 

adaptive control. Figure 8, 9 and 18 demonstrate the 

simulation approach. 

The 2DOF-PID controller is applied with and without 

the adaptive controller for the UAV pitch control system 

and the result is shown in Fig. 8. It displays a 

comparison of the pulse generator response for the 

2DOF-PID controller with and without the adaptive 

controller. In addition, the reference model response in 

red is the desired response, which is set to 1. The 2DOF-

PID controller with adaptive control displays in green 

and the 2DOF-PID controller without the adaptive 

control displays in blue. In contrast, the plant response of 

the 2DOF-PID controller with an adaptive control 

display with a lesser overshoot, which is compared to the 

2DOF-PID controller without adaptive control. 

However, the 2DOF-PID controller with adaptive 

control demonstrates a better and similar response to the 

reference model response that is due to the speed of the 

learning rate that adapts to the changes in the plant 

response, which improves over time in 60 seconds. 

Whereas, the theta parameter (θ) is the adjustable 

parameter output response of the gamma value, which 

helps to alter the parameter of the controller to direct the 

plant response. In addition, the observation of the system's 

effect with an applied disturbance with producing a 

learning curve that minimizes the error between the 

outputs of the plant and the reference model shows the 

plant is improving during simulation due to fast-changing 

theta (θ). The key for the adaptive mechanism is to assist 

and direct the plant model response to follow the 

reference model response with a positive gamma 

value, which is set to 0.5. The alpha value is greater 

than 0, whereas, the alpha is 0.1. 

For the pitch direction response of a UAV, the 

performance characteristics of UAV are measured and 

obtained in terms of rise time (Tr), settling time (Ts), 

overshoot (%OS) and peak. Whereas, the desired set 

point of the pitch amplitude/direction is set to 1. In this 

performance analysis, the 2DOF-PID controller is 

applied with and without the adaptive control to 

produce output responses with the effect of the 

disturbance being applied for the UAV pitch control 

system. The results are shown in Table 1. The results 

clearly denote that the 2DOF-PID controller with 

adaptive control gave a better response than the 2DOF-

PID controller without adaptive control. As illustrated 

in Table 1: The Performance Characteristics of UAV, 

the simulation results reveal that the 2DOF-PID 

controller with the adaptive control has a smaller rise 

time (Tr), settling time (Ts) and overshoot (%OS) than 

the 2DOF-PID controller without adaptive control. In 

comparison, the 2DOF-PID controller with the adaptive 

control peak value is roughly closer to the desired set-

point compared to the 2DOF-PID controller without the 

adaptive control. Moreover, the peak value is 

equivalent to the desired set point. 

The PID controller is applied with and without the 

adaptive controller for the UAV pitch control system and 

the result is shown in Fig. 9. It displays a pulse 

generator response comparison of the PID controller 

with and without the adaptive controller. In addition, 

the reference model response in red is the desired 

response, which is set to 1. The PID controller with 

adaptive control displays in orange and the PID 

controller without the adaptive control displays in blue. 

However, both cases with and without adaptive control 

did not have sufficient time to reach the desired set 

point. Whereas, the response was fast and contains a 

very small overshoot. In contrast, the plant response 

output of the PID controller with adaptive control 

displays the response is moving further away and 

decreasing over time in 60 seconds from the desired 

response output of the reference model compared to the 

PID controller without adaptive control. Additionally, 

the system's effect with an applied disturbance shows 

that the disturbance drives the plant away from its 

desired behavior output response of the reference 

model. Within 60 seconds, the performance are 

summarized in Table 2. 

 
Table 1: Comparison of UAV performance characteristics  

 Tr(sec) Ts(sec) OS (%) Peak  

2DOF-PID without adaptive control 

Response  0.992  1.840  89.69  1.009  

2DOF-PID with adaptive control 

Response  0.792  1.588  55.91  1.004 

 
Table 2: Comparison of UAV performance characteristics  

 Tr(sec) Ts(sec) OS(%)  Peak  

PID without adaptive control 

Response  1.540  13.343  0.38  9.962e-01  

PID with adaptive control 

Response  1.235  12.113 0.5  9.995e-01 
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Fig. 8: 2DOF PID Pulse Generator Response with and without Adaptive Control 

 

 
 

Fig. 9: PID Pulse Generator Response with and without Adaptive Control 

 

The performance characteristics of UAV are 
measured and obtained in terms of rise time (Tr), settling 
time (Ts), overshoot (%Os) and peak. The desired set 
point of the pitch amplitude/direction is set to 1 for the 
pitch direction response of a UAV. The PID controller is 
applied with and without the adaptive control to produce 
output responses with the effect of the disturbance being 
applied for the UAV pitch control system and the results 
are shown for the performance analysis in Table 2. The 
result clearly denotes that the adaptive controlled PID 
controller gave a better response than the non-adaptive 
controlled PID controller in Table 2. As illustrated in 
Table 2, the simulation results reveal that the PID 
controller with the adaptive control has a smaller rise 
time (Tr) and settling time (Ts) than the PID controller 
without adaptive control. In contrast, the overshoot 
(%Os) and the peak value of the adaptive controlled PID 
controller are greater than the PID controller with no 

adaptive controller. In addition, the peak value is not a 
rough equivalent to the desired set point. 

