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Abstract: This study introduces a novel depression classification method 

by incorporating multimodal data to reduce this limitation and improve the 

accuracy of depression diagnosis. In the beginning, the multimodal data 

such as speech signal, Electroencephalographic (EEG), and text data is 

obtained from the benchmark datasets. These acquired text data are 

subjected to the text pre-processing phase, where the stemming, character 

removal, punctuation and stop word removal operations are performed. 

After that, the resultant text is given to the Bidirectional Encoder 

Representations from Transformer (BERT), and the extracted features are 

considered Feature 1. From the EEG signals, feature 2 is attained from the 

wave features. Accordingly, feature 3 is attained from the linear and non-

linear features. Finally, from the speech signals, the spectral feature is 

extracted and is considered Feature 4. Further, the extracted four features 

are optimally fused by using the proposed Modified Random Value of 

Osprey Optimization Algorithm (MRVOO). Subsequently, the optimally 

fused features and the video frames are subjected to the Hybrid 1D and 3D 

Convolution-based Adaptive Residual DenseNet (HCARDNet) for 

depression classification. Here, the network parameters are optimally 

determined by the same MRVOO. The performance is examined via 

distinct metrics and it outperforms with the better classification rather than 

baseline approaches. 
 

Keywords: Depression Classification, Modified Random Value of Osprey 

Optimization Algorithm, Hybrid 1D and 3D Convolution-based Adaptive 
Residual DenseNet 

 

Introduction 

Countless people globally experience depressive 

disorders, a complex mental health condition 

characterized by a range of physical and mental 

symptoms, along with persistent feelings of sadness and 

disinterest in activities (Chen et al., 2022b). The rising 

prevalence of depression underscores the need for 

effective tools to identify, classify, and comprehend its 

multifaceted aspects (Liet al., 2023). The depression 

diagnosis framework incorporates a systematic approach 

to categorizing and evaluating depression, considering 
factors such as symptoms, severity, duration, and 

underlying causes (Xiaet al., 2023). This framework is 

crucial for both medical practice and research, offering a 

structured method to assess, diagnose, and tailor 

interventions for individuals with depression. A well-

constructed depression taxonomy framework is an 

invaluable resource for researchers, clinicians, and 

policymakers (Pérez-Toroet al., 2023). It enhances the 

quality of care for those struggling with mental illness and 

contributes to a better understanding of depressive 

disorders overall (Chen et al., 2019a). 

Depression encompasses a diverse array of symptoms, 

with each individual's experience being highly unique 
(Khan et al., 2022). Existing categorization methods may 

struggle to capture this variability, potentially resulting in 

inaccurate diagnoses or overlooking critical information in 

symptom presentations (Shi et al., 2019). The intricate 

interplay between depression and other mental health 
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conditions further complicates matters, as overlapping 

symptoms make it challenging to accurately distinguish 

between depressive disorders and concurrent issues 
(Fumarolaet al., 2018). The cultural context significantly 

influences how depression is perceived and expressed. 

Current classification systems may not adequately consider 

this cultural nuance which leads to misunderstandings and 

inadequate treatment approaches for individuals from 

different cultural backgrounds (Kwonet al., 2019). 

Additionally, the static nature of categorization algorithms 

poses challenges, especially in cases of chronic or recurrent 

depression, where symptoms may evolve (Wagner, 2016). 

The inability of these algorithms to adapt as symptoms 

change could compromise the effectiveness of therapeutic 
planning and accurate diagnosis (Garg et al., 2023). 

Incorporating Deep Learning Techniques into the 

development of classification systems for depression has 
resulted in significant advancements in the realm of mental 

well-being (Ganeshkumar et al.,2023). Deep learning, a 
subset of machine learning, employs neural networks to 

autonomously discern and extract intricate patterns from 
data (Zhaoet al., 2020). This approach proves effective in 

identifying and classifying challenging-to-diagnose 
conditions, such as depression (Ahmad et al., 2020). 

Convolution Neural Networks (CNNs) and Recurrent 
Neural Networks (RNNs) are the prominent types of deep 

neural networks utilized to analyze diverse data sources 
including text, Electroencephalogram (EEG) signals, and 

neuroimaging (Moussa et al., 2022). These networks 
capture intricate temporal and spatial patterns, enhancing 

our understanding of the neural correlates of depression 
(Villa-Pérezet al., 2023). They facilitate the identification 

of structural and functional abnormalities associated with 
depression by automatically extracting information from 

brain scans, aiding in the creation of imaging biomarkers 
for diagnostic purposes. While deep learning systems 

(Chen et al. 2022a) have made remarkable strides, they 
often face criticism for their lack of transparency. Efforts 

are underway to enhance the interpretability and 
understanding of depression categorization models. 

Techniques like saliency maps and attention processes are 
employed to reveal and interpret the decision-making 

process within the framework (Suen et al., 2021). 
The objectives of the proposed depression 

classification method are depicted below: 
 
 To create a deep learning-based depression 

classification model using advanced MRVOO and 

HCARDNetapproaches that aim to classify 

depression in early stages and enhance treatment 

outcomes through timely identification. 

 To determine the weighted optimal fused features, 

where the weight and features are chosen accurately 

by MRVOO. After providing the diverse features, 

the average computation is done to get a better 
feature vector. 

 To promote an MRVOO algorithm to tune the 
variables like the number of hidden neurons, epoch 
count, and steps per epoch in DensNet that is utilized 
for enhancing the precision and accuracy rate 

 To adopt an effective model of HCARDNet for 

depression classification, this model influences the 

hybrid convolution mechanism in residual DenseNet. 

The parameter optimization is conducted using the 

MRVOO approach. 

 To empirically validate the developed model using 
industry-standard benchmarks and appropriate 

evaluation criteria. This phase is crucial for 

confirming the developed approach's precision in 

classifying depression and assessing its performance 

in real-world scenarios. 
 
Desk Review 

Documentary Study 

Rizwan et al. (2022) have suggested a comprehensive 

analysis that delved into the efficiency of four transformer-

based small language algorithms in classifying the 

magnitude of depression using tweets. Notably, the focus 

was on models with fewer than 15 million adjustable 

variables: Electra Small Discriminator (ESD), Electra 

Small Generator (ESG), Albert Base V2 (ABV), and 

XtremeDistil-L6 (XDL). The models underwent 

optimization through the adjustment of various hyper-

parameters to attain optimal results. Following this fine-

tuning process, the models were systematically evaluated 

by categorizing the severity of depression in labeled tweets 

into three distinct groups: Severe, moderate, and mild. 

Sam et al. (2023) have implemented a Spiking Neural 

Network (SNN) design and a Long Short-Term Memory 

(LSTM) architecture, marking the first-ever attempt to 

simulate the brain's fundamental structures during various 

stages of melancholy. The methods used in this study 

included activities such as categorizing and forecasting 

specific results, illustrating the anatomical changes in the 

brain associated with the expected outcomes, and 

providing analyses of the obtained results. 

Jiang et al. (2021) have developed an efficient 

technique for classifying depression using geographical 

information based on EEG monitoring. The extraction and 

selection of features utilized an evolutionary algorithm 

and differential sensitivity, while classification was 

performed using a support vector machine. An intelligent 

method was suggested before feature extraction to address 

spatial disparities. 

Seal et al. (2021) have suggested the electrical 

function of the brain is the EEG. It was utilized to generate 

accurate reports on the severity of depression. Previous 

research has suggested that deep learning models trained 

with EEG data can be employed for the diagnosis of 

mental illnesses. In this study, a CNN constructed with 
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deep learning named DeprNetwas suggested to 

distinguish between EEG data from depressed and normal 

individuals. The degree of depression was measured using 

the patient health questionnaire's 9 rating.  

