
 

 
© 2019 Nicolae Petrescu and Florian Ion Tiberiu Petrescu. This open access article is distributed under a Creative Commons 

Attribution (CC-BY) 3.0 license. 

Journal of Mechatronics and Robotics 

 

 

 

Original Research Paper  

Machine Motion Equations Presented in a New General 

Format 
 

1
Nicolae Petrescu and 

2
Florian Ion Tiberiu Petrescu 

 
1Bucharest University, Bucharest, (CE), Romania 
2ARoTMM-IFToMM, Bucharest Polytechnic University, Bucharest, (CE), Romania  

 
Article history  
Received: 17-03-2019  
Revised: 09-04-2019 
Accepted: 21-05-2019 
 
Corresponding Author: 
Florian Ion T. Petrescu 
ARoTMM-IFToMM, Bucharest 
Polytechnic University, 
Bucharest, (CE), Romania 
Email: fitpetrescu@gmail.com 

Abstract: Considering the increased importance of robots nowadays, when 

no large factory or factory can work without robots, we want to present in 

the work the motion equations of the machine in an original form, both in 

terms of aspect and their deduction. The machine's motion equations can be 

used in dynamic calculations at any type of machine, whether it be a motor, 

a compressor, a lucrative machine, a robot, a system, a mechanism, a 

vehicle, a mechanical transmission, or any other type of car. The 

dynamics of systems is their real movement, the dynamic movement, in 

which the influences of three main factors interfere, which modify the 

kinematics of the mechanism when it moves really, dynamic. The first 

dynamic factor is the forces of inertia or the effect of inertial masses. The 

second important dynamic factor is that of the couplings, of the linkages 

within the respective machine mechanisms. The latter and the third 

dynamic factor represents the influence of system elasticity on its 

dynamic functioning. Only dynamic coefficient of inertia and the 

influence of kinematic couplings in the system were used in the analyzed 

sample. The dynamic coefficient due to elasticity and deformation in the 

system has not been taken into account since the overwhelming influence 

of the inertial forces is impacted by additional dynamic changes and also 

by the kinematic couplings in the system and the elastic deformations do 

not greatly influence the dynamics of the system in the case of the 

example remembered. If a robot was being discussed, things were similar, 

as in the case of various vehicles and various mechanisms and machines. 

However, for rigid memory transmissions, elastic deformations are 

important, which is why they should be considered in such systems. 

 

Keywords: Robots, Mechatronic Systems, Structure, Dynamics, Dynamics 

Systems, Machines, Machine Motion Equations, Dynamic Factors 

 

Introduction 

Today, robots are increasingly present in the machine 

building industry, sometimes even in some sections, to 

replace workers altogether due to the high quality of 

their work, repetitive, without stopping or interrupting, 

without manufacturing and assembly. 

In addition, robots do not get sick, do not need 

medical leave or rest, work faster and better than people 

and support dyers, general assemblies, etc. 

Generally, robots have increased the quality and 

productivity of work and have not even created a union 

to defend their claims, demanding higher wages for them 

and larger holidays.  

Interestingly, a robot works without pause, but 
unpaid, without breaks, without complaining about 
factory conditions. 

Robots can work on three shifts, that is, permanently, 

but not by moving them as humans, but they always remain 

the same robots deployed on a day without interruptions, 

without pauses, without rest, without problems. 

Robots are today highly valued by major carmakers 

which even build complete sections where only robots 

work because they do not have a trade union, they do not 

require increased salaries (they actually work without 

any salary), they do not have to leave on holidays, do not 

want free days and can even work on Saturdays and 

Sundays, without breaks, if necessary, on three exchanges, 
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including in toxic, dangerous environments, or even in 

hard-to-reach areas. The importance of implementing 

robots can no longer be challenged. They have increased 

the quality of work and the production of an enterprise so 

that they can no longer give up their help. 

Workers reclassified and worked only in more 

friendly jobs or other jobs, such as supermarkets, in 

better conditions, with higher wages, more days off and 

are satisfied with the production and sales gains due to 

robot work in large factories. 