For the NN controller, Equation 6 correlates with Fig. 

4. It displays the values implemented in the reference 

model block. The first step in the neural network process is 

to approximate the behavior of the plant/system 

identification on the neural network. The main concept of 

plant/system identification is to obtain a model that can be 

used for controller design. This is widely used for 

applications ranging from control system design and signal 

processing to time series analysis (Suzuki, 2011). In the 

system identification stage, the goal is to apply the plant 

identification process to allow the NN to develop and 

train itself to model the output of the plant that needs to be 

controlled. Secondly, it is necessary to identify the plant 

before the controller is trained. The three layers with 10 

neurons in the hidden layer are utilized as NN architecture. 
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Fig. 10: Testing data 

 

 

 
Fig. 11: Validation data 
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Fig. 12: Training data 
 

 
 

Fig. 13: Training regression 
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Two delayed inputs u(k-1), u(k-2) and two delayed outputs 

y(k-1), y(k-2) with a sampling period of 0.05 of the actual 

plant are used as input to capture the system dynamics 

(Eressa et al., 2016). Five thousand (5,000) samples of 

input/output maximum/minimum with the size of 0.7854/-

0.7854 radians are used for plant neural model training 

(Eressa et al., 2016). 

The next step generates a training data process. After 

training, the data generation is complete and the network 

training process begins. During this process, the goal is to 

identify the plant as the Levenberg-Marquardt (trainlm), 

which provides a gradient based technique allowing fast 

error minimization between the actual output of the 

system and the predicted output of the network (Suzuki, 

2011). This demonstrates the validation, training and 

testing data from the network training process as 

illustrated in Fig. 10 to 12. The training, validation and 

testing data errors should remain very small and the 

plant’s output should be similar to the NN output. 

In Fig. 13, the regression data demonstrates the linear 
regression of targets parallel to the outputs. In Fig. 14, 
the graph displays the neural network’s reported training 
performance in the plant identification process during 
training (300 Epochs). Whereas, the training data and 
testing data follows almost the same behavior. In the 

mean square graph, the error is very small, while the 
validation stops decreasing and discontinues the training 
process. The performance must reveal a small value for 
practical purposes.  

In the control design stage, the next step repeats the 

exact same process similar to the plant identification in 

the Model Reference Controller and utilizes training the 

controller process as illustrated in Fig. 15 and Fig. 16. 

The MATLAB technique reports the performance is 

shown in Fig. 15 and Fig. 16 for the (BFGS) quasi-

Newton backpropagation (trainbfg) (Demuth et al., 

1992). The use of the neural network plant model to 

design/train the controller uses the propagation of the 

controlling error through the NN model (Suzuki, 

2011). Likewise, the training produces the optimal 

connection weights for the networks by minimizing the 

errors between NN output and the plant output over the 

entire set of samples (Suzuki, 2011). The NN controller 

is trained to track the reference model given in Fig. 4. 

Two delayed reference inputs r(k-1), r(k-2) one 

delayed controller input C(k-1) and two delayed 

outputs y(k-1), y(k-2) with a sampling period of 0.05 

is used as inputs to the NN controller (Eressa et al., 

2016). The NN architecture contains three layers with 5 

neurons in the input, 5 neurons in the hidden layer and 1 

neuron in the output layer. However, 2,000 samples with 

input/output maximum/minimum size of 4/-4 radians are 

used for controller training (Eressa et al., 2016). This 

method will analyze and research the plant itself to 

observe and identify the behavior that interacts with the 

neural network controller. This process presents 

segments of data to the network and trains it for a 

specific number of iterations. Before training a 

controller, the plant is identified and the controller is 

designed to create the plant output to follow the 

reference model output. 
 

 
 

Fig. 14: Mean Square Error Graph 
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Fig. 15: Neural network training regression 

 

 

 
Fig. 16: Neural network training performance 
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During trial and error, the NN tracks the reference 

model’s results by setting the considered amount of 

controller trained samples and controller training epochs 

in Fig. 17. The axis above the response output of NN 

follows the response of the reference model and 

demonstrates the random reference input used for 

training. The NN is trained and it controls itself to 

display an output response described by the reference 

model. After training, the controller process is complete 

and the response of the resulting feedback control is 

demonstrated in Fig. 17. The end result can produce a 

healthy and functioning system using the NN.  

In Fig. 18, it displays a pulse generator response 

comparison of the NN controller with and without the 

adaptive controller. In addition, the reference model 

response in red is the desired response, which is set to 1. 

The NN with adaptive control displays in purple and the 

NN without the adaptive control displays in blue. 

However, the NN controller with adaptive control 

demonstrates that the speed of the learning rate adapts to the 

changes in the plant response, which improves over time in 

60 seconds. It has a similar response to the reference model. 