Shen et al. (2023) have proposed the challenges 

associated with identifying melancholy using EEG 

technology involved in effectively maximizing the spatial 

data acquired from the multidimensional space of EEG 

signals. To address this difficulty, an adaptive channel 

fusion technique for melancholy recognition was proposed, 

that utilized EEG signals and improved Focal Loss (FL) 

functions. Two enhanced FL functions were presented in 

this method, aiming to increase their separation by 

weighting the losses of hard samples as optimization goals. 

Additionally, an adaptive channels fusion framework was 

suggested to optimize the channel strengths. 

Kour and Gupta (2022) have implemented a 

combination of two deep learning structures, Bi-

Directional LSTM (Bi-LSTM) and CNN, that was 

optimized to achieve a reliability of 94.28% on a 

benchmark melancholy dataset comprised of Twitter data. 

The CNN- Bi-LSTM model was compared with baseline 

methods, namely CNN and RNN. Our methodology 

contributed to improved prediction accuracy, as indicated 

by experimental data across various performance 

indicators. A comprehensive analysis of the issue was 

conducted using statistical and visualization methods, 

revealing a significant distinction between the language 

depiction of depressed and non-depressive content. 

Swasthika Jain et al. (2023) have developed a hybrid 

Artificial Intelligence (AI) system, founded on machine 

learning that was developed for multi-modal depression 

analysis. This concept involved extracting written, audio, and 

video descriptions, along with other multi-modal data. 

Initially, the suggested method employed a combination 

framework of deep learning models to estimate the 

melancholy scale using the Patient Health Questionnaire 

(PHQ). Subsequently, the learning approach was designed to 

deduce people's emotional and physiological conditions 

concerning the Freudian characteristics of depression.  

Uddin et al. (2022) have developed an effective method 

for finding texts that described self-perceived signs of 

depression, utilizing an RNN based on LSTM. The method 

was applied to a substantial dataset extracted from a 

Norwegian youth-oriented public internet stream that 

consists of inquiries written by the youth themselves. 

Following this, the robust features were extracted from the 

reflections of potential depressive symptoms, which had 

been identified by medical and psychology professionals. 

These features were then encoded using a one-hot method. 

Recent References from the Depression 

Classification Model 

Rejaibi et al. (2022) developed a deep Recurrent Neural 

Network-aided approach to detect depression and also its 

severity level from speech. The advanced features of the 

designed approach were non-invasiveness, non-intrusion, 

and fastness and also it applies to real-time applications. 

Othmaniet al. (2021) promoted anovel EmoAudioNet 
for emotion and depression recognition from speech. At 
last, the given developed model attained promising results 
and also it shows better classification results. 

Othmaniet al. (2022) introduced a deep structured-
based approach for depression recognition using 
audiovisual data. It has shown a better accuracy of the F1-
score rate using a standard dataset. The normality-based 
approach detects depression and in detecting depression 
relapses accurately. Here, a prospective monitoring 
system was designed to assist depressed patients.  

Problem Statement 

Millions of individuals globally suffer from 

depression, a complicated mental health illness that 

negatively affects their emotional health and general 

quality of life. Mental health practitioners used a system 

of categorization to better understand, determine, and 

treat different forms of sadness since depressive diseases 

are diverse. Using this classification made it easier to 
customize treatments according to the intensity, underlying 

reasons, and particular manifestations (Srujan et al., 2018). 

The upper comings and lower comings of the existing 

model are provided in Table (1): 
 

 In the conventional depression classification model, 

the machine learning methods massively depend on 

manually annotated text, EEG, and speech signals 

and also that can be done only by experts. Therefore, 

hybridized techniques are suggested for a better 

depression classification model. 

 The major challenges for extracting the features 

using conventional deep learning techniques are 

individual differences in the text, EEG, speech 

signals, and video frames of different subjects. It 

takes more time for processing and it reduces the 

accuracy rate. To rectify these issues, diverse 

feature extraction techniques can be suggested in the 

depression classification model. 

 While choosing the accurate features, most of the 

conventional techniques use deep learning 

techniques that suffer from problems like scalability 

and stability. Hence, it is essential to use a 

hybridized algorithm that helps minimize 

computational time and achieves accurate features 

for classification. 

 To perform depression classification, the baseline 

machine learning techniques face data availability and 

overfitting issues while dealing with complex models 

and small datasets. Therefore, diverse deep-learning 

techniques can be combined to promote a hybrid 

model for getting better classification outcomes. 
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Table 1: Merits and demerits of baseline depression classification system using deep structured network 

Author 
[citation] Technique Merits Demerits Proposed Solutions 

Rizwanet al. 
(2022) 

Deep 
transfer 

learning 

It allows pre-trained models 
on one task to be adapted 

for another task, saving 
computational resources 
and time 

This may suffer if there is a 
significant dissimilarity 

between the target and source 
domains 

The deep learning model used in the 
proposed work can address the 

degradation problem and extract 
more descriptions from the source 
and target domains 

Sam et al. 
(2023) 

LSTM It is capable of learning and 
remembering patterns in 
sequential data 

Training LSTMs can be 
computationally expensive 

In this proposed model, the 
utilization of shared memory 
allocations efficiently reduces the 
training time 

Jiang et al. 
(2021) 

EEG It provides an advanced 
technique for monitoring 
brain activity 
It offers high temporal 
resolution, capturing 
changes in brain activity 
over short time intervals 

It can be sensitive to external 
noise and artifacts 

The proposed model employs a 
wave-based features technique that 
efficiently removes the artifacts and 
noise from the EEG signal 

Seal et al. 
(2021) 

DL It automatically learns 
hierarchical representations 
of features 

It needs a large amount of data 
for effective training. 
Training deep CNNs can be 
computationally intensive 

The proposed work supports feature 
reuse and thus it significantly 
deduces the count of variables while 
maintaining elevated performance, 
which allows a limited amount of 
data 

Shen et al. 
(2023) 

EEG 
signals 

It is well-suited for 
capturing dynamic changes 

in the developed work 

It can provide more 
information about the 

detection of diseases, but 
precise localization of activity 
within the disease is 
challenging 

A deep learning-based depression 
model has the ability to provide more 

information about the depression 
model making the developed deep 
learning model analyze efficiently to 
provide accurate detection results 

Kour and 
Gupta 
(2022)  

CNN It exploits the spatial 
hierarchies present in data, 
enabling them to capture 

patterns at diverse stages of 
abstraction 

Training deep CNNs can be 
computationally expensive 
and time-consuming 

In this proposed model, the 
utilization of shared memory 
allocations efficiently reduces the 

training time 

Swasthika 
Jain et al. 
(2023) 

SVM Utilizing the operations of 
the kernel enables effective 
management of non-linear 
decision boundaries 

Its sensitivity to noisy data 
may make it prone to 
overfitting 

The deep learning model used for the 
proposed work supplies 
generalization techniques to resolve 
the overfitting issues 

Uddin et al. 

(2022) 

DL Its flexibility allows for 

application across a diverse 
range of activities and 
domains 

Efficient training necessitates 

the collection of a substantial 
amount of labeled data 

The deep learning model used for the 

proposed work has efficient training 
resources with the collection of a 
substantial amount of labeled data 

 

Materials and Methods 

Description of Novel Framework of Depression 

Classification and Utilized Datasets 

Recommended System of Depression Classification 

Depression is a pervasive mental health condition that 

poses noteworthy issues for individuals, families, and 

society at large. Researchers and healthcare professionals 

utilize classification methods to comprehend and address 

the diverse manifestations of this illness (Muzammel et al., 

2020). These systems provide a systematic framework for 

identifying and diagnosing depression-related conditions, 

aiding in more accurate patient diagnoses by establishing 

criteria and symptom clusters (Muzammel et al., 2020). 

