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Abstract: Along with gears, distribution mechanisms are the most widely used 

mechanical transmissions used over the past 300 years and will continue to be 

the most widespread in all industrial fields but also in other technical areas. For 

this reason, it was considered necessary this work, which tries to add a brick to 

the permanent construction of rigid memory mechanisms used especially as 

distribution mechanisms for motor vehicles. The paper presents some essential 

aspects of the synthesis of the distribution mechanisms. 
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Introduction 

An engine mechanism is a mechanism of a force 
machine which, in the case of an engine machine, 
transmits and eventually transforms the movement 
caused by the internal energy transformation of the 
working agent (combustion gases, steam, compressed 
air) into the motor shaft, or in the case of generating 
machines (e.g., piston compressors), vice versa, from the 
shaft to the working agent.  

In motor machines, the mechanical work is initially 
obtained in the form of reciprocal movement of the 
piston in the cylinder. The motor mechanism turns this 
movement into a continuous rotary motion of the shaft.  

For standard internal combustion engines, the engine 
is based on a crank-shaft mechanism. By extension of 
language, the motor mechanism means not only moving 
parts but also fixed ones to the frame (chassis, etc.), even 
if they move with the vehicle it propels (motor vehicle, 
locomotive, airplane, boat, etc.).  

Components considered to be fixed are: 
 
The engine block 

Cylinder 

Engine cylinder 

Intake manifold 

Exhaust manifold 

Bearing cams, along with the Cartridge of the bearings 
 

Mobile components are: 
 
piston 

segments 

pin 

White, along with the cufflinks 

Crankshaft 

 

The flywheel, along with the torsion oscillator.  

The distribution mechanism is an auxiliary system of 
the internal combustion engine, the steam engine having 
the function of correlating the filling of the engine 
cylinders with fuel, steam, air and flue gas or air.  

The distribution mechanism is used in almost all 
four-stroke internal combustion engines, except for the 
Wankel engine and two-stroke engines.  

Depending on the type of engine to which it is 
applied, the distribution may be for four-stroke or two-
stroke engines.  

The distribution to two-stroke engines, in general, is 
without valves and has window-in-cylinder cylinders 
that are closed or open by moving the piston, which is 
also called light distribution. Two-stroke engines, 
especially those with compression ignition, have only 
intake or exhaust valves.  

The four-stroke engine distribution uses a valve 
mechanism that can be operated mechanically, 
pneumatically, magnetically or hydraulically. In most 
cases (mechanical, hydraulic), the valves are driven by 
spikes or directly by the camshaft.  

Following the position of the valves, the distribution 
mechanism may be with side valves, with valves in the 
head, or with a mixed distribution mechanism.  

Side valve distributor mechanism (SV; eng., Side 

Valves) for example small engines with a narrower (low) 

cylinder head. In this case, the valves are in the engine 

block or the cylinder.  

Distributor mechanism with valves in the head, with 

this mechanism the valves, are mounted in the cylinder 

above the piston.  

Mixed distribution mechanism when the valves are 

also mounted in the engine block and cylinder head.  

After camshaft mounting, there is a camshaft 

mounted camshaft mechanism and camshaft mounted on 

the cylinder head. 
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On the crankshaft mounted camshaft, the valves are 
hinged by hinges, their rods and tilts (OHV, eng., Over 
Head Valves).  

On camshaft mounted Overhead Camshaft (OHC), 
the valves are driven by swinging or direct valve 
engagement.  

After engaging the camshaft: 
 

Belt  

Chain 

Gear  

 

The distribution system of an internal combustion 

engine for automobiles is the set of all parts that allow 

for the regular change of gas from the cylinders. To 

function, an internal combustion engine needs fresh air 

or an air-fuel mixture to be introduced into the cylinders 

instead of residual flue gases to be discharged. Briefly, 

the distribution system provides fresh air/mixture into 

the cylinders and flue gas outlet.  

Components of the Distribution System (Fig. 1) 

Four-stroke engines have valve distribution systems. 

There are also distribution systems with lights/slides 

(two-stroke engines) or drawers (racing cars) or 

combined, lights and valves (two-stroke engines): 
 
• Camshaft drive gear (belt drive)  

• Cylinder  

• Drain connection channels  

• Exhaust valve  

• Exhaust valve hatch  

• Spindle shaft (evacuation)  

• Clavicle shaft (intake)  

• Inlet valve  

• Admire valve hatcher  
 

The toothed drive wheel (1) is connected via a 

crankshaft timing belt. The crankshaft position must be 

synchronized with the camshaft position because opening 

and closing of the valves (4 and 8) are made according to 

the position of the pistons in the cylinder. For the system 

shown, the valves are actuated via the guides (5 and 9), 

(Rulkov et al., 2016; Agarwala, 2016; Babayemi, 2016; 

Gusti and Semin, 2016; Mohamed et al., 2016; Wessels and 

Raad, 2016; Maraveas et al., 2015; Khalil, 2015; Rhode-

Barbarigos et al., 2015; Takeuchi et al., 2015; Li et al., 

2015; Vernardos and Gantes, 2015; Bourahla and 

Blakeborough, 2015; Stavridou et al., 2015; Ong et al., 

2015; Dixit and Pal, 2015; Rajput et al., 2016; Rea and 

Ottaviano, 2016; Zurfi and Zhang, 2016 a-b; Zheng and Li, 

2016; Buonomano et al., 2016 a-b; Faizal et al., 2016; 

Cataldo, 2006; Ascione et al., 2016; Elmeddahi et al., 2016; 

Calise et al., 2016; Morse et al., 2016; Abouobaida, 

2016; Rohit and Dixit, 2016; Kazakov et al., 2016; 

Alwetaishi, 2016; Riccio et al., 2016 a-b; Iqbal, 2016; 

Hasan and El-Naas, 2016; Al-Hasan and Al-Ghamdi, 

2016; Jiang et al., 2016; Sepúlveda, 2016; Martins et al., 

2016; Pisello et al., 2016; Jarahi, 2016; Mondal et al., 

2016; Mansour, 2016; Al Qadi et al., 2016b; Campo et al., 

2016; Samantaray et al., 2016; Malomar et al., 2016; Rich 

and Badar, 2016; Hirun, 2016; Bucinell, 2016; Nabilou, 

2016b; Barone et al., 2016; Chisari and Bedon, 2016; 

Bedon and Louter, 2016; Santos and Bedon, 2016; 

Minghini et al., 2016; Bedon, 2016; Jafari et al., 2016; 

Chiozzi et al., 2016; Orlando and Benvenuti, 2016; 

Wang and Yagi, 2016; Obaiys et al., 2016; Ahmed et al., 

2016; Jauhari et al., 2016; Syahrullah and Sinaga, 2016; 

Shanmugam, 2016; Jaber and Bicker, 2016; Wang et al., 

2016; Moubarek and Gharsallah, 2016; Amani, 2016; 

Shruti, 2016; Pérez-de León et al., 2016; Mohseni and 

Tsavdaridis, 2016; Abu-Lebdeh et al., 2016; 

Serebrennikov et al., 2016; Budak et al., 2016; 

Augustine et al., 2016; Jarahi and Seifilaleh, 2016; 

Nabilou, 2016a; You et al., 2016; AL Qadi et al., 2016a; 

Rama et al., 2016; Sallami et al., 2016; Huang et al., 

2016; Ali et al., 2016; Kamble and Kumar, 2016; Saikia 

and Karak, 2016; Zeferino et al., 2016; Pravettoni et al., 

2016; Bedon and Amadio, 2016; Chen and Xu, 2016; 

Mavukkandy et al., 2016; Gruener, 2006; Yeargin et al., 

2016; Madani and Dababneh, 2016; Alhasanat et al., 

2016; Elliott et al., 2016; Suarez et al., 2016; Kuli et al., 

2016; Waters et al., 2016; Montgomery et al., 2016; 