One can clearly state that our robots have 

considerably improved our lives. Thanks to them, a 

new free day for almost all working people was 

introduced on Friday, in addition to Saturday and we 

will soon be able to enter another free day, but we have 

to choose Monday or Thursday. 

People were initially trained by trade union leaders to 

track and sabotage robots, destroy them and not accept 

them. Today things are clear and the robots work quietly 

in the big companies and factories for the good of all, so 

now we can accept the silence of automation, robotics, 

electronics, without letting us be fooled by the trade 

union leaders who slowly slow down and calm down. 

Whether we like it or not, the robots have already 

stolen all their heavy jobs. 

Certain anthropomorphic robots are, as we have 

already said, in most of the most widespread and widely 

used works around the world, due to their ability to adapt 

quickly to forced labor, working without breaks or 24 

hours, air or salary. Anthropomorphic robots are thin, 

elegant, easy to configure and adapted to virtually any 

location, being the most flexible, useful, more 

penetrating, easier to install and maintain. For the first 

time, these robots affirmed themselves in the automotive 

industry and especially in the automotive industry, today 

they have penetrated almost all industrial fields, being 

easily adaptable, flexible, dynamic, resilient, cheaper 

than other models, occupying a workspace important. 

They can also work in toxic or hazardous environments 

used in dyeing, chemical cleaning, chemical or nuclear 

environments, dealing with explosive objects or military 

missions in land or sea mines, even if they are forbidden 

to use them. countries around the world that use them, 

such as Afghanistan. 
The most used industrial robots today are built. The 

importance of studying anthropomorphic robots has also 
been signaled, being today the most widespread robots 
around the world, thanks to its simple design, 
construction, implementation, operation and 
maintenance. In addition, anthropomorphic systems are 
simpler and cheaper from a technological point of view, 
with consistent, demanding and repetitive work, with no 
major maintenance problems. 

Considering the increased importance of robots 

nowadays, when no large factory or factory can work 

without robots, one wants to present in the work the 

motion equations of the machine in an original form, 

both in terms of aspect and their deduction. The 

machine's motion equations can be used in dynamic 

calculations at any type of machine, whether it be a 

motor, a compressor, a lucrative machine, a robot, a 

system, a mechanism, a vehicle, a mechanical 

transmission, or any other type of car. The dynamics of 

systems is their real movement, the dynamic movement, 

in which the influences of three main factors interfere, 

which modify the kinematics of the mechanism when it 

moves really, dynamic. The first dynamic factor is the 

forces of inertia or the effect of inertial masses. The 

second important dynamic factor is that of the couplings, 

of the linkages within the respective machine 

mechanisms. The latter and the third dynamic factor 

represents the influence of system elasticity on its 

dynamic functioning (Antonescu and Petrescu, 1985; 

1989; Antonescu et al., 1985a; 1985b; 1986; 1987; 1988; 

1994; 1997; 2000a; 2000b; 2001; Aversa et al., 2017a; 

2017b; 2017c; 2017d; 2017e; 2016a; 2016b; 2016c; 

2016d; 2016e; 2016f; 2016g; 2016h; 2016i; 2016j; 

2016k; 2016l; 2016m; 2016n; 2016o; Cao et al., 2013; 

Dong et al., 2013; Comanescu, 2010; Franklin, 1930;  

He et al., 2013; Lee, 2013; Lin et al., 2013; Liu et al., 

2013; Padula and Perdereau, 2013; Perumaal and 

Jawahar, 2013; Petrescu, 2011; 2015a; 2015b; Petrescu 

and Petrescu, 1995a; 1995b; 1997a; 1997b; 1997c; 

2000a; 2000b; 2002a; 2002b; 2003; 2005a; 2005b; 

2005c; 2005d; 2005e; 2011a; 2011b; 2012a; 2012b; 

2013a; 2013b; 2013c; 2013d; 2013e; 2016a; 2016b; 

2016c; Petrescu et al., 2009; 2016; 2017a; 2017b; 2017c; 

2017d; 2017e; 2017f; 2017g; 2017h; 2017i; 2017j; 

2017k; 2017l; 2017m; 2017n; 2017o; 2017p; 2017q; 

2017r; 2017s; 2017t; 2017u; 2017v; 2017w; 2017x; 

2017y; 2017z; 2017aa; 2017ab; 2017ac; 2017ad; 2017ae; 

2018a; 2018b; 2018c; 2018d; 2018e; 2018f; 2018g; 

2018h; 2018i; 2018j; 2018k; 2018l; 2018m; 2018n). 