The broad spectrum of depression encompassing various 

signs and severity levels, leads to misdiagnoses or 

oversimplified representations of the illness. The symptoms 

of depression often overlap with those of other mental 

health disorders, making it challenging to differentiate 

(Muzammel et al., 2021). Distinguishing between different 

conditions, such as bipolar disorder and anxiety disorders, 

may be intricate (Yasin et al., 2023; Othmani and Zeghina, 

2022). Classification systems may fall short of 

acknowledging how cultural and societal factors influence 

the manifestation and understanding of depression. This 

limitation could impact the effectiveness of criteria across 

diverse demographics (Yasin et al., 2021). To mitigate 
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these challenges, an advanced depression classification 

model is adopted using machine learning and machine 

learning approaches to enhance the efficiency of the 

categorization system and also help to reduce errors. This 

approach addresses the complexities inherent in diagnosing 

depression, accounting for the intricate interplay of 

symptoms, severity, and cultural influences. Figure (1) 

shows the heuristic approach and deep learning-based 

depression classification. 

Recognizing and classifying depression is a 

challenging task due to its multifaceted nature. This study 

promotes a robust classification model named 

HCARDNet, which leverages diverse data sources, 

including text, EEG, and speech signals. A 

comprehensive dataset containing different kinds of data 

types like text, EEG, and speech signals is utilized for 

training and testing the developed text pre-processing 

model. Wave, non-linear, and linear features are derived 

from EEG signals and text features are obtained from text 

data. Additionally, speech signals are employed to extract 

spectral information. Incorporating multiple modalities 

ensures a comprehensive representation of the underlying 

characteristics associated with depression. The 

application of MRVOO ensures the proper selection of 

weights and features to generate optimal weighted fused 

features. After providing the diverse features, the average 

computation is done to get the better feature vector. The 

proposed HCARDNet model employs a combination of 

hybrid convolutions and residual DenseNet structure. Due 

to the architecture's capacity to capture temporal and 

geographical correlations in the data, the model is ensured 

to acquire the capability to learn intricate patterns 

associated with depression. The MRVOO method is used 

to optimize the variables of HCARDNet. The 

effectiveness of the developed model is empirically 

validated through appropriate evaluation criteria and 

industry-accepted benchmarks. This step is crucial for 

confirming the model's accuracy in detecting depression 

and evaluating its performance in real-world scenarios. 

Input Data Collection 

Collect diverse multimodal data from various sources 

to enrich the depression categorization model. This 

system specifically focuses on extracting text, EEG 

signals, and speech signals. Utilizing the provided URLs, 

three distinct sets of data were generated. 

Text data:The text data is gathered from the link of 

https://www.kaggle.com/datasets/arashnic/the-

depression-dataset accessed on 2024-01-06. This can 

establish a basis for evaluating diverse machine learning 

methods and methodologies that encompass 

oversampling strategies for addressing unbalanced class 

issues and cost-sensitive segmentation. The collected text 

data is represented as Textinput. 

 
 
Fig. 1: Structural view of the deep learning-based depression 

classification 
 

EEG signal:Using the link 
https://www.kaggle.com/datasets/tocodeforsoul/depressi
on-rest-preprocessed accessed on 2024-01-06. The EEG 
signals encompass information from 122 individuals. 
Three subjects were omitted due to data invalidity and an 

additional three were excluded due to inaccurate results. 
The gathered EEG signal is represented as EEG input. 

Audio signal and video frames: The source is presented 
in the link https://zenodo.org/record/1188976, access date: 
2024-01-06. This database consists of both audio signals 
and video frames. This consists of Twenty-four seasoned 
actors, comprising twelve men and twelve women who 
articulate two lexically matching phrases using a neutral 
North American accent. The vocalizations encompass 
emotions of anger, sadness, calmness, happiness, disgust, 
fear, and surprise both in speech and songs. 

The target of the dataset is suicide or non-suicide. The 

gathered audio signal and video frames are specified as 
AUinput and VIinput.The sample images of the recommended 
system are shown in Fig. (2). 

Text Pre-Processing  

It is a critical phase in NLP, involving the preparation 

of raw text for analysis or machine learning applications 
by cleaning and formatting. It is crucial for developing 
reliable and accurate models for various applications. The 
objectives are to transform unstructured text into a 
structured format that is suitable for modeling and 
analysis. This involves three pre-processing steps, which 
are outlined below: 
 
 Punctuation and special character removal 

 Stop words removal 

 Stemming 

 

MRVOO 

 

 

HCARDNet 

Classified 

outcome 

Hybrid convolution 

with RDNet 

Text 

data 

 

EEG 

Signal 

 
Speech 

signal 

 

DATABASE 

ECG 

Signal 

Speech 

Signal 

Wave 

feature 

Text data 

Text based 

feature 

Spectral 

feature 

Average based optimal fused feature  

 

Linear and 

non-linear 

feature 
BERT 

Pre-processed 

data 

Punctuation and Special 
character removal 

 Stop words removal 

Stemming 

 

Video frames 

https://www.kaggle.com/datasets/arashnic/the-depression-dataset
https://www.kaggle.com/datasets/arashnic/the-depression-dataset
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Fig. 2: Sample images of the recommended system 

 

Punctuation and special character removal: The text 

data Textinput is the input to this phase, the initial removal 

of special characters and punctuation marks (He et al., 

2022) stands as a pivotal first step in the preliminary data 

processing phase. This procedure is designed to enhance 

the consistency and cleanliness of textual data, preparing 

it for tasks related to NLP and other forms of analysis. The 
systematic elimination of this serves to standardize the 

language, facilitating a more accessible comprehension 

and interpretation by subsequent models and 

computational processes. This foundational pre-

processing stage significantly boosts the overall 

effectiveness and quality of text-based analyses and 

solutions. Finally got the special characters and 

punctuation marks removed data Tpun. 

Stop words removal: The special characters and 

punctuation marks removed data Tpun is the input to this 

phase and addressing the challenge of extracting 

pertinent information from extensive text data, 

particularly in the context of NLP comprehension is a 

primary concern (He et al., 2022). Stop words are 

common terms with minimal semantic significance that 

pose a hindrance to the effectiveness and precision of text-

based analytics. Therefore an indispensable pre-processing 

measure involves the removal of these stop words. This 

intentional removal enhances both the accuracy and 

comprehensibility of the processed text data, streamlining 

subsequent analyses for improved outcomes. Finally got 

the stop word removed data Tstop. 
Stemming: The stop word removed data Tstop is the input 

to this phase, it involves systematically removing suffixes 

and prefixes from words to create a more standardized 

representation. This ensures consistent treatment of words 

with similar meanings and reduces redundancy in the 

process. By employing stemming (He et al., 2022), text 

analysis models and algorithms can identify and associate 

related terms that lead to enhanced accuracy and 

coherence in tasks such as sentiment analysis, document 
clustering, and data retrieval. The integration of stemming 

is indispensable for optimizing the processing capabilities 

of textual data, ultimately elevating the performance of 

various machine-learning applications. Finally, the pre-

processed dataTextpreis obtained, which marks a 

significant milestone in text pre-processing. Having clean 

and well-organized data is crucial for subsequent analysis. 

Feature Extraction of Input Source as Text and EEG 

Signal for Classifying the Depression 

BERT-Based Text Features 

The pre-processed text data Textpre is the input to this 

phase and the architecture of the multi-layer BERT 

(Ogunleye et al., 2024) model is rooted in its original 

design. Each encoder in this model comprises an array of 

m = 6 identical layers, with two sub-layers embedded 

within each of these layers. Following the normalization 

of each layer, an additional connection is established for 

both sub-layers. In other words, the input of each sub-

layer is normalized using Ln(y + Sb(y)) where Sb(y) 

represents the operation performed by the sub-layer. 
Now, multi-head self-attention is denoted as Att(t, y, 

u). The definition is as follows Eq. (1): 
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T
pre

y

ty
Att(t, y,u)= softmax uText

f

 
 
 
 

 (1) 

 

where, the term t represents a matrix of search queries, y 

is a vector of keys and u is a vector of corresponding 
answers. The variable fy is denoted as the size of the 

matrices t and y. Analyze the attention from various 

perspectives by examining these matrices and their 

relationships are displayed in Eq. (2): 

 

1 2 h oMh (t,y,u)= con (h ,h .....h ) p  (2) 

 

Subsequently, perform the attention operation 

resulting in output values of dimension fy. 