Lamarre et al., 2016; Daud et al., 2008; Taher et al., 

2008; Zulkifli et al., 2008; Pourmahmoud, 2008; 

Pannirselvam et al., 2008; Ng et al., 2008; El-Tous, 

2008; Akhesmeh et al., 2008; Nachiengtai et al., 2008; 

Moezi et al., 2008; Boucetta, 2008; Darabi et al., 2008; 

Semin and Bakar, 2008; Al-Abbas, 2009; Abdullah et al., 

2009; Abu-Ein, 2009; Opafunso et al., 2009; Semin et al., 

2009 a-c; Zulkifli et al., 2009; Marzuki et al., 2015; Bier 

and Mostafavi, 2015; Momta et al., 2015; Farokhi and 

Gordini, 2015; Khalifa et al., 2015; Yang and Lin, 2015; 

Chang et al., 2015; Demetriou et al., 2015; Rajupillai et al., 

2015; Sylvester et al., 2015; Ab-Rahman et al., 2009; 

Abdullah and Halim, 2009; Zotos and Costopoulos, 2009; 

Feraga et al., 2009; Bakar et al., 2009; Cardu et al., 2009; 

Bolonkin, 2009 a-b; Nandhakumar et al., 2009; Odeh et al., 

2009; Lubis et al., 2009; Fathallah and Bakar, 2009; 

Marghany and Hashim, 2009; Kwon et al., 2010; Aly and 

Abuelnasr, 2010; Farahani et al., 2010; Ahmed et al., 2010; 

Kunanoppadon, 2010; Helmy and El-Taweel, 2010; 

Qutbodin, 2010; Pattanasethanon, 2010; Fen et al., 2011; 

Thongwan et al., 2011; Theansuwan and Triratanasirichai, 

2011; Al Smadi, 2011; Tourab et al., 2011; Raptis et al., 

2011; Momani et al., 2011; Ismail et al., 2011; Anizan et 

al., 2011; Tsolakis and Raptis, 2011; Abdullah et al., 2011; 

Kechiche et al., 2011; Ho et al., 2011; Rajbhandari et al., 

2011; Aleksic and Lovric, 2011; Kaewnai and 

Wongwises, 2011; Idarwazeh, 2011; Ebrahim et al., 

2012; Abdelkrim et al., 2012; Mohan et al., 2012; 

Abam et al., 2012; Hassan et al., 2012; Jalil and 
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Sampe, 2013; Jaoude and El-Tawil, 2013; Ali and 

Shumaker, 2013; Zhao, 2013; El-Labban et al., 2013; 

Djalel et al., 2013; Nahas and Kozaitis, 2013; 

Petrescu and Petrescu, 2014 a-i, 2015 a-e, 2016 a-d; 

Fu et al., 2015; Al-Nasra et al., 2015; Amer et al., 2015; 

Sylvester et al., 2015b; Kumar et al., 2015; Gupta et al., 

2015; Stavridou et al., 2015b; Casadei, 2015; Ge and Xu, 

2015; Moretti, 2015; Wang et al., 2015; Antonescu and 

Petrescu, 1985; 1989; Antonescu et al., 1985a; 1985b; 

1986; 1987; 1988; 1994; 1997; 2000a; 2000b; 2001; 

Aversa et al., 2017a; 2017b; 2017c; 2017d; 2017e; 

2016a; 2016b; 2016c; 2016d; 2016e; 2016f; 2016g; 

2016h; 2016i; 2016j; 2016k; 2016l; 2016m; 2016n; 

2016o; Cao et al., 2013; Dong et al., 2013; 

Comanescu, 2010; Franklin, 1930; He et al., 2013; 

Lee, 2013; Lin et al., 2013; Liu et al., 2013; Padula 

and Perdereau, 2013; Perumaal and Jawahar, 2013; 

Petrescu, 2011; 2015a; 2015b; Petrescu and Petrescu, 

1995a; 1995b; 1997a; 1997b; 1997c; 2000a; 2000b; 2002a; 

2002b; 2003; 2005a; 2005b; 2005c; 2005d; 2005e; 2011a; 

2011b; 2012a; 2012b; 2013a; 2013b; 2013c; 2013d; 2013e; 

2016a; 2016b; 2016c; Petrescu et al., 2009; 2016; 2017a; 

2017b; 2017c; 2017d; 2017e; 2017f; 2017g; 2017h; 2017i; 

2017j; 2017k; 2017l; 2017m; 2017n; 2017o; 2017p; 2017q; 

2017r; 2017s; 2017t; 2017u; 2017v; 2017w; 2017x; 2017y; 

2017z; 2017aa; 2017ab; 2017ac; 2017ad; 2017ae; 2018a; 

2018b; 2018c; 2018d; 2018e; 2018f; 2018g; 2018h; 2018i; 

2018j; 2018k; 2018l; 2018m; 2018n). 

Types of Distribution Systems  

Depending on the position and number of cams, the 

distribution systems can be: 
 
• OHH (OverHead Valves) 
• OHC (OverHead Camshaft) 
• DOHC (Double Overhead Camshaft) 
• OHV distribution system  

This type of distribution system has the camshaft 

in the engine block. The shaft drive is usually made 

with a metal chain. In addition to the camshaft 

sprocket distribution systems, the OVH distribution 

also contains pushing rods (Fig. 2). 

 

1- camshaft  

2- cleats  

3- pushing rods  

4- rocker  

5- valve spring  

6- valve  

 

The camshaft (1) is driven by the crankshaft of the 

engine and acts on the tillers (2). By means of pushing 

rods (3) the profile of the cams deflection (4) opens 

the valves (6). The valves are held in the seat by the 

helical springs (5).  

OHC Distribution System  

Most engines that fit modern cars are fitted with a 

camshaft. If each cylinder has two in take and two 

exhaust valves, the distribution system will have two 

camshafts (DOHC) (Fig. 3). 

Chassis Camshaft Shaft Distribution System 

(DOHC): 

 

1- cam (camshaft) 

2- follower 

3- valve spring 

4- valve stem  

5- Exhaust Gallery 

6- valve support 

7- cylinder/combustion chamber 

 

 
 

Fig. 1: Components of a modern distribution mechanism 



Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2019, Volume 3: 431.470 

10.3844/jmrsp.2019.431.470 

 

434 

 
 

Fig. 2: Engine camshaft spline drive (OHV) 

 

 
 

Fig. 3: Camshaft Shaft Distribution System (DOHC) 

 e-automobile.ro 
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OHC distribution systems, as compared to OHV, do 
not have pushing rods. Actuation of the valves is done 
directly by the camshaft by means of taps and 
coulters. If the distribution system has 4 valves per 
cylinder in the cylinder head, there are two camshafts 
acting directly on the DOHC.  

The chassis camshaft (OHC, DOHC) is the number 
of smaller parts. The lack of pushrods and cogs increases 
the durability of the system, reduces vibrations and 
allows higher speeds.  

Valves  

The valve is made up of two parts, the valve stem 
which obstructs the channel in the cylinder head and the 
valve stem receiving the movement, guides the valves 
during the movement and evacuates some of the heat 
transferred to the valve (Fig. 4).  

The valves open inside the cylinder to take advantage 

of the pressure of the gas while it is closed (better 

sealing). The intake valves, compared to the exhaust 

ports, have the larger diameter because the intake port 

is larger. This favors the better filling of the fresh gas 

cylinder during intake. In order to withstand intense 

mechanical and thermal stresses, the valves are made 

of high alloy steel.  

The camshafts are driven by the crankshaft of the 

engine by means of a toothed belt (belt distribution) or a 

metal chain (chain distribution). The trees are made of alloy 

steel or alloy cast iron. The canvas between the cams and 

the sticks is always lubricated with engine oil (Fig. 5). 

Because each valve opens once on a complete engine 

cycle (two crankshaft rotations), the camshaft speed is half 

that of the crankshaft.  

