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Abstract: Mechatronic robotic systems are today widely used worldwide to 

ease human work, but especially where work is dangerous, in toxic, 

radioactive, chemical, explosive atmospheres, without air such as underwater 

or in the cosmos, or in places hard to reach the man. Robots can take the 

tedious repetitive work under any circumstances and they can perform a 

difficult operation for a long time, with no meal or rest breaks. They say the 

robots have stolen people's jobs. False! Robots have taken from man only 

those difficult jobs that baptized man and destroyed him. Robots have been 

created just as a prolongation of man as his real support in the faster, 

constantly accomplishing of difficult, repetitive, physically and mentally tired 

work and operations. Robots have emerged many years ago as a requirement 

of the automotive industry and especially that of road vehicles, especially 

automobiles. Meanwhile, they have diversified and branched a great deal in 

almost all industrial spheres. But the most important future of robots must be 

completely different. They have to help us conquer the cosmic space. The 

robot must become an extension of man in his divine mission of constructor 

and conqueror of the universe. Of all the types of industrial robots you use, 

the most common are the anthropomorphic serial robots, which is why we 

want to start studying and presenting the robots, with that generally common 

in robots, anthropomorphic serial systems. The kinematics of serial 

manipulators and robots will be exemplified for the 3R cinematic model to a 

medium difficulty system, ideal for understanding the actual phenomenon, 

but also for explaining the basic knowledge needed for calculating 

calculations and simpler or more complex systems. The fixed coordinate 

system was denoted by x0O0y0z0. The mobile systems (rigid) of the three 

mobile elements (1, 2, 3) have indices 1, 2 and 3. Their orientation was 

conveniently chosen but other orientations could be chosen. Known 

kinematic parameters in the direct kinematics are the absolute rotation angles 

of the three moving elements: ϕ10, ϕ20, ϕ30, angles related to the rotation of 

the three actuators (electric motors) mounted in the kinematic rotation 

couplers. The output parameters are the three absolute coordinates xM, yM, zM 

of point M, ie the kinematic parameters (coordinates) of the end-effector (the 

actuator element (the final), which can be a grasping hand, a solder tip, 

painted , cut, etc ...). 

 

Keywords: Cinematic of the MP-3R Systems, Geometry, Kinematic 

Parameters 

 

Introduction  

Mechatronic robotic systems are today widely used 

worldwide to ease human work, but especially where 

work is dangerous, in toxic, radioactive, chemical, 

explosive atmospheres, without air such as underwater 

or in the cosmos, or in places hard to reach the man. 
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Robots can take the tedious repetitive work under any 

circumstances and they can perform a difficult operation 

for a long time, with no meal or rest breaks. They say the 

robots have stolen people's jobs. False! Robots have taken 

from man only those difficult jobs that baptized man and 

destroyed him. Robots have been created just as a 

prolongation of man as his real support in the faster, 

constantly accomplishing of difficult, repetitive, physically 

and mentally tired work and operations. Robots have 

emerged many years ago as a requirement of the 

automotive industry and especially that of road vehicles, 

especially automobiles. Meanwhile, they have diversified 

and branched a great deal in almost all industrial spheres. 

But the most important future of robots must be 

completely different. They have to help us conquer the 

cosmic space. The robot must become an extension of 

man in his divine mission of constructor and conqueror of 

the universe. Of all the types of industrial robots you use, 

the most common are the anthropomorphic serial robots, 

which is why we want to start studying and presenting 

the robots, with that generally common in robots, 

anthropomorphic serial systems (Antonescu and 

Petrescu, 1985; 1989; Antonescu et al., 1985a-b, 1986; 

1987; 1988; 1994; 1997; 2000a-b, 2001; Aversa et al., 

2017a-e, 2016a-o; Berto et al., 2016a-d; Cao et al., 

2013; Dong et al., 2013; Comanescu, 2010; Franklin, 1930; 

He et al., 2013; Lee, 2013; Lin et al., 2013; Liu et al., 2013; 

Mirsayar  et al., 2017; Padula and Perdereau, 2013; 

Perumaal and Jawahar, 2013; Petrescu, 2011; 2015a-b; 

Petrescu and Petrescu, 1995a-b; 1997a-c; 2000a-b; 2002a-

b; 2003; 2005a-e; 2011; 2012a-b; 2013a-b; 2016a-c; 

Petrescu et al., 2009; 2016; 2017a-l). 