Materials and Methods  

The angular velocity of the driving element ω
*
 is 

considered to be constant because it is given by a 
motor that generally operates in a constant mode with 
a constant angular velocity ωn, which is considered 
the input speed in the system. However, due to the 
dynamic influences given by the whole system, the 
angular velocity of the driving element ω

*
 

permanently undergoes changes of value, dynamic 
changes depending on the position occupied by the 
leading element at that time. One can, therefore, 
consider that the angular velocity of the leading 
element is a function of the ϕ input angle. 
Dynamically, variable input angular velocity ω

* 
is a 

function of constant input speed ωn and three essential 
dynamic factors Di, Dc, De (relationship 1, which is 
the first original machine motion equation): 
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*

n i c e
D D Dω ω= ⋅ ⋅ ⋅  (1) 

 

If it gets up to the square one obtains the form (2), 

which by derivation generates the equation of the 

angular acceleration (3), which is the second original 

machine motion equation. 

 
*2 2 2 2 2

n i c e
D D Dω ω= ⋅ ⋅ ⋅   (2) 

 

(
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i e c c i c e e
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 (3) 

 

The three main dynamic coefficients represent the 

dynamic coefficient of the inertial forces of the whole 

system Di, the coefficient of forces imposed by the 

system couplings Dc and the coefficient of the elastic 

deformations in the system De. If want to eliminate the 

influence of one of the three coefficients, it is enough to 

equate that coefficient with the value of 1. 

The inertial coefficient (the most important) is given 

by the relationships from the system (4), (Petrescu, 

2015b): 
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 (4) 

 

where, J
*
 is the mass inertia moment of the system and 

Jm
*
 represents its average value. The derivatives used 

(denoted by ') are those based on the angle ϕ. 

Dc and De are variable depending on the dynamic 

system in question. Dc can have a considerable influence, 

whereas De it is generally of minor importance and can 

be disregarded by theory by its matching to the value 1. 

The method is original and has a general character. 

Results 

An example of calculation is applied to internal 

combustion engines (Fig. 1; Petrescu, 2015b), where the 

dynamic inertial coefficient has the values given by 

systems relations (5-6), (system 5 when the mechanism 

works as a complessor and the system 6 when the 

mechanism works as a motor): 
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To determine dynamics at an Otto engine must (first 

at all) to set the formula of reduced moment of inertia 

(7); Fig. 1 (it takes a1 = 0, as the crank is already 

balanced): 
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Fig. 1: The geometry of an Otto engine mechanism 
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One determines: 
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Method is applied separately for two distinct 

situations: When the engine is working on a compressor 

and into the motor system. Calculations should be made 

for an engine with a single cylinder. 

Dynamic Kinematics Analysis for the Otto Engine 

in Compressor System 

Now, one can see the engine main mechanism in 

compressor system (when the motor mechanism is acting 

from the crank). It is determining now, the velocities and 

the accelerations of the piston and motor shaft, normal 

and dynamic (Fig. 2-5). 

Dynamic Kinematics Analysis for the Otto Engine 

in Motor System 

Now, one can see the engine main mechanism in 

motor system (when the motor mechanism is acting from 

the piston). It is determining now, the velocities and the 

accelerations of the piston and motor shaft, normal and 

dynamic (Fig. 6-9). 

Dynamic Kinematics Analysis for an Otto Engine, 

Mono-cylinder 

Now, one can see the engine main mechanism in 

motor and compressor system (when the motor 

mechanism is acting from the piston and from the crank). 

It is determining now, the velocities and the 

accelerations of the piston and motor shaft, normal and 

dynamic (Fig. 10-14). 