Pretraining (Zeberga et al., 2022): There are two pre-

training methods: Next Sentence Prediction (NSP) and 

Masked Language Model (MLM). In the MLM model, a 

certain proportion of input tokens is randomly masked 

using the [MASK] token and the task involves predicting 

the concealed tokens. 

Fine-tuning (William et al., 2022): The self-attention 

mechanism in the transformer empowers BERT to 

effectively represent diverse upstream tasks, simplifying 

the fine-tuning process. All that is required is to input the 

specific inputs and outputs for a given task into BERT and 

adjust each value accordingly. Finally, the obtained text-

based features are described as Textfeatures, these features 

serve as the foundation for various applications. 

Wave-Based EEG Features 

EEG is a powerful and non-invasive tool that allows 

researchers and clinicians to capture and analyze the 

electrical activity occurring in the brain. The wave-based 

featurewavefeatureis extracted from the garnered EEG input 

signal. Within EEG analysis, wave-based features play a 

crucial role in characterizing the different frequency 

components of brain signals. The wave features (Lee et al., 

2021) like the P wave, QRS complex wave, T wave, and 

U wave were explained as follows. 

P Wave: The initial wave in an ECG, known as the P 

wave, represents the electrical activity of the upper 

chambers of the heart, known as atria. 

QRS complex wave: The QRS complex in an ECG is 

formed by the combination of three waves: Q,R, and S. 

The Q wave represents the beginning of the negative 

displacement, the R wave denotes the positive 

displacement, and the S wave presents the subsequent 

negative displacement. 

T wave: The T wave represents the electrical activity 

associated with ventricular depolarization, which is the 

recovery phase of the ventricles. 

U wave: The U wave is a small, positive deflection that 
sometimes appears after the T wave. 

Linear and Non-Linear Features 

The EEG signal is a representation of the brain's 

electrical activity that serves as a rich source of 

information that can be harnessed to gain insights into 

cognitive processes, monitor neurological conditions, and 

develop innovative applications. From the EEG signal, 

both linear and non-linear features Non-linearFeature
linear

 are 

extracted. Linear features (Avots et al., 2022) such as mean, 

standard deviation, skewness, and kurtosis, along with non-

linear features (Dehghani et al., 2023) like Hjorth 

parameters (activity, mobility, and complexity), 

collectively offer a comprehensive insight into the intricate 

dynamics within the brain. The formulas for skewness, 

mean, standard deviation, and kurtosis are as follows. 

Mean: An essential measure reflecting the primary 

trend within a dataset is the mean, denoted by this is 
formulated in Eq. (3):  
 

1

1

N
xiN i

  


 (3) 

 
Standard deviation: A metric indicating the extent of 

dispersion or spread among a set of data points is the 

standard deviation, denoted by the symbol. It quantifies 

the degree of variation from the mean, illustrating the 

extent to which data points deviate from the average. This 

is formulated in Eq. (4): 
 

 
21

1

N
xiN i

  


 (4) 

 
Skewness:Skewness serves as a measure for assessing 

the asymmetry of a probability distribution. Symmetry is 
indicated when skewness is zero, while positive skewness 

suggests a lengthening of the right tail and negative 

skewness implies a lengthening of the left tail. The 

equation employed to calculate skewness is in Eq. (5): 
 

 

 

21

1
3/2

2

1

N
xiN i

N
xi

i










 
 

 

 (5) 

 
Kurtosis: Kurtosis is a measure that quantifies the 

tailedness or sharpness of a probability distribution, 

indicating its susceptibility to outliers compared to a 

normal distribution. The calculation of kurtosis is 

determined by the following Eq. (6): 
 

 

 

21

1 3
3/2

2

1

N
xiN i

N
xi

i








 

 
 
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 (6) 
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The normal distribution exhibits a kurtosis of three and 
distributions with higher kurtosis typically feature heavier 
tails. From the above equations, the variable N is the 
amount of data points and xi defines each data point. 

Extracted Features of Speech Signal and Proposed 

MRVOO for Integrating the Resultant Features 

Spectral Features from Speech Signal 

The speech signal speech input is fed input to this phase. 

To derive resilient characteristics in the presence of noise, 

an array of features is extracted from the speech signals. 

These features encompass spectral centroid (Saga et al., 

2022), spectral flux (Schubert et al., 2004), spectral density, 

spectral roll-off, MFCC (Chen et al., 2019b), peak 

amplitude, total harmonic distortion, zero-crossing rate, 

entropy, standard deviation and Root Mean Square of the 
Sum of Successive Differences (RMSSD) (Li et al., 2020). 

Finally, the spectral feature is represented as the feature. 

Proposed Meta-Heuristic Algorithm: MRVOO 

The optimization method MRVOO utilizes the OOA 

(Berntson et al., 2005) for optimizing parameters. OOA is 

known for its efficient parallelizability, which leverages 

processing power effectively. It is crucial to acknowledge 

that robust optimization algorithms often derive their 

resilience from sound theoretical foundations. Users 
should exercise caution in evaluating the reliability of 

OOA, particularly if it lacks substantial scientific 

validation or a strong theoretical basis. To mitigate this 

limitation, the recommended approach is utilized to 

reduce the errors. Eq. (7) presents a mathematical 

representation of this proposed approach: 
 

cf

bf wf
 


 (7) 

 
In the broader context of the proposed MRVOO, the 

variable is considered random. The factors bf, wf, and cf 

represent the respective current, worst, and best levels of 

fitness. Equation (12) articulates the update mechanism for 

introducing a random factor. The computational framework 

of the recommended MRVOO is outlined as follows. 
The intelligent natural tendencies of ospreys in their 

pursuit and adept handling of fish for optimal feeding 

positions can be employed as an inspiration for devising 

an innovative optimization algorithm. Through a 

repetition-based methodology, the proposed OOA 

functions as a community-driven technique capable of 

providing effective solutions based on the collective 

search abilities of its solutions in problem-solving 

domains. The OOA community, comprising all ospreys, 

can be succinctly represented using a matrix 

corresponding to Eq. (8). The initiation of ospreys within 

the search space is determined arbitrarily at the outset of 
the OOA design, as indicated by Eq. (9): 

1,1 1,1,1

,,1 ,2

,,1 ,

E E EE md

E E EEE i mi i d

E E TEn N mN N d N m

  
  
  
     
  
  
      

 (8) 

 

( ),,
E i ji d

       (9) 

 
Where E represents the locations in the osprey 

demographic matrix, Ei denotes the osprey, and Ei,m 

describes the degree of the ith problem variables. The 

quantity of ospreys is noted as m representing the random 

variable is noted as 
i,j

. Additionally,  and x denote the 

lower and upper boundaries, for the jth issue variable. 

The objective function can be evaluated for each 

osprey since each one serves as a potential solution to the 

problem, as indicated by Eq. (10). Using vectors, the 
assessed solutions for the problem's objective function 

can be effectively represented: 
 

( )
1 1

( )
2 2

( )1 1

S S r

S S rS

S S rn nN N

   
   
   
    
   
   
   
       

 (10) 

 
where, Si represents the obtained objective function values 

for the ith iteration and S is the vector containing the 

variables of the objective function. 

Stage 1: Location Identification and Fish Hunting 

(Exploration) 

Leveraging their sharp vision, ospreys emerge as 

formidable hunters capable of spotting fish beneath the 

surface. Their hunting process involves locating the fish, 

striking it, and subsequently submerging themselves to 

capture it.  

The equation governing the catch for each osprey is 

presented in Eq. (11): 
 

{ {1,2... }} { }SL E L L and E f U Es si i best
    (11) 

 
where, Ebest represents the optimal solution (the best 

osprey) and SLi denotes the set of fish placements for the 

ith osprey. 

