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Abstract: Automated emotion recognition is being used as a powerful 

technology in various fields in the present times. Facial Emotion Recognition 

(FER) aims to identify the emotional states of individuals based on their 

facial expressions. While in recent years, Convolutional Neural Networks 

(CNNs) have shown noteworthy performance in image classification tasks, 

however, the latest adoption of transformers for computer vision tasks has 

become really influential. This study proposes a novel ViT-based framework 
PM-ViT to explore the performance of Visual Transformer (ViT) based 

models on emotion recognition tasks and compare its performance with a 

CNN-based approach and other existing ViT-based models that recognize 

emotions from images. The proposed model PM-ViT takes facial images as 

input. It recognizes the expression and does a binary classification into two 

classes negative emotions and positive emotions. In addition to emotion 

recognition, in case the emotions found are negative PM-ViT does a further 

classification in three classes mild, moderate, and severe basis the perceived 

strength of negative emotion and hence the proclivity that the person may be 

having a mental illness. The experimental findings demonstrate that the 

model using CNN achieves an F1-score of 81.0% on AffectNet and 97.8% 

on the CK+ augmented dataset whereas the proposed PM-ViT achieves an 
F1-score of 84.0% on AffectNet and 99.7% on CK+ augmented dataset. The 

performance of PM-ViT surpasses the performance of the existing ViT-based 

techniques that determine emotions from images. 

 

Keywords: Computer Vision, Vision Transformers, Emotion Detection, 

Affectnet, CK+ 

Introduction 

Recognizing emotions helps a human being to 

understand the intents and psychological states of other 

human beings. Analysis of facial expressions is a prominent 

research area for emotion recognition (Lili et al., 2022; 

Pennycook, 1985; Rai Jain et al., 2021).  

Depression is known to affect a wide range of 

nonverbal behaviors. Studies claim that the face conveys 

a lot of nonverbal cues; the face could be a valuable tool 

for diagnosing depression (Jiang et al., 2021). Facial 

nonverbal behavior is critical for assessing depression 

severity (Ellgring, 2007; Niu et al., 2021). Expressions of 

anger were rated more strongly by individuals with Major 

Depressive Disorder (MDD) (Branco et al., 2018).  

Further, there is a substantial shortage of mental health 

experts, including psychologists, psychiatrists, 

physicians, and nurses. India has only 0.75 psychiatrists 

per hundred thousand people, compared to 

approximately 6 psychiatrists per hundred thousand 

people in nations with greater per capita incomes (Garg and 

Glick, 2018; Jain and Quadri, 2021). Automated facial 

expression recognition has potential applications in many 

areas, more so in the aforesaid scenario. One could extract 

crucial information from real-time facial expressions 

using a computer. The system could be programmed to 

raise an alarm when a person displays a negative facial 

expression, such as that of fear, disgust, anxiety, etc. This 

information could assist medical personnel to monitor a 

patient's mental health.  
The current work proposes a visual transformer-based 

model that takes facial images as input. It recognizes the 

expression and does a binary classification into two 

classes negative emotions and positive emotions. When 

the emotions found are negative it is further classified into 

three classes mild, moderate, and severe, based on the 
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perceived strength of negative emotion and hence the 

chance of the person having a mental illness.  

The proposed model has the potential to supplement 
existing mental health assessments and enable regular, 

low-cost, automated use in situations when a specialist is 

not easily accessible or the patient is incapable or 

unwilling to participate. A similar framework could also 

be used to identify other psychiatric conditions. Studies 

have found links between psychological and somatic 

problems using facial expressions (Simcock et al., 2020). 

This research may contribute to the creation of fresh 

approaches for the early identification or diagnosis of 

mental illnesses like anxiety and depression through the 

use of facial emotion. 
Recent studies in facial emotion detection point out 

that visual transformers demonstrate superior 

performance in both accuracy and efficiency in modern-

day image categorization when compared to CNNs 

(Chaudhari et al., 2022; Bobojanov et al., 2023; 

Zakieldin et al., 2024). A ViT effectively retains the 

global image features, which allows it to classify natural 

images with high precision (Kim et al., 2022).  