Materials and Methods  

The kinematics of serial manipulators and robots will 

be exemplified for the 3R cinematic model (Figure 1), a 

medium difficulty system, ideal for understanding the 

actual phenomenon, but also for explaining the basic 

knowledge needed for calculating calculations and simpler 

or more complex systems. 

The fixed coordinate system was denoted by x0O0y0z0. 

The mobile systems (rigid) of the three mobile elements 

(1, 2, 3) have indices 1, 2 and 3. Their orientation was 

conveniently chosen but other orientations could be 

chosen. Known kinematic parameters in the direct 

kinematics are the absolute rotation angles of the three 

moving elements: ϕ10, ϕ20, ϕ30, angles related to the 

rotation of the three actuators (electric motors) mounted in 

the kinematic rotation couplers. The output parameters are 

the three absolute coordinates xM, yM, zM of point M, i.e., 

the kinematic parameters (coordinates) of the end-effector 

(the actuator element (the final), which can be a grasping 

hand, a solder tip, painted , cut, etc ...). 

To begin with, write the vector matrix (A01) to change 

the coordinates of the origin of the coordinate system by 

translating from O0 to O1, the axes remain parallel to 

themselves at all times (1): 

 

01

1

0

0A

a

 
 =  
  

 (1) 

 

Next, write the T01 rotation matrix of the system 

x1O1y1z1 to the system x0O0y0z0, (this is a square matrix 

3×3), (2): 

 

10 10

01 10 10

cos sin 0

sin cos 0

0 0 1

x x x

y y y

z z z

T

φ φα β γ

α β γ φ φ

α β γ

  − 
   =   
     

 (2) 

 

On the first column (belonging to the coordinates of 

O1x1) the coordinates of the O1x1 unit vector the axes of 

the old system x0O0y0z0 are passed; it is practically the 

projections of the O1x1 unit vector on the axes of the 

old x0O0y0z0 coordinate system translated into O1 (but 

not rotated, thus only the actual rotation without 

translation) occurs (3): 

 

x

y

z

α

α

α

 
 
 
 
 

 (3) 

 

On the second column of the T01 matrix, the 

coordinates of the O1y1 axis unit vector the axes of the 

old x0O0y0z0 system are translated into O1 without 

rotation (basically the coordinates of this unit vector the 

old translational but non-rotating reference axes), (4): 

 

x

y

z

β

β

β

 
 
 
 
 

 (4) 

 

On the third column of the T01 matrix, the coordinates 

of the O1z1 axis unit vector the axes of the old system 

x0O0y0z0 are translated into O1 without rotation (basically 

the coordinates of this unit vector the old referenced but 

non-routed reference axes), (5): 

 

x

y

z

γ

γ

γ

 
 
 
 
 

 (5) 

 

In the chosen case, the unit vector of O1x1 (the unit 

vector always has module (1) has the following 

coordinates compared to the old axle system x0O0y0z0 

translated into O1 without rotation (6): 
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Fig. 1: The geometry and cinematic of a MP-3R 
 

10 10

10 10

0

1 cos cos

1 sin sin

1 cos90 1 0 0

x

y

z

α φ φ

α φ φ

α

 = ⋅ =
 

= ⋅ = 
 

= ⋅ = ⋅ = 

 (6) 

 

O1y1's unit vector has the following coordinates in 

relation to the old x0O0y0z0 axis system (7): 

 

10 10

10 10

0

1 sin sin

1 cos cos

1 cos90 1 0 0

x

y

z

β φ φ

β φ φ

β

 = − ⋅ = −
 

= ⋅ = 
 

= ⋅ = ⋅ = 

 (7) 

 

O1z1's unit vector has the following coordinates in 

relation to the old x0O0y0z0 axis system translated into O1 

without rotation (8): 

 
0

0

0

1 cos90 1 0 0

1 cos90 1 0 0

1 cos0 1 1 1

x

y

z

γ

γ

γ

 = ⋅ = ⋅ =
 

= ⋅ = ⋅ = 
 

= ⋅ = ⋅ = 

 (8) 

 
See matrix T01 obtained (relationship 2). 