The shape of the cams determines the length and opening 

height of the valves. The distribution system in which the 

opening height and the opening time of the valves are fixed, 

invariable is called a fixed distribution. A distribution system 

that can vary the length or the opening height of the valves is 

called variable distribution.  

Cleats  

The spool is the piece that is driven directly by the 

camshaft. To reduce noise in operation and to compensate 

for the heat play, hydraulic tightening is used. The thermal 

play is the distance between the moving piles of the 

distribution system (pushing rod-OHV or OHC camshaft), 

which varies depending on the temperature of the parts. The 

heat play increases with the wear of the parts and has a 

negative impact on the noise and reliability of the 

distribution system (Fig. 6). 

 

 
 

Fig. 4: Valves 

 e-automobile.ro 
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Fig. 5: Camshafts 

 

 
 

Fig. 6: Pushers 
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The cam mechanisms specifically transform a 
uniform rotational motion into alternating non-uniform 
rotational motion or alternate linear motion. In these 
mechanisms, in general, the movement is transmitted 
from the cam guide member to the driven member via 
direct contact. It rarely happens that the cam element is a 
driven or fixed element. In the latter situation, the stick 
picks up both movements, as is the case with the 
mechanism that controls the vertical drift of the scissor 
tool sleeper: fixed cam, punch oscillating, with its 
rotation motion in translation.  

The cam mechanisms are widespread in design 
mechanical engineering because the cam profile can 
have almost any shape, depending on the moving law 
that is desired for the stick.  

Between the cam and the barrel, there is a superior 

coupling with no more than two degrees of freedom 

(rolling and slipping) for the case of the flat cam and 

no more than five degrees of freedom for the space 

cam case. However, there may be constraints, so that 

the number of degrees of freedom allowed by the 

kinematic couple can be reduced.  

The simplest cam mechanism (Fig. 7) consists of 

the following kinematic elements: the cam (1), the 

stick (2) and the roller (3). The roll is a kinematically 

passive element that is introduced to reduce cam and 

punch wear, as well as to reduce frictional losses by 

turning the slip into rolling friction. 

 

 
  

Fig. 7: The simplest cam mechanism 
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Materials and Methods 

In the Fig. 8 it presents the kinematics schema of the 

classic distribution mechanism, in two consecutive 

positions; with a interrupted line is represented the 

particular position when the follower is situated in the 

most down plane, (s = 0) and the cam which has an 

orally rotation, with constant angular velocity, ω, is 

situated in the point A
0
, (the recordation point between 

the base profile and the up profile, particular point that 

mark the up begin of the follower, imposed by the cam-

profile); with a continue line (green) is represented the 

superior couple in someone position of the up phase.  

From initial position (xF) to someone position (xM) 

the cam (camshaft) was rotated with an ϕ angle. In this 

time the position vector r = rA was rotated (in relation to 

the mobile axis xM) with the θ angle, which is a sum 

between ϕ and τ (where τ is the transmission angle who 

occurs between the initial, vertical, fix axis and the 

position vector r = rA. The cam or camshaft movement 

is given by θ angle and the position vector r 

movement is characterized by the θ angle (this is all 

the main problem of the classical distribution 

mechanism). In any position point (the contact point 

between cam and tappet) is given by the coordinates r 

and θ (polar) or xA, yA (Cartesian), for tappet in a fix 

system and for the cam in a mobile system. 
The point A

0
, which marks the initial couple position, 

represents in the same time the contact point between the 
cam and follower in the first position. The cam has an 
angular velocity ω (the camshaft angular velocity). 

Cam is rotating with the velocity ω describing the 
angle ϕ, which show how the base circle has rotated in 
the orally sense, (with the camshaft together); this 
rotation can be seen on the base circle between the two 
particular points, A

0
 and A

0i
. 

In this time the vector rA = OA (which represents the 
distance between the centre of cam O and the contact 
point A), has rotating (trigonometric) with the τ angle. If 
one measures the θ angle, which positions the general 
vector rA in function of the particular vector, rA0, it 
obtains the base relation noted with (0): 
 
θ = ϕ + τ  (0) 
 

where, rA is the module of the vector 
A
r

�

 and θA 

represents the phase angle of the vector 
A
r

�

. 

The rotating velocity of the vector 
A
r

�

 is 
A

ɺθ  which 

it’s a function of the angular velocity of the camshaft, 

ω and a rotating ϕ angle, (by the movement laws s(ϕ), 

s’(ϕ), s’’(ϕ)). 

The follower isn’t acted directly by the cam, by the 

angle, ϕ and by the angular velocity ω; it’s acted by the 

vector
A
r

�

, which has the module rA, the position angle θA 

and the angular velocity 
A

ɺθ . From here result a 

particular (dynamic) kinematics, the classical kinematics 

being just a static and approximate kinematics.  

Kinematics one defines the next velocities (Fig. 8). 

1
v

�

 = the cam velocity; which is the velocity of the 

vector 
A
r

�

, in the point A (that is not a fix point on the 

cam, but it is a point which is moving on the cam); now 

the classical relation (1) become an approximately 

relation and the real relation takes the form (2): 

 

1 A
v r= ⋅ω  (1) 

 

1 A A
v r= ⋅

ɺθ  (2) 

 

The velocity 
1
v AC=

�

 is separating in the velocity 

2
v BC=

�

 (the follower velocity which act in its axe, on a 

vertical direction) and 
12
v AB=

�

 (the slide velocity 

between the two profiles, the sliding velocity between 

the cam and the follower, which works by the direction 

of the commune tangent line of the two profiles in the 

contact point). 

Usually the cam profile is synthesis with the AD = s’ 

known, for the classical module C and one can write the 

relations (3-7): 

 
2 2 2

0
( ) '

A
r r s s= + +  (3) 

 
2 2

0
( ) '

A
r r s s= + +  (4) 

 

0 0

2 2

0

cos
( ) 'A

r s r s

r r s s

τ

+ +

= =

+ +

 (5) 

 

2 2

0

' '
sin

( ) 'A A

AD s s

r r r s s

τ = = =

+ +

 (6) 

 

2 1

'
sin '

A A A

A

s

v v r s

r

τ θ θ= ⋅ = ⋅ ⋅ = ⋅
ɺ ɺ  (7) 

 

Now, the follower velocity isn’t 
2

( ' )s v s s ω≠ ≡ ⋅ɺ ɺ , but 

it’s given by the relation (9). At the classical distribution 

mechanism the transmitting function D, is given by the 

relations (8): 

 

2

A

A

D

v
D

s

θ ω

θ

ω


 = ⋅



 = =


ɺ

ɺ

ɺ

 (8) 

 

2
' '

A
v s s D s Dθ ω= ⋅ = ⋅ ⋅ = ⋅

ɺ ɺ  (9) 
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Determination of the sliding velocity between the two 

profiles in contact is made by the relation (10): 

 

12 1

0

0

cos

( )
A A A

A

v v

r s

r r s

r

τ

θ θ

= ⋅ =


+
= ⋅ ⋅ = + ⋅



ɺ ɺ
 (10) 

 

The angles τ (and then θA) will be determined with its 

first and second derivatives.  