In this process, the osprey randomly selects one of the 

previously described fish before striking it. Equation (12) 

is then employed to calculate the osprey's new position, 

utilizing a computer simulation that mimics the osprey's 

approach to the fish. Following Eq. (13), if the new osprey 

location enhances the significance of the objective 
operation, it replaces the old one: 
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1 1 ( , ), , , , , ,

s s
h h yy Ki j i j i j i j i j i j     (12) 

 

1 1
s s

W D Di i iWi
W elsei

 
 


 (13) 

 

These variables 1
s

Wi are contingent on the initial 

phase of the OOA and denote the updated location of the 

ith osprey. Specifically, yyi,j represents its jth dimensions, 

and Ki,j signifies the objective function value. 

The variable serves as a random parameter, with a 

conventional random variable typically having a range 

between 0 and 1. This range could potentially lead to 

challenges in convergence and optimization. To address 

potential issues related to this range and minimize errors, 

the suggested formula in Eq. (7) is employed to 

compensate for inaccuracies. 

Phase 2: Carrying the Fish to the Suitable Position 

(Exploitation) 

Subsequently, as per Eqs. (14-15), if the value of the 

cost function increases at this updated location, the 

osprey's prior location is substituted with the new one: 

 

1 (1 2 )., , ,

s
h hi j i j i j t

 



    (14) 

 

2 2
s s

W D Di i iWi
W elsei

 
 


 (15) 

 

These variables 2
s

Wi are contingent on the second 

stage of the OOA and denote the updated location of 

the ith osprey. Specifically, yyi,j represents its jth 

dimensions, and Ki,j signifies the function of objective 

value. Fig (3) Shows the flowchart of the offered 

MRVOO system. 

Attainment of Optimal Feature Fusion 

Feature fusion involves the amalgamation of 

numerous features that aim to enhance both the 

comprehensive representation of data and the 

efficiency of classification systems. Here, the extracted 

features from EEG and signals were considered as 
continuous signals. The objective is to refine the 

overall structure of the data, thus fostering improved 

performance in classification tasks. 

From the extracted feature, optimally choose 

featuresOTextfeatures, Owavefeatures,
Non linearOFeature
linear


 

and OSpectralfeatures from the extracted set by assigning 

optimal weights. This optimal selection of features and 

weight is done with the help of the recommended 
MRVOO approach. Without optimal selection, errors 

may occur, and using optimal selection is proposed as 

a way to minimize or lessen these errors. The 

mathematical representation of the acquired weighted 

feature is shown in Eq. (16): 
 

1 1

2 2

3 3

4 4

features
OW OText F

feature
OW Owave F

Non linearOW OFeature F
linear

feature
OW OSpectral F

 

 

 

 

 (16) 

 
The final step in the process entails concatenating the 

resulting features by computing their average value. This 

ultimately achieves optimal feature fusion
fusion

Optimal
kl

, 

a representation of which can be expressed 

mathematically in Eq. (17): 
 

1 2 3 4

4

F F F Ffusion
Optimal

kl

  
  (17) 

 

 
 
Fig. 3: Flowchart of recommended MRVOO 

 

Calculate the function of objective 

Evaluate initial population 
 

Set the size of population and iteration 
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Upgrade the random value   using Eq. (3) 
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Obtain the better solution of candidate using proposed 

MRVOO 

Start 

Stop 
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Yes 
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Optimizing weights in the feature extraction procedure 
results in a fixed configuration that may be insufficiently 
adaptable to the specific requirements of the task or the 
characteristics of the data. This lack of flexibility could 
potentially result in suboptimal performance across 
various scenarios. By optimizing the weights and features, 
the proposed technique aims to mitigate the issue and 
enhance the relief score. Equation (18) encapsulates the 
mathematical model of the objective parameter for 

optimal feature fusion: 
 

 1
, , , , ,

1 2 3 4
, ,

UY argmax Rf
featuresOW OW OW OW OText

feature Non linearOwave OFeature
linear

featureOSpectral

 
 
 
 
 
 
 
 
 
 
 





 (18) 

 
Following the previously described computation, the 

parameters OW1, OW2, OW3, OW4, Otextfeature, 

Owavefeatures ,Non linearOFeature
linear


OSpectralfeaturesignifies 

the optimal weights and features, also the range of optimal 

weights is denoted as [0.01-0.99] and the features are [1-

No. of 4 feature sets], respectively. Additionally, the 

parameter value Rf serves as an indicator of the relief 

score. The mathematical representation of the relief score 

is articulated in Eq. (19). 

Relief score: It assesses the significance of each 
feature in distinguishing among different classes within a 
dataset. This metric gauges the efficiency of a feature in 
separating instances belonging to a particular class from 
those belonging to other classes: 
 

( ) ( )Rf k l FM l FDi i i ii
       (19) 

 
The variable FMi denotes the same class and FDi denotes 

the various classes. Figure (4) shows the diagrammatic view 

of the recommended optimal weighted feature fusion. 
 

 
 
Fig. 4: Diagrammatic view of optimal weighted feature 

fusion process 

Description of Optimal Weighted Feature Fusion 

Process 

The optimal weighted feature fusion process is done with 

the support of the MRVOO algorithm to reduce the 

computational time and enhance the classification accuracy: 
 
 Step 1: Diverse data such as text, EEG, and speech 

signals are collected 

 Step 2: The feature extraction process is carried out 

(i) Initially, the text features are extracted from the text 

data related to depression using the BERT model. It 

is utilized to extract features accurately without data 
loss from the text data. It is applicable to the image 

classification algorithm that has the ability to learn 

highly abstract features. 

(ii) The features from EEG signals are extracted 

including wave, non-linear, and linear features.  

(iii) The speech signals are used to extract spectral 

(features) information  

 Step 3: In this step, the extracted features are fed into 

the MRVOO algorithm for optimal feature selection 

and weight optimization 

(i) The optimally chosen features from the text, EEG 
signal, and speech signal such 

as{Otextfeature},{Owavefeature} Non linear

linearOFeature  , 

andOSpectralfeature} 

(ii) The weights of each feature are optimized using the 

MRVOO algorithm 

(iii) Accurately selected features are fused with their 

optimal weights to attain optimal weighted features 

(iv) The concatenation process of optimal weighted 

features is carried out by computing their average 

value and the fused optimal weighted features are 

indicated by
fusion

Optimal
kl

 

 
Hybrid Convolution-based Adaptive Residual 

DenseNet for Classifying the Depression  

Residual DenseNet 

By amalgamating crucial elements from two prominent 

architectures, residual DenseNet (Dehghani and 
Trojovský, 2023) emerges as a novel design in the realm 

of deep neural networks.  
Backbone network: The output element of Residual-

DenseNet employs a smoothing mechanism to integrate 
information from the Backbone Networks, aiming to 

generate a robust feature vector. Collaboratively, these 
modules give the formation of a characteristic vector 

comprising 64 dimensions. Notably, when establishing 
connections with DenseBlock4, the amalgamation of 

high-level characteristics is observed to be more 
dependable compared to the fusion of lower-level 

features. This calculated fusion significantly enhances the 
overall effectiveness of the model. 
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Feature outcome module: The outcome element of 

Residual-DenseNet employs a smoothing mechanism to 

integrate information from the Backbone Networks, 

aiming to generate a robust feature vector. 

Collaboratively, these modules present the formation of a 

characteristic vector comprising 64 dimensions. Notably, 

when establishing connections with DenseBlock4, the 

amalgamation of high-level characteristics is observed to 

be more dependable compared to the fusion of lower-level 

features. This calculated fusion significantly enhances the 

overall effectiveness of the model. This procedure 

improves the system's proficiency in associating image 

elements with the watermark. Equation (20) visually 

depicts this comparative procedure: 

 

 1,
( )

0,

FDE y
UI y

otherwise

 
 


 (20) 

 

Here, the termis displayed in Eq. (21): 

 
631

64 0
FDE y

k
  


 (21) 

 
The comparison between the robust hashing vector 

FDE(y) and the resilient vector of features generated by 

Residual-DenseNet is conducted using the mean 

binarization operationFDE. Figure (5) gives the 

architectural presentation of Residual DenseNet. 