The transition from the x1O1y1z1 system to the 

x2O2y2z2 coordinate system is done in two distinct stages. 

The first is a translation of the whole system such that 

(the axes being parallel to themselves) central O1 to 

move to O2; then the second stage takes place in which 

there is a rotation of the system rotating axes and the 

center O remains permanently fixed. The system 

translation from 1 to 2 is marked by the column vector 

type A12 (9): 

1

12 2

0

d

A a

 
 

=  
  

 (9) 

 

On the old O1x1 axis, O2 was translated with d1, O1y1, 

O2 was translated with a2 and O2z1 was not translated. 

O2x2's unit vector, the x1O1y1z1 system (translated, but 

not rotated) coordinates (10): 

 

1; 0; 0
x y z

α α α= = =  (10) 

 

O2y2's unit vector has in relation to the x1O1y1z1 system 

translated into O2 (not rotated) the coordinates (11): 

 

0; 0; 1
x y z

β β β= = =   (11) 

 

Because now O2y2, was taken the new O1z1 axis: 

The O2z2 unit vector has, in relation to the x1O1y1z1 

system, translated into O2 (not rotated) the coordinates (12): 

 

0; 1; 0
x y z

γ γ γ= = − =  (12) 

 

Since the O2z2 axis took the place of the O1y1 axis, it 

was of the opposite direction. 

The square of the transfer (rotation) is written (13): 

 

12

0 01

0 0 1

0 01

x x x

y y y

z z z

T

α β γ

α β γ

α β γ

  
  

= = −  
  

   

 (13) 
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The transition from the x2O2y2z2 system to the 
x3O3y3z3 coordinate system is also done in two distinct 
stages, one translation and one rotation. 

O2 translates into O3 (the axes are kept parallel to 
themselves), (14): 
 

2 20

23 2 20

3

cos

sin

d

A d

a

φ

φ

⋅ 
 

= ⋅ 
 − 

 (14) 

 
Then O3 stands and the axes rotate. The unit vector of 

O3×3 has, in relation to the axes system x2O2y2z2, 
translated in O3 (unrotated) the coordinates α (15): 
 

1; 0; 0
x y z

α α α= = =  (15) 

 
O3y3's unit vector the x2O2y2z2 axis system is translated 

into O3 (without to be rotated) coordinates β (16): 
 

0; 1; 0
x y z

β β β= = =  (16) 

 
O3z3's unit vector the x2O2y2z2 axis system translated 

into O3 (not rotated) coordinates γ (17): 
 

0; 0; 1
x y z

γ γ γ= = =  (17) 

 
Practically, the x3O3y3z3 did not turn at all at all 

against the x2O2y2z2 system (from 2 to 3 only a 
translation took place). The matrix of rotation in this 
case is the unit matrix (18): 
 

23

0 01

0 01

0 0 1

x x x

y y y

z z z

T

α β γ

α β γ

α β γ

  
  

=   
  

   

 (18) 

 
The vector matrix (column) that positions the M point 

in the x3O3y3z3 coordinate system is written (19): 
 

3 3 30

3 3 3 30

3

cos

sin

0

M

M M

M

x d

X y d

z

φ

φ

⋅   
   

= = ⋅   
      

 (19) 

 
The coordinates of the point M in the system (2) 

x2O2y2z2 (i.e., towards it) are obtained by a matrix 
transformation of the form (20): 
 

2 23 23 3M M
X A T X= + ⋅  (20) 

 
Perform the matrix product first (21): 

 

3 30

23 3 3 30

3 30

3 30

cos0 01

0 0 sin1

0 0 1 0

cos

sin

0

M

d

T X d

d

d

φ

φ

φ

φ

  ⋅ 
   

⋅ = ⋅ ⋅   
     

⋅ 
 = ⋅ 
  

  (21) 

Calculate then X2M (22): 

 