The τ angle has been determined from the triangle 

ODA (Fig. 8) with the relations (11-13): 

 

2 2

0

'
sin

( ) '

s

r s s

τ =

+ +

 (11) 

 

0

2 2

0

cos
( ) '

r s

r s s

τ

+

=

+ +

 (12) 

 

0

's
tg

r s
τ =

+

 (13) 

 

One derives relation (11) in function of ϕ angle and it 

obtains the expression (14): 

 

0

2 2

0

( ) ' ' ''
'' '

' cos
( ) '

A

A

r s s s s

s r s

r

r s s

τ τ

+ ⋅ + ⋅
⋅ − ⋅

⋅ =

+ +

 (14) 

 

The relation (14) will be written in the form (15):  

 

2 2 2 2

0 0

2 2 2 2

0 0

' cos

'' ( ) '' ' ' ( ) ' ''

[( ) ' ] ( ) '

s r s s s s r s s s

r s s r s s

τ τ⋅ =


⋅ + + ⋅ − ⋅ + − ⋅= + + ⋅ + +

 (15) 

 

From the relation (12) one extracts the value of cos 

τ, which will be introduced in the left term of the 

expression (15); then one reduces s’’.s’
2
 from the 

right term of the expression (15) and it obtains the 

relation (16):  

 

0

2 2

0

2

0 0

2 2 2 2

0 0

'
( ) '

( ) [ '' ( ) ' ]

[( ) ' ] ( ) '

r s

r s s

r s s r s s

r s s r s s

τ

+
⋅

+ +


+ ⋅ ⋅ + −=
 + + ⋅ + +

 (16) 

 

 
Fig. 8: Mechanism with rotating cam and plane translating tappet 
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After some simplifications one obtains finally the 

relation (17) which represents the expression of τ’:  

 
2

0

2 2

0

'' ( ) '
'

( ) '

s r s s

r s s

τ

⋅ + −

=

+ +

 (17) 

 

Now, when it was explicitly τ’, one can determine the 

next derivatives. The expression (17) will be derived 

directly and it can be obtained for begin the relation (18):  

 

2

0 0

2 2

0 0

2 2 2

0

''

[ '''( ) '' ' 2 ' ''][( )

' ] 2[ ''( ) ' ][( ) ' ' '']

[( ) ' ]

s r s s s s s r s

s s r s s r s s s s

r s s

τ =

+ + − +

+ − + − + +

+ +

 (18) 

 

One reduces the terms from the first bracket of the 

numerator (s’.s’’) and then one draws out s’ from the 

fourth bracket of the numerator and one obtains the 

expression (19):  

 

2 2

0 0

2

0 0

2 2 2

0

''

[ '''.( ) '. ''].[( ) ' ]

2. '.[ ''.( ) ' ].[ '']

[( ) ' ]

s r s s s r s s

s s r s s r s s

r s s

τ =

+ − + +

− + − + +

+ +

 (19) 

 

Now, one can calculate θA, with its first two 

derivatives, 
A

ɺθ  and 
A

ɺɺθ . We write θ and not θA, to 

simplify the notation. Now, one can determine (20), or 

relation (0): 

 

θ τ φ= +  (20) 

 

One derives (20) and it obtains the relation (21):  

 

' (1 ') Dθ τ φ τ ω ω ω τ ω= + = ⋅ + = ⋅ + = ⋅
ɺ ɺɺ  (21) 

 

One makes the second derivative of (20) and the first 

derivative of (21) and it obtains (22):  

 
2 2

'' 'Dθ τ φ τ ω ω= + = ⋅ = ⋅
ɺɺ ɺɺɺɺ  (22) 

 

One can write now the transmitting functions, D and 

D’ (at the classical module C), in the forms (23-24): 

 

' 1D τ= +  (23) 

 

' ''D τ=  (24) 

 

The follower velocity (relations from system 25), 

need the expression of the transmitted function, D:  

2
' ' ' '

A
v s w s s s D s Dθ θ ω= ⋅ = ⋅ = ⋅ = ⋅ ⋅ = ⋅

ɺ ɺ ɺ  (25) 

 

Where:  

 

w D ω= ⋅  (26) 

 

For the classical distribution mechanism (Module C), 

the variable w is the same with 
A

ɺθ  (see the relation 25). 

But at the B and F modules (at the cam gears where the 

follower has roll), the transmitted function D (and w), 

takes some complex forms. 

Now, it can determine the acceleration of the 

follower (27):  

 
2

2
( '' ' ')y a s D s D ω≡ = ⋅ + ⋅ ⋅ɺɺ  (27) 

 

In the Fig. 9, it can be seen the kinematics classic and 

dynamic; the velocities (a) and the accelerations (b). 

To determine the acceleration of the follower, are 

necessary s’ and s’’, D and D’, τ’ and τ’’. 

The kinematics dynamic diagrams of v2 (obtained 

with relation 25, Fig. 9a) and a2 (obtained with 

relation 27, Fig. 9b), have more a dynamic aspect than 

a kinematic one. It has used the movement law SINE, 

a rotation velocity at the crankshaft, n = 5500 [rpm], 

an up angle, ϕu = 75 [deg], a down angle ϕd = 75 

[deg] (identically with the up angle), a ray at the basic 

circle of the cam, r0 = 17 [mm] and a maxim stroke of 

the follower, hT = 6[mm]. Anyway, the dynamic is 

more complex, having in view the masses and the 

inertia moments, the resistant and motor forces, the 

elasticity constants and the amortization coefficient of 

the kinematics chain, the inertia forces of the system, 

the rotation velocity of the camshaft and the variation 

of the camshaft velocity, ω with the cam ϕ position 

and with the rotation speed of the crankshaft, n.  

Plotting (Synthesis) of Classical Cam Profile  

In xOy fixed system, Cartesian coordinates of 
point A of contact (of the tappet 2) are given by the 
position vector rA projections on the axes Ox Oy 
respectively and analytical expressions expressed by 
the relational system (28): 
 

0

0

cos cos
2 2

'
sin '

sin sin
2 2

cos

T A A

A A

A

T A A

A A

A

x r r

s
r r s

r

y r r

r s
r r r s

r

π π
φ τ φ τ

τ

π π
φ τ φ τ

τ

    
= ⋅ + + − = ⋅ +   

   

= − ⋅ = − ⋅ = −




    = ⋅ + + − = ⋅ +       


+= ⋅ = ⋅ = +


 (28) 
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 (a) 
 

 
 (b) 

 
Fig. 9: The classical and dynamic (exactly) kinematics (a) Velocities (b) Accelerations of the follower 
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Fig. 10: A cosine profile of a normal classical cam 

 

In the mobile system x'Oy' a Cartesian coordinates of 

the point contact A (belonging to the cam profile which 

rotated clockwise by angle φ) are given by the relations 

systems (29-30): 

 

( ) ( )

( )

( )

( )

0

0

cos cos
2 2

sin sin

sin cos sin cos

'
sin cos

sin ' cos

sin sin
2 2

cos cos

C A A

A A

A

A A

A A

C A A

A A

x r r

r r

r

r s s
r r

r r

r s s

y r r

r r

π π
φ τ φ φ τ φ

φ τ φ τ

φ τ τ φ

φ φ

φ φ

π π
φ τ φ φ τ φ

φ τ

   
= ⋅ + + − + = ⋅ + +   

   

= ⋅ − − = − ⋅ +

= − ⋅ ⋅ + ⋅

+
= − ⋅ ⋅ − ⋅ ⋅

= − + ⋅ − ⋅

   
= ⋅ + + − + = ⋅ + +   

   

= ⋅ − − = ⋅ ( )

( )

( )0

0

cos cos sin sin

'
cos sin cos ' sin

A

A A

A A

r

r s s
r r r s s

r r

φ τ

φ τ τ φ

φ φ φ φ

















+

= ⋅ ⋅ − ⋅

 +
= ⋅ ⋅ − ⋅ ⋅ = + ⋅ − ⋅



(29) 

 

( )

( )

0

0

' cos sin

cos ' sin

C

C

x s r s

y r s s

φ φ

φ φ

 = − ⋅ − + ⋅


 = + ⋅ − ⋅

 (30) 

 

Above, in the Fig. 10 it can be seen the cam profile to 

the classical module C, for a law cosine, h = 6 [mm], r0 = 

13 [mm], η = 6%. 