Hybrid Convolution Mechanism 

The objective of a hybrid convolution system is to 

integrate multiple convolution techniques into a unified 

design. This integration may involve combining spatial 
convolutions, depth-wise convolutions, dilated 

convolutions, or other specialized convolution 

procedures. The aim is to harness the unique benefits of 

each process to optimize feature extraction, acquire 

contextual information, and enhance the network's ability 

to understand intricate patterns. 

 

 
 
Fig. 5: Architectural view of residual DenseNet 

Novel HCARDNet for Classification 

HCARDNet emerges as a promising advancement in 

the field of depression classification models. The 

HCARDNet model is developed with the combination of 

1D and 3D Convolution-based Adaptive Residual 

DenseNet networks for depression classification. Its 

unique combination of hybrid convolutions and residual 

DenseNet structure aims to overcome the challenges 

posed by diverse and complex patterns within 

depression-related data. 1D convolution excels in 

analyzing periodic or sequential data, including audio 

signals and time-series data, where its effectiveness 
shines. On the other hand, for analyzing 

multidimensional data, such as medical images (like 

MRI or CT scans), 3D models,or audio recordings where 

temporal dynamics are key, 3D convolution emerges as 

the preferred choice. This approach effectively captures 

the complexity inherent in such data types, balancing the 

need for spatial and temporal analysis. In this 

architecture, the optimally fused feature 
fusion

Optimal
kl

undergoes 1D convolution while the video frames VIinput 

are processed with 3D convolution. These two layers are 

then merged, forming a combined input that is 

subsequently fed into the next layer of a residual 

DenseNet and finally obtains the classified outcome. 

Enlarging the number of hidden neurons in DenseNet or 
any neural network contributes to higher model 

complexity. However, this heightened complexity 

comes with a risk of over fitting, where the model adapts 

too closely to the training data, capturing noise rather 

than the underlying patterns. Setting the epoch count too 

high exacerbates this risk by allowing the model to 

continuously learn from the training data, potentially 

hindering generalization to new data. To mitigate these 

issues and enhance accuracy and precision, the variables 

such as the number of steps per epoch, the number of 

epochs, and the number of suitably hidden neurons in 

DenseNet are optimally tuned. Equation (22) provides a 
mathematical formulation of the proposed system's 

objective function, aiming to strike a balance between 

model complexity, training duration, and the avoidance 

of overfitting, ultimately optimizing the accuracy and 

precision of the system: 

 

 2
, ,

UY argmax

NH NE NS
Dense Dense Dense

 
 
 
 

   (22) 

 

As per the given formula, the range of values for 

variablesNHDense,NEDense, and NSDensespans [5-255], [5-

50], and [100-500], representing the epochs, steps per 

epoch and number of hidden neurons in DenseNet. Figure 
(6) shows the proposed view of the novel HCARDNet for 

depression classification. 
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Fig. 6: Proposed view of novel HCARDNet for depression 

classification 

 

Furthermore, the variableand defines precision and 

accuracy. Equations (23-24), which mathematically 

express the values of and in the estimate, provide a 

comprehensive understanding of these parameters: 
 

=
ff ll

ff ll mm uu




  
 (23) 

 

mm

mm ll
 


 (24) 

 

Here, the words ff and ll, mm, and uu specify true, false 

positives and false, true negatives. 

Results  

Simulation Setup 

Python facilitated the implementation of the 

depression categorization system that yielded 

significant results. The MRVOO method underwent 50 

iterations, tailored for a population size of 10 

individuals, and involved three chromosomes. The 

recommended model was leveraged in conjunction 

with optimization algorithms like Beluga Whale 

Optimization (BWO)-HCARDNet (Khened et al., 

2019), Cuttle Fish Optimization (CO)-HCARDNet 

(Zhang et al., 2023), Mountaineering Team-Based 

Optimization (MTBO)-HCARDNet (Daweri et al., 

2020) and Osprey Optimization Algorithm (OOA)-

HCARDNet (Berntson et al., 2005). To provide a 

comprehensive comparison, the recommended model 

was assessed against well-established classifiers, 

including LSTM (Reddy and Ramanaiah, 2023), RNN 

(Wu et al., 2021), TCN (Wang et al., 2022) and 

HCRDNet (Dehghani and Trojovský, 2023).  

Efficiency Metrics 

The efficiency metrics for the offered approach are 

provided as follows. 

Accuracy: It is validated in Eq. (25): 

 
TP TN

A
TP TN FP FN




  
 (25) 

 

Precision: It is estimated in Eq. (26): 

 
TP

pre
TP TN




 (26) 

 

F1-Score: It is computed in Eq. (27): 

 

1 2
TN FP

F S
TN FP


 


 (27) 

 

Sensitivity: It is derived in Eq. (28): 

 
TP

Sen
TP TN




 (28) 

 

FPR: It is measured in Eq. (29): 

 
FP

FPR
FP TN




 (29) 

 

Specificity: It is shown in Eq. (30): 

 
FP

spec
FP FN




 (30) 

 

MCC: It is formulated in Eq. (31): 

 

( )( )( )( )

TP TN FP TN
MCC

FN FP FN TN TN FP TN FN

  


   
 (31) 

 

FDR: It is computed in Eq. (32): 

 
FP

FDR
TN FP




 (32) 

 

FNR: It is validated in Eq. (33): 
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FN
FNR

FN TN



 (33) 

 

Recall: It is formatted in Eq. (34): 

 
TN

Re
TN FN




 (34) 

 

In this, the false positive and true positive values are 

described asTp and FP. The false negative and true 

negative values are depicted asTN and FN. 

Statistical metrics: 

 

 Best: The greatest rate is denoted as the best value 

 Worst: The lowest rates are noted as the worst values 

 Mean: It is the median rate of both worst and best rates 

 Median: It is the central point of the worst and best rates 

 Standard deviation: It is the grade of deviation among 

every implementation  

 

Evaluation of Convergence Validation of the Offered 

MRVOOAlgorithm 

The convergence performance of the recently 

developed MRVOO method was assessed by comparing 

its iteration values against those of traditional methods, as 

depicted in Fig. (7). The MRVOO-HCARDNet strategy 

exhibited superior performance, surpassing all other 

approaches. Specifically, it showcased a lead of 65.9% 

over BWO-HCARDNet, 34.5% over CO-HCARDNet, 

89% over MTBO-HCARDNet, and 29% over OOA-

HCARDNet at the 20th iteration, as shown in the image. 

This highlights the efficiency of the proposed MRVOO-

HCARDNet technique compared to alternative 

optimization strategies. 

 

 

 
Fig. 7: Convergence validation over diverse optimization 

algorithms 

Validation of Confusion Matrix of the Designed 

Depression Classification Model  

Figure (8) displays a confusion matrix evaluation of 

the depression categorization paradigm, considering the 

recommended data sources. Upon calculating accuracy, it 

is evident that the dataset's accuracy was inferior to that 

of the current model in use. This validation underscores 

the effectiveness of the recommended depression 

categorization model, showcasing its ability to produce 
more accurate outcomes in the procedure. 

Comparative Estimation of the Recommended 

Depression Classification Model  

Examining Figs (9-10), the proposed depression 

classification system underwent evaluation against 

various traditional algorithms and classifiers at each level. 

The assessment of the latest model considered different 
activation function values. In Fig. (9a), where the 

accuracy value of the epoch was set to tanh, the offered 

approach explored superiority over BWO-HCARDNet, 

CO-HCARDNet, MTBO-HCARDNet, and OOA-

HCARDNet by 58.9, 68.5, 54 and 22%.  
 