2 23 23 3

2 20 3 30

2 20 3 30

3

2 20 3 30

2 20 3 30

3

cos cos

sin sin

0

cos cos

sin sin

M M
X A T X

d d

d d

a

d d

d d

a

φ φ

φ φ

φ φ

φ φ

= + ⋅

⋅ ⋅   
   

= ⋅ + ⋅   
   −   

⋅ + ⋅ 
 

= ⋅ + ⋅ 
 − 

 (22) 

 

The coordinates of the M point in (against) the 

system (1) x1O1y1z1 are obtained as follows (23-25): 

 

1 12 12 2M M
X A T X= + ⋅  (23) 

 

12 2

2 20 3 30

2 20 3 30

3

2 20 3 30

3

2 20 3 30

0 0 cos cos1

0 0 sin sin1

0 01

cos cos

sin sin

M
T X

d d

d d

a

d d

a

d d

φ φ

φ φ

φ φ

φ φ

⋅

  ⋅ ⋅ +
   = ⋅ ⋅ ⋅−  + 
   −  

⋅ ⋅ +
 

=  
 ⋅ ⋅+
 

 (24) 

 

1 12 12 2

2 20 3 301

2 3

2 20 3 30

1 2 20 3 30

2 3

2 20 3 30

cos cos

0 sin sin

cos cos

sin sin

M M
X A T X

d dd

a a

d d

d d d

a a

d d

φ φ

φ φ

φ φ

φ φ

= + ⋅

⋅ + ⋅  
  

= +   
   ⋅ + ⋅   

+ ⋅ + ⋅ 
 

= + 
 ⋅ + ⋅ 

 (25) 

 

The coordinates of point M in the fixed system 

x0O0y0z0 are written (26-28): 

 

0 01 01 1M M
X A T X= + ⋅  (26) 

 

01 1

1 2 20 3 303 30 10

10 10 2 3

2 20 3 30

cos cossin sin 0

sin cos 0

sin sin0 0 1

M
T X

d d dd

a a

d d

φ φφ φ

φ φ

φ φ

⋅ =

+ ⋅ + ⋅⋅   
  ⋅ ⋅ +  
   ⋅ + ⋅   

 (27a) 

 

01 1

1 2 20 3 30

10 2 3 10

1 2 20 3 30

10 2 3 10

2 20 3 30

( cos cos )

cos ( ) sin

( cos cos )

sin ( ) cos

sin sin

M
T X

d d d

a a

d d d

a a

d d

φ φ

φ φ

φ φ

φ φ

φ φ

⋅ =

+ ⋅ + ⋅ 
 
⋅ − + ⋅ 
 + ⋅ + ⋅
 
⋅ + + ⋅ 
 ⋅ + ⋅ 

 (27b) 
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0 01 01 1

1 2 20 3 30

10 2 3 10

1 2 20 3 30

1 10 2 3 10

2 20 3 30

1 2 20 3 30

10 2 3

( cos cos )

cos ( ) sin0

0 ( cos cos )

sin ( ) cos

sin sin

( cos cos )

cos ( ) s

M M
X A T X

d d d

a a

d d d

a a a

d d

d d d

a a

φ φ

φ φ

φ φ

φ φ

φ φ

φ φ

φ

= + ⋅

+ ⋅ + ⋅ 
 
⋅ − + ⋅   

   = + + ⋅ + ⋅   
  ⋅ + + ⋅  

 ⋅ + ⋅ 

+ ⋅ + ⋅

⋅ − + ⋅

=

10

1 2 20 3 30

10 2 3 10

1 2 20 3 30

in

( cos cos )

sin ( ) cos

sin sin

d d d

a a

a d d

φ

φ φ

φ φ

φ φ

 
 
 
 + ⋅ + ⋅
 
⋅ + + ⋅ 
 + ⋅ + ⋅ 

 (28) 

 

X0M takes the form of (29): 

 

0

1 10 2 10 2 20 10

3 10 3 30 10

1 10 2 10 2 20 10

3 10 3 30 10

1 2 20 3 30

cos sin cos cos

sin cos cos

sin cos cos sin

cos cos sin

sin sin

M

M M

M

x

X y

z

d a d

a d

d a d

a d

a d d

φ φ φ φ

φ φ φ

φ φ φ φ

φ φ φ

φ φ

 
 