Results 

In the Fig. 11 one can see the module B, with rotation 

cam and translated tappet with roll, in initial position and 

in some one position. The α0 angle defines the base 

position of the vector 
0B

r  in OCB0 right triangle so that it 

can be written Equation 2.1-2.4: 0 Br  
 

0
0B b

r r r= +  (2.1) 

 

0

2 2

0 B
s r e= −  (2.2) 

 

0

0
cos

B

e

r

α =  (2.3) 

 

0

0

0
sin

B

s

r

α =  (2.4) 

 

The δ pressure angle (that occurs between normal n 

gone through the contact point A and a vertical line) has 

the known size given by the relations (2.5-2.7): 

 

0

2 2

0

cos
( ) ( ' )

s s

s s s e

δ
+

=

+ + −

 (2.5) 

 

2 2

0

'
sin

( ) ( ' )

s e

s s s e

δ
−

=

+ + −

 (2.6) 
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0

's e
tg

s s
δ

−

=

+

 (2.7) 

 

The vector 
A
r  can be determined directly with the 

relations (2.8-2.9): 

 
2 2 2

0
( sin ) ( cos )

A b b
r e r s s rδ δ= + ⋅ + + − ⋅  (2.8) 

 
2 2

0
( sin ) ( cos )

A b b
r e r s s rδ δ= + ⋅ + + − ⋅  (2.9) 

 

It can directly determine the angle αA (2.10-2.11): 

 

sin
cos b

A

A

e r

r

δ
α

+ ⋅

=  (2.10) 

 

0
cos

sin b

A

A

s s r

r

δ
α

+ − ⋅

=  (2.11) 

 
It can be now drawn directly the cam profile using 

polar coordinates rA (known, see relation 2.9) and θA 

(which is determined by relations 2.12-2.17): 
 

0A
γ α α= −  (2.12) 

 

0 0
cos cos cos sin sin

A A
γ α α α α= ⋅ + ⋅ →  (2.13) 

 

0 0
sin sin cos cos sin

A A
γ α α α α= ⋅ − ⋅  (2.14) 

 

A
θ φ γ= −  (2.15) 

 

cos cos cos sin sin
A

θ φ γ φ γ= ⋅ + ⋅  (2.16) 

 

sin sin cos sin cos
A

θ φ γ γ φ= ⋅ − ⋅  (2.17) 

 

In the Fig. 12 it can be seen for the module B a cosine 

law cam profile calculated with parameters: r0 = 13 

[mm], rb = 2 [mm], h = 20 [mm], ϕu = 60 [deg]. One has 

obtained in this mode a high yield for a mechanism with 

cam: η = 39%. It can be obtained the same yield (Fig. 

13) with decreased stroke and up angle: r0 = 13 [mm], rb 

= 2 [mm], h = 13 [mm], ϕu = 45 [deg], η = 39%.  

For such distribution mechanism works normally we 

must use the special adjustment valve spring: x0 = 9 [cm], k 

= 500000 [N/m]. Where k is the valve spring elastic 

coefficient and x0 is the valve spring preload. It can be 

obtained a higher yield (Fig. 14) with the next parameters: 

r0 = 15 [mm], rb = 2 [mm], h = 10 [mm], ϕu = 30 [deg], η = 

43%, k = 1500000 [N/m], x0 = 5 [cm]. Although spring 

used is extremely hard to have a good dynamic in operation 

(Fig. 15), there's need to reduce its camshaft rotation speed 

three times. But for such distribution mechanism may work 

must be used a triple cam. 

 

 
 

Fig. 11: Cam module B, with translated tappet with roll 
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Fig. 12: Cam module B profile cosine law, with translated tappet with roll; r0 = 13 [mm], rb = 2 [mm], h = 20 [mm], ϕu = 60 

[deg], η = 39% 

 

 
 

Fig. 13: Cam module B profile cosine law, with translated tappet with roll; r0 = 13 [mm], rb = 2 [mm], h = 13 [mm], ϕu = 45 [deg], η = 39%  
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Fig. 14: Cam module B profile cosine law, with translated tappet with roll; r0 = 15 [mm], rb = 2 [mm], h = 10 [mm], ϕu = 30 [deg], η = 43%  

 

 
 
Fig. 15: Cam module B dynamics (cosine law, with translated tappet with roll: r0 = 15 [mm], rb = 2 [mm], h = 10 [mm], ϕu = 30 

[deg], η = 43%); the tappet acceleration in relation of ϕ angle  

 

Exact Kinematics Module B 

For determination of exact kinematics one uses the 

next relations (2.18-2.45): 
 

2 2 2

0
( )

B
r e s s= + +  (2.18) 

 
2

B B
r r=  (2.19) 

cos sin
B

B

e

r

α τ≡ =  (2.20) 

 

0
sin cos

B

B

s s

r

α τ

+

≡ =  (2.21) 

 

cos( ) cos cos sin sinδ τ δ τ δ τ+ = ⋅ − ⋅  (2.22) 
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2 2 2 2 cos( )
A B b b B
r r r r r δ τ= + − ⋅ ⋅ ⋅ +  (2.23) 

 
2 2 2

cos
2

A B b

A B

r r r

r r

µ
+ −

=

⋅ ⋅

 (2.24)  

 

sin( ) sin cos sin cosδ τ δ τ τ δ+ = ⋅ + ⋅  (2.25) 

 

sin sin( )b

A

r

r

µ δ τ= ⋅ +  (2.26) 

 

A B
α α µ= −  (2.27) 

 

A B
α α µ= −ɺ ɺ ɺ  (2.28) 

 

2
sin B

B B

B

e r

r

α α
⋅

− ⋅ = −

ɺ
ɺ  (2.29) 

 

2

0
( )

B B

B

B

e r r

s s r

α
⋅ ⋅

=

+ ⋅

ɺ
ɺ  (2.30) 

 

0

0

2 2 ( )

( )

B B

B B

r r s s s

r r s s s

⋅ ⋅ = ⋅ + ⋅


⋅ = + ⋅

ɺ ɺ

ɺ ɺ
 (2.31) 

 

0

2 2

0

( )

( )
B

B B

e s s s e s

s s r r

α

⋅ + ⋅ ⋅

= =

+ ⋅

ɺ ɺ
ɺ  (2.32) 

 

2 cos 2 cos

2 sin 2 2

A B A B

A B A A B B

r r r r

r r r r r r

µ µ

µ µ

⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

− ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ + ⋅ ⋅

ɺ ɺ

ɺ ɺ ɺ
 (2.33) 

 

2 2 2 cos( )

2 sin( ) ( )

A A B B b B

b B

r r r r r r

r r

δ τ

δ τ δ τ

 ⋅ ⋅ = ⋅ ⋅ − ⋅ ⋅ ⋅ +

+ ⋅ ⋅ ⋅ + ⋅ +

ɺ ɺ ɺ

ɺ ɺ

 (2.34) 

 

0

2 2

0

'' ( ) ' ( ' )
'

( ) ( ' )

s s e s s e

s s s e

δ
⋅ + − ⋅ −

=

+ + −

 (2.35) 

 

'δ δ ω= ⋅
ɺ  (2.36) 

 

2B

B

e s

r

τ α

⋅

= − = −

ɺ
ɺɺ  (2.37) 

 

cos cos

sin

A B A B A A B B

A B

r r r r r r r r

r r

µ µ
µ

µ
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=

⋅ ⋅

ɺ ɺ ɺ ɺ
ɺ  (2.38)  

 

A A
θ φ γ ω α= − = −
ɺ ɺ ɺ ɺ  (2.39) 

 
2 2

0

2 2

0

( ) ( ' ) ( ' )
cos

( ) ( ' )

b

A

A

e s s s e r s e

r s s s e

α

⋅ + + − + ⋅ −

=

⋅ + + −

 (2.40) 

2 2

0 0

2 2

0

( ) [ ( ) ( ' ) ]
sin

( ) ( ' )

b

A

A

s s s s s e r

r s s s e

α
+ ⋅ + + − −

=

⋅ + + −

 (2.41) 

 

0

2 2

0

( ) ' '
cos( ) cos

( ) ( ' )
A

AA

s s s s

rr s s s e

α δ δ
+ ⋅

− = = ⋅

⋅ + + −

 (2.42) 

 

2'
cos( ) cos cos

A

A

s

r

α δ δ δ− ⋅ = ⋅  (2.43) 

 