The key role for the adaptive mechanism is to assist and 

direct the plant model response to track the reference model 

response with a positive gamma value and alpha value, 

which is set to 0.5 and 0.1.  

In this performance analysis, the NN controller is 

applied with and without the adaptive control to produce 

output responses with the effect of the disturbance being 

applied for the UAV pitch control system and the results 

are shown in Table 3. For the performance 

characteristics of UAV, the simulation results reveal the 

NN controller without the adaptive control has a higher 

rise time (Tr), settling time (Ts) and overshoot (%Os), 

because of the effect of the disturbance that is applied to 

the plant/system model compared to the NN controller 

with adaptive control. In comparison, the NN controller 

with the adaptive control peak value is approximately 

very close to the desired set-point compared to the NN 

controller without the adaptive control. In Table 3, the 

performance clearly indicates that the adaptive-

controlled NN controller gives a better response than the 

NN controller without adaptive control. With the same 

gamma value and alpha value, it displays that the Neural 

Network is trained and it controls itself to display an 

output response described by the reference model. After 

training, the controller process is complete and the 

response of the resulting feedback control is 

demonstrated in Fig. 18. This NN controller is 

developed, in such a way, to generate the plant output to 

track the output of the reference model. Moreover, the 

plant response output and reference model output are 

very close. If the plant model is not accurate, it can affect 

the controller’s training. 

 
Table 3: Comparison of UAV performance characteristics  

 Tr(sec) Ts(sec) Os(%)  Peak 

NN without Adaptive Control  

Response  0.821  1.473  55.95  1.005  

NN with Adaptive control  

Response  0.604  1.015  13.32  1.001  

 

 
 

Fig. 17: Plant response for NN model reference control 
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Fig. 18: NN pulse generator response comparison of adaptive control 

 

Conclusion and Future Work  

In conclusion, the aim of this scope of research 

will generate a flexible, robust and efficient model of 

a control system that offers greater stability and 

reduces the impacts of disturbances. In addition, the 

controller’s efficiency was evaluated through 

simulations by using the software, MATLAB, which 

show enhanced speed and stability. Thus, the robust 

controller identifies and decreases the unpredictable 

impacts of disturbances and attains better system 

behavior. The reason for the creation of a robust 

control system with a controller and adaptive control 

will enhance navigation efficiency and sensing for 

military, recognition and monitoring applications. In 

developing a controller for these aircraft, there are 

numerous sources for the uncertainty that corresponds 

to disturbances in the system. The PID controller, 

2DOF-PID controller and NN controller with adaptive 

control were used to analyze high-performance in the 

presence of such disturbance. A system disturbance is 

implemented to test and assess performance 

characteristic analysis. Furthermore, disturbances can 

result in a system's instability and unpredictable 

behaviors. Therefore, the UAV responds to modeling 

errors and disturbances with attaining the desired state, 

which depends on the strength of the control system 

used. The validation and observation of the NN 

controller show, that a NN controller with the adaptive 

control response of a positive gamma value with an 

alpha value has high-performance tracking with 

increased robustness in the presence of parametric 

uncertainties than the 2DOF-PID and PID controllers. 

Moreover, the NN controller has a better overtime 

response that follows the desired response of the 

reference model more precisely than the 2DOF-PID 

and PID controllers, which is demonstrated in Table 3 

for the performance characteristics of UAV results 

and simulation results in Fig. 18. From this 

observation, the NN is appropriately learning from a 

set of training patterns by observing the scheme. 

System identification utilizes a NN to capture system 

dynamics, which trains the Neural Network to behave 

as a controller. The adaptive controlled NN controller 

demonstrates that it improves the stability and response 

speed of the system than the NN without the adaptive 

control response. Consequently, the limitations are the 

fixed PID and 2DOF-PID terms with the guessing 

method for the gamma and alpha values. It retrains the 

NN controller to direct the plant model with a higher 

set point amplitude to obtain the desired response or to 

increase the gamma and alpha values. Moreover, the 

high order Modified MIT Rule adaptive control 

performance illustrates the adaptation in the change of 

the plant’s output that stabilizes the system by the 

controller component into the system. Similarly, the 

implementation of a gamma value was used to produce 

a learning curve to minimize the error between the 

plant and the reference model outputs that are 

influenced by the adaptation gain. Thus, the alpha value 

removes the zero-division error when the system's 

sensitivity derivative is low.  
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For future works, the experimental validation plan will 

require the purchase of new equipment to test the 

development of a controller. Further study, testing and 

research will continue to explore the application of a 

robust controller with a neural network estimator for 

development. In addition, the plan will apply and compare 

the NN controller, Neural-PID controller and PID 

controller with adaptive control with the use of the second 

order system MIT Rule. Hence, this plan of study will 

understand the attributes of the second order system MIT 

Rule for the MRAC. This investigation will determine the 

performance by observing the system’s behavior to identify 

and reduce the unpredictable effects of disturbance in a 

UAV control system. This research continues as a work in 

progress for the neural network to train and control itself to 

display a response with the adaptive control prescribed by 

the reference model with an applied disturbance.  
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