= = 
  

⋅ − ⋅ + ⋅ ⋅ 
 
− ⋅ + ⋅ ⋅ 
 ⋅ + ⋅ + ⋅ ⋅
 
+ ⋅ + ⋅ ⋅ 
 + ⋅ + ⋅ 

 (29) 

 

Results 

The same calculations will be further pursued by a 

direct method, taking into account the matrix 

calculations (30a): 

 

 

0 01 01 1 01 01 12 12 2

01 01 12 01 12 2

01 01 12 01 12 23 23 3

01 01 12 01 12 23 01 12 23 3

( )

( )

M M M

M

M

M

X A T X A T A T X

A T A T T X

A T A T T A T X

A T A T T A T T T X

= + ⋅ = + ⋅ + ⋅ =

= + ⋅ + ⋅ ⋅ =

= + ⋅ + ⋅ ⋅ + ⋅ =

= + ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅

 (30a) 

 

The relationship is retained (30b): 

 

0 01 01 12 01 12 23 01 12 23 3M M
X A T A T T A T T T X= + ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅  (30b) 

 

Perform matrix products in the expression (30') while 

remaining in the form of a matrix amount (31-36): 

 

110 10

01 12 10 10 2

1 10 2 10

1 10 2 10

cos sin 0

sin cos 0

00 0 1

cos sin

sin cos

0

d

T A a

d a

d a

φ φ

φ φ

φ φ

φ φ

−   
  ⋅ = ⋅   
     

⋅ − ⋅ 
 

= ⋅ + ⋅ 
  

 (31) 

10 10

01 12 10 10

10 10

10 10

cos sin 0 010

sin cos 0 0 10

0 010 0 1

cos sin0

sin cos0

0 01

T T

φ φ

φ φ

φ φ

φ φ

 − 
  ⋅ = ⋅ −  
     

 
 = − 
  

 (32) 

 

01 12 23

2 2010 10

10 10 2 20

3

2 10 20 3 10

2 10 20 3 10

2 20

coscos sin0

sin cos sin0

0 01

cos cos sin

sin cos cos

sin

T T A

d

d

a

d a

d a

d

φφ φ

φ φ φ

φ φ φ

φ φ φ

φ

⋅ ⋅ =

⋅  
  = − ⋅ ⋅  
   −   

⋅ ⋅ − ⋅ 
 

= ⋅ ⋅ + ⋅ 
 ⋅ 

 (33) 

 

01 12 23

10 10

10 10

10 10

10 10

cos sin 0 010

sin cos 0 010

0 0 10 01

cos sin0

sin cos0

0 01

T T T

φ φ

φ φ

φ φ

φ φ

⋅ ⋅ =

  
  = − ⋅   
     

 
 = − 
  

 (34) 

 

01 12 23 3

10 10
3 30

10 10 3 30

3 10 30

3 10 30

3 30

cos 0 sin cos

sin 0 cos sin
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Discussion  

Direct kinematics obtains the Cartesian coordinates 

xM, yM, zM of the point M (the end effector) according to 
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the three independent angular displacements ϕ10, ϕ20, 

ϕ30, obtained with actuators (37-38).  
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The calculations are made with absolute angular 

displacements, but actuator displacements do not all 

coincide with the independent ones. They are thus 

determined (39): 
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The first two relative rotations of the actuators coincide 

with the independent rotation (used in the calculations), but 

the third relative rotation of the last actuator is obtained as a 

difference between two absolute rotations. 

Speeds and accelerations are obtained by deriving 

relationships (38) over time. 

Conclusion 

The work presents an analytical method for 

determination of cinematic parameters in a 3R robotics 

module. 

An exact algebraic, matrix, calculation method is 

presented. 

Direct kinematics obtains the Cartesian coordinates 

xM, yM, zM of the point M (the end effector) according to 

the three independent angular displacements ϕ10, ϕ20, 

ϕ30, obtained with actuators (37-38). 

The calculations are made with absolute angular 

displacements, but actuator displacements do not all 

coincide with the independent ones. They are thus 

determined (39). 
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