2 2 2 2
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0
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0
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[( ) ] ( ) ( ' )

[( ) ']

( ) ( ' )

b

A B

s s e s s s e

r s s e e s

r r s s s e

µ =

+ + ⋅ + + −

− ⋅ + + − ⋅

⋅ ⋅ + + −

 (2.44) 

 

0

2 2

0

( ) '
sin

( ) ( ' )

b

A B

r s s s

r r s s s e

µ
⋅ + ⋅

=

⋅ ⋅ + + −

 (2.45) 

 

Determination of Dynamic Coefficient D  

The dynamic coefficient at the module B takes the 

form (2.46), where cas
2
δ is given by relation (2.47) and 

I

A
θ  is obtained from expression (2.48): 

 
2

cos
I

A
D θ δ= ⋅  (2.46)  

 
2

2 0

2 2

0

( )
cos

( ) ( ' )

s s

s s s e

δ
+
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+ + −

 (2.47)  
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0 0

2 2
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0 0
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{[( ) ( ' ) ] ( ) ( ' )

[ '' ( ) ' ( ' ) ( ) ( ' ) ]}

/[( ) ( ' ) ] / {[( ) ]

( ) ( ' ) 2 [( ) ']}

I

A b

b

b

b

s s e e s r s s s e

s s s e s s s e

r s s s s s e s s s e

s s s e s s e r

s s s e r s s e e s
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+ + − ⋅ + + −

+ ⋅ ⋅ + − ⋅ − − + − −

+ + − + + + ⋅

+ + − − ⋅ ⋅ + + − ⋅

 (2.48) 

 

Synthesis of the Distribution Mechanism 

Module F  

In the Fig. 16 one can see the module F, with rotation 

cam and rotated tappet with roll, in initial position and in 

some one position.  

A study very precisely (exactly) is possible only 

when we analyze what happens in point A (the point of 

contact between cam and the roller of the tappet). Point 

A is defined by the vector of length (module) rA and θA 

position angle, measured from the axis Ox and or αΑ 

angle, measured from the axis OD (Fig. 16).  
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In the same mode is defined position of the point B 

(roll center), by the vector ,
B
r  which is positioned in 

turn by the angle θB to the axis Ox and αB angle to the 

axis OD and has length rB. Between the two presented 

vectors ( ),

A B
r and r  is forming an angle µ. The angle α0 

defines the position, basic (initial) of the vector rA in 

ODB0 right triangle, as measured from the axis OD. The 

rotation of the cam (the shaft distribution), given by the 

ϕ angle, is measured from the axis Ox, to the vector. As 

the camshaft rotates with ϕ angle, the vector is rotated by 

the angle θA and between the two angles θA and ϕ there 

is a mismatch (a phase shift) which is noted in Fig. 16 

with γ; γ phase shift occurs and between αA and α0 

angles, which helps us to determine the exact value of 

its. The length (radius) of the tappet, DB = b, in the 

initial position DB0 makes with OD axis the angle ψ0 

constant, which can be determined easily together with α0 

from the triangle ODB0 (with: OD = d, DB = DB0 = b, OB0 

= r0+rb known; where r0 is the radius of the basic circle on 

the rotary cam and rb is the roller radius of the follower). 

From initial position until the current position, the 

follower rotates around the point D with a known ψ 

angle. This ψ angle, is given by the law of motion of 

pusher and is a function of the ϕ angle. ψ is known 

together with its derivatives: ψ', ψ'', ψ'''. In general it is 

easier to express the movement of the follower in 

function of axis OD, so occurs the angle ψ2 = ψ0+ψ 

(with: 
2 2
' ', " "ψ ψ ψ ψ= = ).  

From ODB triangle, with known lengths OD = d, DB 

= b and ψ2 angle, one determines the length OB = rB, the 

DOB = αB angle and the OBD = β2 angle (Fig. 17). 

Angle B sought, with angles β2 and τ, totals 180 [deg]; 

and τ+δ = 90 [deg]; with delta known, results τ and the B 

angle. Now, with rB, rb and B known (from the triangle 

OBA) we can determine rA and µ.  

Synthesis of the Cam Profile  

Now it can make the synthesis of the cam profile with 

the next relationships (3.1-3.4):  

 

A B
α α µ= +  (3.1) 

 

0A
γ α α= −  (3.2) 

 

A
θ φ γ= +  (3.3) 

 

cos

sin

A A A

A A A

x r

y r

θ

θ

= ⋅


= ⋅
 (3.4) 

 

To do this, it must determine first the pressure δ angle.  

Determination of the Pressure δ Angle  

Now one presents shortly one known method to 

determine the pressure angle δ at the rotary cam and 

rocking tappet with roll (Module F, Fig. 18).  

The pressure angle is defined between two straight lines: 

n-n and t-t (the line n-n, pass through the points A and B and 

is perpendicular in A at the two profiles in contact; the line 

t-t, pass through the point B and is perpendicular in B on the 

line DB which represent the tappet axis).  

One builds (scale) the speed triangle rotated with 90 

[deg] (Fig. 18); the cam velocity in B (vB1) appears along 

the BO, oriented from B to O, the reduced velocity of the 

tappet in B point (vB2) appears along the BD, oriented 

from B to b2 and the sliding between profiles velocity in 

the point B (vB2B1) appears along the n-n line, oriented 

from O to b2.  

It takes the pole of the fold (rotated) speeds, Pv, in B 

and the velocities scale kv = kl.ω1. ((BO) = (Pvb1) = 

vB1/[kl.ω1]; (Bb2) = (Pvb2) = vB2/[kl.ω1]; (Ob2) = (b1b2) 

= vB2B1/[kl.ω1]). It determines the lengths with the 

relationships 3.5 and 3.6:  
 

2

2 2

1

2 2

2 2 2

2

; '; cos ;

sin ; '

cos ( ')

cos '

B
v

DB b Bb b CD d

OC d b D b b

Cb CD b D d b b

d b b

ψ ψ
ω

ψ ψ

ψ ψ

ψ ψ


= = = ⋅ = ⋅




= ⋅ = − ⋅
 = − = ⋅ − − ⋅
= ⋅ + ⋅ −

 (3.5) 

 

From the ODb2 triangle, one determines the length 

Ob2, (relation 3.6):  
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 (3.6) 

 

With the known lengths one can determine now the 

trigonometric functions of the δ pressure angle, with the 

relationships (3.7-3.9):  
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Fig. 16: Mechanism with rotating cam and rotating tappet with roll 
 

 
 

Fig. 17: Determination of angle B 
 

 
 

Fig. 18: Determination of the pressure angle, δ 
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Fig. 19: Determination of the additionally pressure angle α 

 

 
 

Fig. 20: Synthesis of the cam profile for module F with the law C4P 

 

Determination of the Pressure α Angle  

Further α pressure-angle is determined (where α is an 

additional pressure-angle), to the rotary cam and rotating 

follower with roll (Module F). This angle appears 

between the direction n-n and right segment AA', 

perpendicular in A on OA (Fig. 19).  