 

 

 
Fig. 2: The velocities of the piston, when the engine works in the compressor system 

vC [m/s] 
 

vCDc [m/s] 
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Fig. 3: The accelerations of the piston, when the engine works in the compressor system 

 

 
 

Fig. 4: The angular velocities of the motor shaft, when the engine works in the compressor system 
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Fig. 5: The angular accelerations of the motor shaft, when the engine works in the compressor system 

 

 
 

Fig. 6: The velocities of the piston, when the engine works in the motor system 
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Fig. 7: The accelerations of the piston, when the engine works in the motor system 

 

 
 

Fig. 8: The angular velocities of the motor shaft, when the engine works in the motor system 

aC [m/s2] 
 

aCDm [m/s2] 

0            100              200             300             400             500             600             700            800 

10000 

 
8000 

 
6000 

 
4000 

 
2000 

 
0 

 
-2000 

 
-4000 

 
-6000 

 
-8000 

wnm [s-1] 
 

wm [s-1] 

0               100            200            300            400            500             600            700             800 

350 

 
300 

 
250 

 
200 

 
150 

 
100 

 
50 

 
0 



Nicolae Petrescu and Florian Ion Tiberiu Petrescu / Journal of Mechatronics and Robotics 2019, Volume 3: 344.377 

10.3844/jmrsp.2019.344.377 

 

351 

 
 

Fig. 9: The angular accelerations of the motor shaft, when the engine works in the motor system 

 

 
 

Fig. 10: The velocities of the piston, for a mono cylinder engine 
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Fig. 11: The accelerations of the piston, for a mono cylinder engine, oriented upside down 

 

 
 

Fig. 12: The accelerations of the piston, for a mono cylinder engine, oriented head upward 
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Fig. 13: The angular velocities of the motor shaft, for a mono cylinder engine 

 

 
 

Fig. 14: The angular accelerations of the motor shaft, for a mono cylinder engine 
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Discussion 

Only dynamic coefficient of inertia and the influence 

of kinematic couplings in the system were used in the 

analyzed sample.  

The dynamic coefficient due to elasticity and 

deformation in the system has not been taken into account 

since the overwhelming influence of the inertial forces is 

impacted by additional dynamic changes and also by the 

kinematic couplings in the system and the elastic 

deformations do not greatly influence the dynamics of the 

system in the case of the example remembered. 

If a robot was being discussed, things were similar, as 

in the case of various vehicles and various mechanisms 

and machines. However, for rigid memory 

transmissions, elastic deformations are important, which 

is why they should be considered in such systems. 

During the 1970s energy crisis, the production and sale 

of cars equipped with internal combustion engines 

increased from several million to over sixty million a year 

and the world fleet ranged from tens of millions to billions. 

As long as we produce electricity and heat by burning 

fossil fuels, it is useless to try to replace all electric 

motors as electricity and the pollution will be even 

greater. However, it is good to continually improve 

thermal motors to reduce fuel consumption.  

Otto and diesel engines are today the best solution for 

transporting our daily work together with electric and 

reaction engines. For these reasons, it is imperative that 

we can accurately calculate the efficiency of the engine 

so that it can be increased continuously. However, it is 

good to continually improve thermal motors to reduce 

fuel consumption. 

Since today the moments of mass inertia, i.e., the 

masses of rotation motion elements considered around the 

axis of rotation, are less known, one reintroduce in this 

paper some main cases (Fig. 15-27), (Petrescu et al., 2016). 
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Fig. 15: Mass moment of inertia of a cylinder or a disc, fixed to the longitudinal axis of the cylinder or disc 
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Fig. 16: Mass moment of inertia of a cylinder, determined in about an axis central diametral 
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Fig. 17: Mass moment of inertia of the cylinder, caused about an axis lying in the plane of the end of the cylinder perpendicular to 

the longitudinal axis 
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Fig. 18: Mass moment of inertia to a tube (pipe or annulus) determined about the longitudinal axis 
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Fig. 19: Mass moment of inertia to a tube (pipe or annulus) determined about the diametrically central axis 
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Fig. 20: Mass moment of inertia to a disc determined to the radial (diametral) axis of the disc 
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Fig. 21: Mass moment of inertia to a thin rod, led around an axis passing through a central diameter of the rod 
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Fig. 22: Mass moment of inertia of a thin rod, determined about an axis located at one of the rod ends, perpendicular to the 

longitudinal axis of the stem 
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Fig. 23: Mass moment of inertia of a ring fixed (calculated) around the longitudinal axis of the ring 
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Fig. 24: Mass moment of inertia of a ring fixed around a radial (diametrical) axis of the ring 