 
 
Fig. 8: Estimation of confusion matrix for the offered 

depression classification model  

 

 
(a) 
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(i) 

 
Fig. 9: Estimation of the designed depression classification 

model contrasts with traditional algorithms over (a) 
accuracy; (b) F1-score; (c) FDR; (d) FNR; (e) FPR; (f) 
MCC; (g) NPV; (h) Precision; (i) recall; and (j) 
Specificity 
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(h) 

 

 
(i) 
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Fig. 10: Estimation of designed depression classification model 

contrasts with traditional classifiers over (a) accuracy; 
(b) F1-score; (c) FDR; (e) FNR; (f) MCC; (g) NPV; (h) 
Precision; (i) recall and (j) Specificity 

 

Efficiency Validation of the Depression 

Classification Model 

A thorough comparison of the efficiency of the 

offered method with various traditional methods and 

classifiers is given in Tables (2-3). The proposed 

depression categorization model explored precision 

rates surpassing 33.9% for LSTM, 45.5% for RNN, 67% 

for TCN, and 49% for HCRDNet. These outcomes 

emphasize the notable specificity rate and overall 

effectiveness of the suggested method. 

Statistical Evaluation of the Developed Model 

Table 4 presents a statistical analysis of the proposed 

depression classification framework, showcasing 

significant advancements. At its median value, the model 

has outperformed BWO-HCARDNet, CO-HCARDNet, 

MTBO-HCARDNet, and OOA-HCARDNet by 66.9, 

33.5, 67 and 39%, respectively. These outcomes signify 

that, in the realm of depression categorization, the 

MRVOO-HCARDNet model has achieved substantially 

higher efficiency compared to baseline methodologies. 

Validation of the Selection of Optimal Features 

The validation of optimal feature selection on the 

suggested approach is shown in Fig. (11). The given graph 

findings visualize the enriched performance of the 

suggested approach using diverse feature extraction 

techniques. Here, the BWO algorithm attains the least 

performance and also the OOA algorithm attains second 

better performance when compared to the other algorithms. 
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Table 2: Overall efficiency validation of the designed model 

TERMS 
BWO-HCARDNet 
Khened et al. (2019) 

CO-HCARDNet 
Zhang et al. (2023) 

MTBO-HCARDNet 
Daweri et al. (2020) 

OOA-HCARDNet 
Berntson et al. (2005) 

MRVOO-
HCARDNet 

Accuracy 92.23953 93.16719 94.14676 94.6902 96.22361 

FPR 7.744894 6.827622 5.858429 5.300277 3.785912 

FDR 25.15458 22.67241 19.92642 18.29997 13.59329 

Specificity 92.25511 93.17238 94.14157 94.69972 96.21409 

Precision 74.84542 77.32759 80.07358 81.70003 86.40671 

F1-score 82.61207 84.50306 86.55054 87.70045 91.06836 

MCC 0.783843 0.8074 0.832859 0.847093 0.888907 

Sensitivity 92.17722 93.14642 94.16753 94.65213 96.26168 

FNR 7.822776 6.853583 5.832468 5.347871 3.738318 

NPV 97.92413 98.19425 98.47477 98.60786 99.03799 

 

Table 3: Efficiency validation depression classification model 

Classifier 
LSTM  
Reddy and Ramanaiah (2023) 

RNN Wu et al. 
(2021) 

TCN Wang et al. 
(2022) 

HCRDNet Dehghani 
and Trojovský (2023)  

MRVOO-
HCARDNet 

Precision 71.81868 75.51193 76.999 80.82618 86.40671 

Sensitivity 91.03496 92.54067 93.16372 94.47906 96.26168 

F1-score 80.29309 83.16354 84.31357 87.12097 91.06836 

FPR 8.930426 7.502596 6.957425 5.60315 3.785912 

FNR 8.96504 7.459328 6.836276 5.520942 3.738318 

Specificity 91.06957 92.4974 93.04258 94.39685 96.21409 

NPV 97.59807 98.02375 98.19626 98.55891 99.03799 

FDR 28.18132 24.48807 23.001 19.17382 13.59329 

Accuracy 91.06265 92.50606 93.06681 94.41329 96.22361 

MCC 0.754946 0.79078 0.805128 0.839966 0.888907 

 

Table 4: Statistical validation of the offered depression classification method 

TERMS 
BWO-HCARDNet 
Khened et al. (2019) 

CO-HCARDNet 
Zhang et al. (2023) 

MTBO-
HCARDNetDaweri 
et al. (2020) 

OOA-HCARDNet 
Berntson et al. (2005) 

MRVOO-
HCARDNet 

Worst 1.330662 1.22442 1.249414 1.268384 1.222884 

Median 1.444179 1.241699 1.297576 1.268791 1.285063 

Mean 1.418235 1.31261 1.326565 1.333799 1.28624 

Standard 
deviation  

0.121119 0.170255 0.119037 0.137862 0.104575 

Best 1.919915 1.933691 1.74814 1.828407 1.636788 

 

 
(a) 

 
(b) 
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(c) 

 

 
(d) 

 
Fig. 11: Validation of selecting optimal features for the 

designed depression classification model regarding (a) 
Accuracy; (b) Precision; (c) NPV; and (d) FNR 

Ablation Study 

The ablation experiments of the developed model are 

shown in Table (5). It examines the efficiency of a 

developed system regarding diverse standard metrics. 

Evaluation of Cross-Validation Results 

The cross-validation results for the developed model 

are shown in Fig. (12). The graph findings show the 

effectiveness of the developed model using positive and 

negative metrics. The cross-validation results were used 

to deduce the overfitting issues. 

Validation of the Offered Approach Using the New 

Depression Dataset 

Explanation of new dataset: The depression dataset 

is taken from the link 

https://www.kaggle.com/datasets/arashnic/the-

depression-dataset accessed on 2024-06-17. The 

danger of a depression is determined by its symptoms. 

It contains two portfolios one is data for the control and 

the other one is the condition group. Each patient has a 

CSV file that contains actigraph data. This dataset 

contains 23 condition files, 32 control files, and 2.54 

kB scores.cv files. 

Validation of the Suggested Approach Using 

Diverse Metrics 

The evaluation of the suggested approach using the 

new depression dataset is shown in Fig. (13). Here, the 

accuracy and precision of the designed model are 

validated based on diverse activation functions like 

Linear, Relu, Tanh, Softmax, and Sigmoid. The given 

graph results proved that it attains better results than the 

other baseline approaches.  

 

Table 5: Ablation study of the proposed depression classification model 

Methods 
ResNet  
Zhang et al.(2024) 

Inception  
Morteza et al. (2024) 

MobileNet  
Garg et al. (2024) 

EfficiecntNet  
Sait (2024) 

MRVOO-
HCARDNet 

Accuracy 90.20 92.66 90.28 93.80 96.22 

Recall 90.31 92.67 90.39 93.77 96.26 

Specificity 90.09 92.65 90.17 93.83 96.21 

Precision 89.80 92.41 89.88 93.62 86.40 

FPR 9.91 7.35 9.83 6.17 3.78 

FNR 9.69 7.33 9.61 6.23 3.73 

NPV 90.59 92.90 90.67 93.97 99.03 

FDR 10.20 7.59 10.12 6.38 13.59 

F1-Score  90.06 92.54 90.14 93.70 91.06 

MCC 80.40 85.32 80.56 87.60 88.89 

https://www.kaggle.com/datasets/arashnic/the-depression-dataset
https://www.kaggle.com/datasets/arashnic/the-depression-dataset
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 (a) (b) 
 

 
 (c) (d) 
 
Fig. 12: Estimation of cross-validation results for the designed depression classification model regarding (a) accuracy; (b) FPR; (c) 

MCC; and (d) FNR 
 

Deep learning techniques 

 
(a) (b) 

 
Heuristic algorithms 

 
 (c) (d) 
 
Fig. 13: Computation of the offered approach using the new depression dataset regarding (a) accuracy and (b) precision 
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Overall Efficiency Validation of the Developed 

Model Using the New Dataset 

The evaluation of the overall efficiency of the 

suggested approach using the new dataset is given in 

Tables (6-7). The overall accuracy and specificity rate of 

the developed model is 96.22 and 96.26%. The validation 

of the developed model reveals its effective performance. 