From some triangle OAB was expressed and OAB 

angle (Fig. 19). From the angle OAB directly subtract 

90° and get extra pressure α angle. The calculation 

formulas are (3.10-3.20): 
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 (3.11)  

 
cos cos( 90)

cos(90 ) sin( ) sinB

A

OAB

r
OAB OAB B

r

α = − =

= − = = ⋅

 (3.12)  

 

2
cos

cos
B

B

d b

r

ψ
α

− ⋅

=  (3.13)  

 

2
sin

sin
B

B

b

r

ψ
α

⋅

=  (3.14)  

30 

 
25 

 
20 

 
15 

 
10 

 
5 

 
0 

 
-5 

 
-10 

 
-15 

d 
O D ψ2 

A’ 
αA 

rA 

µ 

A 
n 

B rb 

B β2 
τ 

α 

n 

b 

-20                -10                  0                 10                  20 

n=40000[rot/min] 

ϕu=ϕc=85[grad] 

 r0=10[mm] 

 rb=3[mm] 

 b=30[mm] 

 d=30[mm] 

 hT=15.70[mm] 

 i=1 l=b/i 

 law :C4P3-2 

 y=2x-x
2
 

Law C4P 



Relly Victoria Virgil Petrescu / Journal of Mechatronics and Robotics 2019, Volume 3: 431.470 

10.3844/jmrsp.2019.431.470 

 

450 

2
cos '

sin
d b b

RAD

ψ ψ
δ

⋅ + ⋅ −

=  (3.15)  

 

2
sin

cos
d

RAD

ψ
δ

⋅

=  (3.16)  

 

2 2 2

2

2

2 2 2

sin( ) sin cos sin cos

cos '
cos

sin sin cos (1 ')

d b b

RAD

d d b

RAD RAD

δ ψ δ ψ ψ δ

ψ ψ
ψ

ψ ψ ψ ψ


 + = ⋅ + ⋅ =


⋅ + ⋅ −
= ⋅ +


 ⋅ ⋅ − ⋅ ⋅ −
+ =

 (3.17) 

 

2 2 2

2 2 2 2

2 2

2

cos( ) cos cos sin sin

sin cos cos sin

' sin sin

sin (1 ')

d d

b b

RAD

b

RAD

δ ψ δ ψ δ ψ

ψ ψ ψ ψ

ψ ψ ψ

ψ ψ

+ = ⋅ − ⋅ =
 ⋅ ⋅ − ⋅ ⋅
 − ⋅ ⋅ + ⋅
= =


 ⋅ ⋅ −
=



 (3.18) 

 

2 2

2

2 2 2

2

2 2 2

2 2

sin sin( ) sin cos( ) cos

sin sin cos (1 ')

cos sin (1 ') sin (1 ')

sin ' sin ' '
cos

' cos
sin

B B

B

B

B B B

B

B

d b b

r RAD

b d b

r RAD

d b d b b

r RAD RAD r r

b
B

r

δ ψ α δ ψ α

ψ ψ ψ ψ

ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ
δ

ψ δ


 = + ⋅ − + ⋅ =

 ⋅ ⋅ − ⋅ ⋅ ⋅ −
= +

⋅
 ⋅ ⋅ ⋅ − − ⋅ ⋅ ⋅ −
+ =

⋅
 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= = ⋅ = ⋅

⋅

⋅ ⋅
=








 (3.19)  

 

' cos
cos sin

' cos

'
cos cos

B B

A A B

A

A

r r b
B

r r r

b

r

b

r

ψ δ
α

ψ δ

ψ
α δ

 ⋅ ⋅
= ⋅ = ⋅ =


 ⋅ ⋅
=


 ⋅

= ⋅


 (3.20) 

 

The cosα can be expressed in a simplified form (see 

the relation 3.20).  

Basic Kinematics of Module F  

Below are presented a few parameters determining 

the kinematics (which constitutes the basis of this 

mechanism); relations: 3.21-3.56: 
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Relations to Draw (Synthesis) the Cam Profile, to 

the Module F  

Next few cinematic parameters are determined by 
which cam profile can be traced directly (to the rotating 
cam and rocker follower with roll); relations 3.57-3.64: 
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The Cam Profile Module F of Law C4P  

In the Fig. 20 one can see the cam profile for an 
original law called by author C4P, which support a 
rotation speed of the drive shaft of 40000 [rpm], 
compared with the classical distribution who support a 
maximum drive shaft rotation speed of 5000-6000 [rpm].  

The Dynamic Coefficient D  

The dynamic coefficient is expressed with relation 

(3.65), where has the expression (3.66) and is given by 

the expression (3.67): 
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Synthesis of the Distribution Mechanism 

Module H  

In the Fig. 21 one can see the module H, with rotation 

cam and rotated plane tappet, in initial position and in 

some one position.  

For general use kinematic relations are inserted 4.1-4.4:  
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In the Fig. 22 one can see and the velocities and the 
forces of this type of distribution mechanism.  

In the Fig. 23 it can see a cam profile at the 
module H (with rotation cam and rotating plate 
follower), for a law sine.  

The phase angle is ϕu = ϕc = 80 [deg]; core radius has 
value r0 = 13 [mm].  

In the Fig. 24 it can see a cam profile at the module H 
(with rotation cam and rotating plate follower), for a law 
C4P. The phase angle is ϕu = ϕc = 70 [deg]; core radius 
has value r0 = 20 [mm]. This profile support a drive shaft 
rotation speed of 30000 [rpm]. 

 

 
 

Fig. 21: The distribution mechanism for module H 
 

 
 

Fig. 22: The distribution mechanism module H; forces and velocities 
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Fig. 23: A cam profile at the module H, for a law sine: ϕu = ϕc = 80 [deg]; r0 = 13 [mm]; η = 12.9% 

 

 
 

Fig. 24: A cam profile at the module H, for a law C4P: ϕu = ϕc = 70 [deg]; r0 = 20 [mm]; η = 4% 
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Discussion  

Rigid memory mechanisms, commonly known as 

cam and follower mechanisms, have revolutionized the 

world several times. The first time they have radically 

changed the face of the world when they were massively 

introduced to automatic tissue machinery, in the 

Netherlands in the 18th century and then immediately 

developed in England and then all over the world. Tissue 

wars as these machines were called at that time managed 

to mark a turning point for humanity in its development, 

as they quickly changed the way of production from 

weaving women to automated tissue machines, 

following a scientific-technical revolution, social ...  

The first valve mechanisms appeared in 1844, being 

used in steam locomotives; they were designed and built 

by the Belgian mechanical engineer Egide Walschaerts.  

The first cam mechanisms are used in England and 

the Netherlands in the tissue wars.  

In 1719, in England, some John Kay opens in a five-

story building a spinning facto plant. With a staff of over 

300 women and children, this would be the world's first 

factory. He also becomes famous by inventing the flying 

sail, which makes the tissue faster. But the machines 

were still manually operated. It was not until 1750 that 

the textile industry was to be revolutionized by the 

widespread application of this invention. Initially, the 

weavers opposed it, destroying flying sails and banishing 

the inventor. By 1760 the wars and the first factories 

appeared in the modern sense of the word. It took the 

first engines. For over a century, the Italian Giovanni 

Branca had proposed the use of steam to drive turbines. 

Subsequent experiments were not satisfying. In France 

and England, brand inventors, like Denis Papin or the 

Worcester Marquis, came up with new ideas. At the end 

of the seventeenth century, Thomas Savery had already 

built the "friend of the miner", a steam engine that put 

into operation a pump to remove water from the 

galleries. Thomas Newcomen has made the commercial 

version of the steam pump and engineer James Watt 

develops and adapts a speed regulator that improves the 

engine's net. Together with Mathiew Boulton, he builds 

the first steam-powered engines and in less than half a 

century, the wind that fed for more than 3,000 years, the 

propulsion power at sea now only inflates pleasure boats. 

In 1785 came into operation, the first steam-powered 

steamer followed quickly by a few dozen.  

The first distribution mechanisms occur with four-

stroke engines for cars.  

In 1680, Dutch physicist Christian Huygens designs 

the first internal combustion engine.  

In 1807, Swiss François Isaac de Rivaz invented an 

internal combustion engine that uses a liquid mixture of 

hydrogen and oxygen as fuel. However, Rivaz's engine 

for its new engine has been a major failure, so its engine 

has gone dead, with no immediate application.  

In 1824, English engineer Samuel Brown adapted a 

steam engine to make it work with gasoline.  

In 1858, Belgian engineer Jean Joseph Etienne Lenoir 

invented and patented two years later, practically the first 

real-life internal combustion engine with spark-ignition, 

liquid gas (extracted from coal), a two-stroke engine . In 

1863, the Belgian Lenoir is the one who adapts to his 

engine a carburetor, making it work with oil (or 

gasoline).  