 

R

Computing axis

23

2
J M R= ⋅ ⋅

Longitudinal axis

Tangent

to the circle

2

22

22

2

3

2

2

2

1

2

1

RM

RMRM

dMRMJ

⋅⋅=

=⋅⋅+⋅⋅=

=⋅+⋅⋅=

d

 
 

Fig. 25: Mass moment of inertia of a ring fixed around an axis tangent to the circle of the ring 
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Fig. 26: Mass moment of inertia to a full sphere determined around a diameter 
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Fig. 27: Mass moment of inertia to a full sphere determined around a tangent to the sphere 
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Dynamic Kinematics to the Rod-Crank-Piston 

System 

The cinematics of the piston crankshaft mechanism 

of Fig. 28 is generally known to be solved by the 

relationships (II.1-13): 

 

cos cos

sin sin
B

r l e

r l y

ϕ ψ

ϕ ψ

⋅ + ⋅ = −


⋅ + ⋅ =
 (II.1) 

 
cos

cos

e r

l

ϕ
ψ

+ ⋅

= −  (II.2) 

 

sin sin
B

s y r lϕ ψ= = ⋅ + ⋅  (II.3) 

 

sin sin 0

cos cos
B

r l

r l y

ϕ ϕ ψ ψ

ϕ ϕ ψ ψ

− ⋅ ⋅ − ⋅ ⋅ =


⋅ ⋅ + ⋅ ⋅ =

ɺ ɺ

ɺ ɺ ɺ
 (II.4) 

 

sin

sin

r

l

ϕ
ψ ϕ

ψ

⋅

= − ⋅

⋅

ɺ ɺ  (II.5) 

 

cos cos
B
y r lϕ ϕ ψ ψ= ⋅ ⋅ + ⋅ ⋅ɺ ɺɺ  (II.6) 

 
2 2

2 2

cos cos sin 0

sin sin cos
B

r l l

r l l y

ϕ ϕ ψ ψ ψ ψ

ϕ ϕ ψ ψ ψ ψ

− ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ =

− ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ =

ɺ ɺ ɺɺ

ɺ ɺ ɺɺ ɺɺ

 (II.7) 

 

 
2 2
cos cos

sin

r l

l

ϕ ϕ ψ ψ
ψ

ψ

⋅ ⋅ + ⋅ ⋅

= −

⋅

ɺ ɺ
ɺɺ  (II.8) 

 

 2 2
cos sin sin

B
y l r lψ ψ ϕ ϕ ψ ψ= ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ɺɺ ɺ ɺɺɺ  (II.9) 

 

 90α ψ= −  (II.10) 

 

cos sin

sin cos

α ψ

α ψ

=


= −
 (II.11) 

 

cos
sin

e r

l

ϕ
α

+ ⋅

=  (II.12) 

 

( )

( ) ( )

( )

cos cos

sin cos
cos

sin

cos sin sin cos
sin

sin sin

sin sin

sin

sin

B B

B

v y r l

r
r

r

r r

v r

ϕ ϕ ψ ψ

ϕ ϕ ψ
ϕ ϕ

ψ

ϕ
φ ψ ϕ ψ

ψ

ψ ϕ ψ ϕ
ϕ ω

ψ ψ

ψ ϕ
ω

ψ




= = ⋅ ⋅ + ⋅ ⋅
 ⋅ ⋅ ⋅
= ⋅ ⋅ −

 ⋅
= ⋅ ⋅ − ⋅


 − −
= ⋅ ⋅ = ⋅ ⋅



− = ⋅ ⋅


ɺ ɺɺ

ɺ
ɺ

ɺ

ɺ

 (II.13) 

 