Comparison of the Suggested Approach with 

Baseline Models 

The comparison of the suggested approach with the 

baseline models is given in Table (8). The effectiveness of 

the developed model is estimated according to the standard 

metrics. The efficiency of the suggested approach is higher 

than the other baseline methods. The CNN-BLSTM model 

has attained the worst performance since it does not have 

the capability to provide better detection results. 

Discussion 

Focusing on Contributions of the Proposed Work to 

Existing Literature 

The discussion of the developed model is done 

regarding the attained outcomes. While analyzing Fig. 

(7), the cost function of the suggested model clearly 

shows that the given developed model attains a better 

convergence rate than the other traditional approaches. 

Section 7.3 visualizes the confusion matrix validation that 

helps to validate the model's error and calculate the accuracy 

rate with standard metrics. When taking Figs. (9-10), the 

validation of the developed model shows its better 

accuracy and precision rate. The conventional algorithms 

attain lower performance that suffers from issues like 

massive complexity and the speed of convergence 

gradually slows down in the late search period. 

 
Table 6: Overall efficiency analysis of the depression classification models using heuristic algorithms 

TERMS 
BWO-HCARDNet 
Khened et al. (2019) 

CO-HCARDNet 
Zhang et al. (2023) 

MTBO-HCARDNet 
Daweri et al. (2020) 

OOA-HCARDNet 
Berntson et al. (2005) 

MRVOO-
HCARDNet 

Accuracy 84.15 84.34 89.47 93.18 96.22 

Sensitivity 83.87 84.25 89.34 93.21 96.26 

Specificity 84.29 84.39 89.53 93.16 96.21 

Precision 72.75 72.96 81.01 87.20 86.40 

FPR 15.71 15.61 10.47 6.84 3.78 

FNR 16.13 15.75 10.66 6.79 3.73 

NPV 84.29 84.39 89.53 93.16 99.03 

FDR 27.25 27.04 18.99 12.80 13.59 

F1-score 77.91 78.20 84.97 90.10 91.06 

MCC 66.06 66.49 77.11 85.02 88.89 
 
Table 7: Overall efficiency analysis of the depression classification models using deep learning strategies 

Classifier 

LSTM Reddy and 

Ramanaiah (2023) 

RNN Wu et al. 

(2021) 

TCN Wang et al. 

(2022) 

HCRDNet Dehghani and 

Trojovský (2023)  

MRVOO-

HCARDNet 

Accuracy 84.18 91.19 89.47 92.67 96.22 

Sensitivity 84.25 91.23 89.43 92.74 96.26 

Specificity 84.15 91.18 89.48 92.64 96.21 

Precision 72.66 83.80 80.96 86.30 86.40 

FPR 15.85 8.82 10.52 7.36 3.78 

FNR 15.75 8.77 10.57 7.26 3.73 

NPV 84.15 91.18 89.48 92.64 99.03 

FDR 27.34 16.20 19.04 13.70 13.59 

F1-score 78.03 87.35 84.98 89.40 91.06 

MCC 66.21 80.79 77.13 83.94 88.89 
 
Table 8: Comparison of the depression classification models using baseline models 

Classifier 

CNN-BLSTM 

Lilhore et al. (2024a) 

SVM-RBF Rehmani et al. 

(2024) 

IBi-LSTM Lilhore et al. 

(2024b) 

LR-FNN Samsel et al. 

(2024)  

MRVOO-

HCARDNet 

Accuracy 92.86 93.62 93.79 94.74 96.22 

Recall 92.86 93.62 93.77 94.74 96.26 

Specificity 92.86 93.62 93.80 94.74 96.21 

Precision 92.35 93.16 93.35 94.35 86.40 

FPR 7.14 6.38 6.20 5.26 3.78 

FNR 7.14 6.38 6.23 5.26 3.73 

NPV 93.35 94.06 94.20 95.11 99.03 

FDR 7.65 6.84 6.65 5.65 13.59 

F1-score 92.60 93.39 93.56 94.55 91.06 

MCC 85.71 87.23 87.56 89.47 88.89 
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While analyzing Fig. (10), the efficiency of the existing 

deep learning models attains lower performance which 

generates exploding gradient and class imbalance issues. 

The LSTM model attains the least performance that is 

not applicable for solving the overfitting issues. The 

elevated outcomes of the developed model prove the 

enhanced performance of the depression classification 

model. The overall accuracy and precision rate of the 

designed model are 96.22 and 86.40%. The statistical 

analysis of the developed model provides meaningful 

interpretation and precise results.  

Utilization of the proposed model for the clinicians 

or mental health professionals: The depression 

classification model helps clinicians or mental health 

professionals to perform the diagnosis procedures that 

can provide efficient treatment for depression patients. 

It is utilized to identify negative thought patterns and 

depressive symptoms. It prescribes medication in the 

case of a psychiatrist. 

Diagnosis and assessment: It assigns clinical 

interviews and standardized depression scales to 

diagnose depression and determine its severity for 

mental health professionals. 

Psychotherapy delivery: It provides diverse kinds of 

therapy like Cognitive Behavioral Therapy (CBT) and 

Interpersonal Therapy (IPT) based on the patient's needs. 

Treatment planning: It supplies diverse treatment 

plans, including setting goals and monitoring progress. It 

helps to train educated patients about depression and its 

symptoms which can be helpful for earlier diagnosis. 

Collaboration with other professionals: The 

collaboration of primary care physicians helps to manage 

medication and address urgent issues of patients. 

Implications of the depression classification model: 

Interpersonal losses and stressful events can enlarge the 

risk of depression. The implemented model suggests a 

Cognitive Behavioral Theory (CBT) that can suggest that 

negative thought patterns can influence depression. 

Markov Decision Process (MDP) helps to optimize 

sequential treatment to facilitate personalized treatment 

decisions. Depression diseases mainly affect adult people. 

CBT is focused on changing negative patterns of behavior 

that lead to reducing the difficulties in functioning. 

Conclusion 

The research work aimed to develop a robust 

depression classification model that leveraged diverse 

data sources, including text, EEG, and speech signals. 

This multi-modal strategy aimed to provide a holistic 

representation of the underlying features associated with 

depression. After providing the diverse features, the 

average computation is done to get the better feature 

vector. The HCARDNet model utilized a combination of 

hybrid convolutions and residual DenseNet structure to 

capture spatial and temporal dependencies within the data, 

facilitating effective learning of intricate depression-
related patterns. The parameters of HCARDNet were 

optimized using the MRVOO approach. The efficiency of 

the developed model was experimentally estimated by 

appropriate assessment criteria and industry-standard 

benchmarks in a crucial phase for evaluating its real-

world performance. The precision value of the activation 

function was set to ReLu, the offered approach surpassed 

BWO-HCARDNet, CO-HCARDNet, MTBO-

HCARDNet, and OOA-HCARDNet by 58.9, 68.5, 54, 

and 22%. This underscored the better performance of the 

offered approach compared to other traditional 
categorization techniques.  

Limitations of the Proposed Work 

However, the model's performance may be affected by 

external factors such as cultural nuances, variations in 

language, or changes in speech patterns, which were not 

explicitly addressed in the study. The main concern of this 

study is the potential biases there in the datasets utilized 

for validation and training. It contains high computational 

sources that are needed to deploy and train the model. 

Deep learning algorithms utilized in this study face issues 

such as complex architectures that demand substantial 

processing power and memory. 

Future Work of this Research Work 

Addressing these downsides and exploring the 

implemented future research directions could contribute 

to the refinement and applicability of the HCARDNet 

model for depression classification. In addition, the open-

source implementation of the HCARDNet framework will 

be considered in the upcoming works. We will focus on 

correlation studies that can help to achieve more detailed 

outcomes. We will investigate more about the clinical 

applications of depression models and depressive and 

non-depressive contents. 
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