In 1862, the French engineer Alphonse Beau de 

Rochas first patented the four-stroke internal combustion 

engine (but without building it).  

It is the merit of the German engineers Eugen 

Langen and Nikolaus August Otto to build 

(physically, practically the theoretical model of the 

French Rochas), the first four-stroke internal 

combustion engine in 1866, with electric ignition, 

charging and distribution in a form Advanced.  

Ten years later (in 1876), Nikolaus August Otto 

patented his engine.  

In the same year (1876), Sir Dougald Clerk, he puts 

the two-stroke engine of Belgian Lenoir (bringing it to 

the shape known today).  

In 1885, Gottlieb Daimler arranges a four-stroke 

internal combustion engine with a single vertical 

cylinder and an improved carburetor.  

A year later his compatriot Karl Benz brings some 

improvements to the four-stroke engine. Both Daimler 

and Benz were working new engines for their new 

cars (so famous).  

In 1889, Daimler improves the four-stroke internal 

combustion engine, building a "two cylinder in V" and 

bringing the distribution to today's classic form, "with 

mushroom-shaped valves."  

In 1890, Wilhelm Maybach built the first four-

cylinder four-cylinder internal combustion.  

In 1892, German engineer Rudolf Christian Karl 

Diesel invented the compression-ignition engine, in short 

the diesel engine.  

Today, the models of distribution mechanisms have 

greatly diversified, being vital to internal combustion 

engines mounted on cars, which today are produced 

annually in over 60-70 million extra copies and the car 

fleet is more than a billion after 2010 years.  

Essential changes to this mechanism have been 

attempted by replacing it with induction coils that move 

a linear spike, but the forces and high moments in the 

system have caused these electromagnetic mechanisms 

to break rapidly after a small number of cycles, not 

having the resistance of the classic distribution 

mechanism created in 1866 by Otto.  

The synthesis of these types of distribution 

mechanisms can be done shortly by Cartesian 

coordinates, but for the determination of these 

coordinates, we also need trigonometric parameters.  
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This synthesis method, which is based on 

trigonometric parameters (in a large proportion), can be 

called a trigonometric synthesis method. With the 

internal combustion engine, there is a great loss of power 

through the distribution mechanism, which is why we 

must try to improve the functionality of this mechanism. 

Based on the relationships presented, it is still 

possible to determine both the analysis and the synthesis 

of the dynamic mechanism.  

The short relationships presented in this study are 

therefore of essential nature, as they can then generate 

dynamic relationships.  

As long as we produce electricity and heat by burning 

fossil fuels, it is useless to try to replace all electric motors 

as electricity and the pollution will be even greater.  

However, it is good to continually improve thermal 

motors to reduce fuel consumption.  

With the internal combustion engine, there is a 

great loss of power through the distribution 

mechanism, which is why we must try to improve the 

functionality of this mechanism.  

The modular combustion chamber has a unique design 

of the valve actuator. The valve springs exert great forces to 

ensure their rapid closure. The forces for their opening are 

provided by camshaft driven camshafts.  

Economy: Velcro and cams are large, ensuring 

smooth and precise action on the valves. This is reflected 

in low fuel consumption.  

Reduced pollutant emissions: The accuracy of the 

distribution mechanism is a vital factor in engine 

efficiency and clean combustion.  

Cost of operation: An important benefit brought by 

the size of the tachets is their low wear rate. This reduces 

the need for adjustments. Valve operation remains 

constant over a long period of time. If adjustments are 

required, they can be made quickly and easily.  

Today, more than ever, we want to eliminate internal 

combustion engines or even thermal ones that have been 

carrying us for over 200 years and replacing them with 

other more modern engines.  

Water engines have the best note on this, but research 

in the field is not much desired by some of the planet's 

leaders, these projects not being sponsored enough and 

fair. A water engine actually burns hydrogen out of the 

water by modern methods, with no much-extracting 

energy, which makes water an ideal energy storage 

facility. By combustion, water is naturally reclaimed, the 

burning of hydrogen is complete and free of noxious, 

unlike fossil fuels, petroleum and gaseous fuels.  

When burning hydrogen, it is always preferable to have 

a thermal cell burner instead of a classic engine because 

hydrogen burns ten times faster than conventional fuels and 

also presents the risk of explosion.  

For this reason, the burning of stored hydrogen or the 

extracted directly from the water will always be done in 

special burners, which produce heat transformed by 

chemical processes into electrical energy that loads some 

modern accumulators so that the solution is 

automatically conducive to the final use of some motors 

electric on the vehicle in question, so the thermal engine 

disappears from the equation when talking about 

hydrogen fuel or water.  

And from the nostalgia for keeping the thermal 

engines, but especially from the desire of oil and gas 

magnates to preserve their priorities on the extracted gas 

and their oil, it is still undesirable to move on to such a 

modern solution, with water.  

The problem what will happen with a park of 

motorized cars on classic fuels, a park of over one billion 

cars, is not as hard as it may seem, because no ordinary 

man will buy such classic cars anymore, if will occur 

cars with water, cheap and with great capabilities.  

We notice that higher amounts are paid for research 

on permanent magnetic motors, which for more than 20 

years since they appeared did not evolve too much due to 

the rapid demagnetization of the materials used.  

It seems to be preferable for scientific research to 

focus on the slippery ground from the very beginning, 

just as oil and gas will still be the most desirable for 

motorists in this mode.  

The simple electric engine develops slowly with the 

fuel cell models.  

Its problems are still high because electric cars are 

still expensive, heavy to load and can not be loaded in 

every place and the loading time is still high, but 

especially the autonomy of such cars is still small 

compared to the classical ones with fossil fuels.  

Nowadays, new oil resources and new gas reserves have 

also emerged, considering the shale gases (of depth that can 

be extracted today), so that the planet's gas reserves have 

increased from 40-50 years to about 2000 years.  

The burning of hydrogen is clean, that of gas burning 

is quite complete and yet it is keeping the very polluting 

gasoline and diesel.  
As very large gas reserves have been discovered, they 

are now being transformed into pollutants, gasoline and 
diesel, in very large processing plants (three are already 

working at high capacity), although they will then be 
required by limitation rules polluting by the production 
of sophisticated devices (Euro 6) that produce large 
losses and anyway the pollution remains. It would be 
easier to switch to gas burning than to convert gas into 
gasoline and diesel and then introduce a Euro 7 to filter 

and limit the pollution caused by gasoline and diesel. 
Current world policies are completely contradictory, 
convert non-polluting gas into diesel and then impose 
anti-pollution rules on diesel fuel.  

Under these circumstances, it is still necessary to 
further study and improve the distribution systems of 
thermal engines to limit the levels of pollutant 
emissions in this way.  
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Conclusion 

The synthesis of these types of distribution 

mechanisms can be done shortly by Cartesian 

coordinates, but for the determination of these 

coordinates, we also need trigonometric parameters.  

This synthesis method, which is based on 

trigonometric parameters (in a large proportion), can be 

called a trigonometric synthesis method. With the 

internal combustion engine, there is a great loss of power 

through the distribution mechanism, which is why we 

must try to improve the functionality of this mechanism.  

Based on the relationships presented, it is still 

possible to determine both the analysis and the synthesis 

of the dynamic mechanism.  

The short relationships presented in this study are 

therefore of essential nature, as they can then generate 

dynamic relationships.  

As long as we produce electricity and heat by burning 

fossil fuels, it is useless to try to replace all electric motors 

as electricity and the pollution will be even greater.  

However, it is good to continually improve thermal 

motors to reduce fuel consumption.  

With the internal combustion engine, there is a great 

loss of power through the distribution mechanism, which 

is why we must try to improve the functionality of this 

mechanism. Under these circumstances, it is still 

necessary to further study and improve the distribution 

systems of thermal engines to limit the levels of 

pollutant emissions in this way.  
In addition, these mechanisms are also used for 

mechanical transmissions everywhere, for automated 
machines, for robotics and mechatronization, as well as 
for medical devices.  
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