In dynamic kinematics, the (dynamic) velocities are 

aligned in the direction of the forces as is natural, so that 

they no longer coincide with the known classical 

cinematic velocities (Fig. 29). Dynamic speeds due to 

forces occur, speeds that represent the dynamic 

kinematics (not to mention the influence of inertial 

forces, the influence that determines the final dynamic 

aspect of speeds). 
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Fig. 28: The kinematic scheme of the piston crankshaft mechanism 
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Fig. 29: Dynamic forces and speeds in the piston crank shaft mechanism, when power is transmitted from the piston to the crank 

 
The dynamic kinematics (Petrescu, 2011) is, 

therefore, the kinematic study of the movements, speeds 

and accelerations resulting from the direction of 

operation of the speeds after the direction of the forces. 

The expressions of velocity in the dynamic kinematics 

are easily obtained, it is derived in relation to the time to 

determine the expressions of the accelerations in the 

dynamic kinematics and the expressions of the velocities 

are integrated in order to obtain the corresponding 

movements. Determining the movements in the dynamic 

cinematic becomes, therefore, more difficult. 

To begin with, one will determine the speeds in the 

dynamic kinematics for piston cranked piston rod 

mechanism (Fig. 29). 

One can write the relationships (II.14-16): 

B m
v v=  (II.14) 
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n m m
v v vα ψ= ⋅ = ⋅  (II.15) 

 

( ) ( )sin sin sin
u n m
v v vψ ϕ ψ ψ ϕ= ⋅ − = ⋅ ⋅ −  (II.16) 

 
One also want to find out the dynamic yield, more 

precisely the mechanical efficiency instantly when the 
mechanism has dynamic regimes and the speeds are 
those in the dynamic cinematic, the actuation of the 
mechanism being of the motor type, ie from the piston. 

The useful force is determined by the relationship 
(II.17) presented in the previous chapter: 
 

( ) ( )sin sin sin
u n m

F F Fψ ϕ ψ ψ ϕ= ⋅ − = ⋅ ⋅ −  (II.17) 
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Puterea utilă se scrie în această situație sub forma II.18: 
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Expression of power consumed is given by 

relationship II.19: 
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It can now determine the dynamic yield, more 

precisely instant dynamic yield (relationship II.20); 
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where, ηi is the instantaneous mechanical efficiency of 

the crankshaft piston actuated by the piston and D
M

 is a 

dynamic coefficient, which for the piston-driven piston 

rod (in Motor mode) is II.21: 
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In this case, let us recall that the instantaneous 

mechanical efficiency has the expression II.22: 
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It should be noted that the dynamic yield is precisely 

the product of the known, simple (cinematic) yield and 

the dynamic coefficient (relation II.23): 
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The kinematic expression of the speed of point B 

(relationship II.24) is known: 
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velocity vu takes the form II.25. 
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It is obtained from here (from the dynamic 

kinematics) the expression of the dynamic coefficient D
M

 

of the reciprocating piston piston actuated mechanism 

(relation II.26), noting that it is identical to the 

expression II.21 where the dynamic coefficient was 

determined based on the dynamic yield calculation 

immediate. This checks the uniqueness of the dynamic 

coefficient for the same actuated mechanism in the same 

way. To complete this new theory, the dynamic 

coefficient of the crank shaft driven by the crank shaft 

(in compressor mode) is to be determined further. 
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Fig. 30: Dynamic forces and speeds in a piston crankshaft system, when driven from the crank 
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Figure 30 shows the transmission of forces aligned 

with the forces, which occurs in the dynamic cinematic. 

The input force Fm and the input velocity vm 

decompose generating the component along the length of 

the rod Fn, respectively, vn. Forces are the real forces 

acting on the mechanism and these cinematic-dynamic 

velocities are the natural ones that follow the trajectories 

(directions) imposed by the forces. Generally, they 

overlap and impose over known kinematic (static) 

velocities, which are calculated on the basis of the links 

imposed by the kinematic couple of the mechanism 

(depending on the kinematic chain). You can write for 

speeds relations II.27: 
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For forces, powers and yields, the following 

relationships are written (II.28-34): 
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Final Discussion 

The first conclusion that can be drawn is that the 

dynamic momentum dynamics (which is closer to the real 

mechanism) is less than the normal mechanical efficiency, 

because the dynamic yield is even the classic mechanical 

efficiency multiplied by the dynamic coefficient which 

being subunitarily results that the dynamic yield will be 

smaller or at most equal to the classic one. 

In addition, dynamic performance is the same for 

crank drive and piston engine actuation and will have 

the same value regardless of drive type. The dynamic 

yield is practically uniform, but not all operating 

modes of the thermal motors are completely dynamic. 

This makes the Stirling's actual engine power or the 

two-stroke thermal engine (Lenoir) not much higher 

than the four-stroke Otto or Diesel engines. The 

higher the operating speeds, the operating modes 

become almost completely dynamic. 

Today, with high and very high working speeds, four-

stroke internal combustion engines achieve comparable 

performance to those of the Stirling engine or two-stroke 

engines. The higher the working speeds, the more 

Stirling or Lenoir benefits. 

Although the dynamic mechanical performance 

(closest to the real) is practically calculated with the same 

formula regardless of the drive type, the dynamic speeds 

and accelerations in the couplings differ depending on the 

drive mode, even for the same coupling. 

Thus dynamic velocities (in the dynamic kinematics) 

of point B are calculated with relations II.35: 
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Even if the dynamic output is uniform, speeds and 

accelerations are more linear in the crank and sharper 

(and vibrational) drives during the piston stroke so that 

four-stroke internal combustion engines are more 

advantageous at this point view, followed by the two-

stroke (Lenoir), the last being the Stirling type engines. 

Dynamic accelerations are determined with the 

relationships II.36, in which the dynamic velocity 

relation (appropriately arranged) is derived to obtain the 

expression of the dynamic acceleration: 
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It is seen that the dynamic disadvantages of thermal 

motors are in fact a contradiction. The dynamics of their 

mechanisms is better at crank drive (from the crankshaft), 

but the driving times (which have a lower dynamic 

kinematics) are virtually the ones needed, the only ones that 

produce the power (effectively) and which also generate 

high returns at the respective thermal engine; on the other 

hand, however, these engines (motor) produce not only 

irregular operation with shocks, vibrations and noises on the 

thermal engine but also generate disadvantageous features. 

For this reason, the four-stroke Stirling engine and two 

phases having each active phase show the power and load 

characteristic at the most disadvantageous speed. 

Neither the two-stroke internal combustion engine 

does not have a very good feature, it also works with 

vibrations, vibrations and high noises, which can 

overcome the known beatings of four-stroke diesel 

engines, the traction presenting shocks (interruptions) 

even surpass those of the Stirling engines. The Lenoir 

engine does not make an engine brake, a vehicle 

equipped with a two-stroke thermal engine is overloaded 

(the brakes are getting too hot), the safety of the traffic is 

very low and the comfort of the passengers in the 

passenger compartment is much diminished. 

From this point of view, the Otto or Diesel four-

stroke engines are the most advantageous, the first ones 

actually representing the highest variant. For the Otto 

engines not to lose the advantage of fuel injection, 

many years ago it was abandoned to carburation, Otto 

engines being gradually fueled by the diesel fuel 

injection (keeps the ignition because the gasoline does 

not fire itself as it does diesel). 

Conclusion 

Only dynamic coefficient of inertia and the influence 

of kinematic couplings in the system were used in the 

analyzed sample.  

The dynamic coefficient due to elasticity and 

deformation in the system has not been taken into account 

since the overwhelming influence of the inertial forces is 

impacted by additional dynamic changes and also by the 

kinematic couplings in the system and the elastic 

deformations do not greatly influence the dynamics of the 

system in the case of the example remembered. 

If a robot was being discussed, things were similar, as 

in the case of various vehicles and various mechanisms 

and machines. However, for rigid memory 

transmissions, elastic deformations are important, which 

is why they should be considered in such systems.  
The presented method is original and has a general 

character. This method replaces the older method 
(Petrescu, 2015b) and has a more general and unitary 
character, the motion equations being concise, unitary, 
elegant, general. 
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