The major objectives of the present study are: 
 

 OBJ1: To understand and describe the working of 

a ViT 

 OBJ2: To develop a fine-tuned framework using ViT 

architecture for emotion recognition. These models 

take facial images as input and recognize the 

expression and its perceived strength in order to 

classify the image at two levels. At the first level, the 

model does a binary classification and categorizes 

facial images into positive emotions and negative 

emotions. Thereafter, when the emotions found are 

negative, the model does a 3-way classification into 

mild, moderate, or severe depending on the strength 

of the negative emotions. 

 OBJ3: To compare the efficiency of CNN based 

model (henceforth referred to as Model 1) against the 

proposed ViT-based model (henceforth referred to as 

PM-ViT Model)  

 

The Primary Contributions of the Current Work Are 

The current study proposes a novel model PM-ViT 

that takes facial images as input. It recognizes the 

expression and does a binary classification into two 

classes negative emotions and positive emotions.  

In case the emotions found in the image are negative 

PM-ViT does a further classification into three classes 

mild, moderate, and severe based on the perceived 

strength of negative emotion and hence the proclivity that 

the person may be having a mental illness. 
The experimental findings prove the superiority of the 

proposed model PM-ViT over the CNN-based model on 

images of both CK+ (Lucey et al., 2010) and AffectNet 

(Mollahosseini et al., 2019) datasets. It also demonstrates 

the superior performance of the PM-ViT over the existing 
state-of-the-art (SOTA) ViT-based models that recognize 

emotions from images. 

Related Work 

Most of the experiments done in this area use three 

types of methods: (A) machine learning-based 

techniques like 'Support Vector Machines (SVM), 

'Principal Component Analysis (PCA), 'K-Nearest 

Neighbors (KNN), and ensemble methods, etc., (B) 

CNN based models and (C) ViT based models. A few 

related studies based on these techniques are discussed 

in the following subsections. 

Machine Learning Based Models 

Several studies such as (Al Jazaery and Guo, 2021; 

He et al., 2019; Wen et al., 2015; Zhu et al., 2018) have 

used machine learning methodologies to study the 

relationship between facial nonverbal behavior and Beck 

Depression Inventory-II (BDI-II) scores (Beck et al., 1996). 

The researchers in Lili et al. (2022) used information 

gathered from facial expressions to develop and test 
classifiers that can determine if a user is 'depressed or not 

depressed'. The user's face will be photographed in order 

to extract the user's facial traits using Gabor filters, which 

are then used to forecast depression. These facial traits 

were classified using PCA and cascade classifiers. The 

number of negative feelings in the collected image was 

used to calculate the level of depression. The result was 

an F-Score of 76.7%. It is claimed to be moderate due to 

a low number of samples and features. 

The model by Georgescu et al. (2019) uses a KNN 

algorithm for local learning and a ‘Support Vector 

Machine’ (SVM). The SVM classifier predicts the class 

label. The experiment achieves an accuracy of 63.31% on 

the AffectNet 7-emotions. 

CNN Based Models 

A CNN-based model EM-UDA by Jain et al. (2024) 

that categorizes facial expressions to interpret human 

feelings uses the technique of unsupervised domain 

adaptation. Th model achieves an accuracy of 83.9% 

when AffectNet is used in the source domain and CK+ in 

the target domain. It attains an accuracy of 74.55% FER 

2013 images are used in the target domain. 

The local ‘Sliding Window Attention Network’ 

(SWA-Net) model proposed in Qiu et al. (2023) for facial 

emotion recognition, uses feature-level cropping to avoid 

complex preprocessing and to preserve the integrity of 

local features at the same time. SWA-Net achieves an 

accuracy of 90.03% on RAF-DB, 89.22% on FER+, and 

63.97% on AffectNet.  
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Researchers Liu et al. (2022) proposed a multi-modal 

DCNN to evaluate in real-time the severity of depression 

based on the facial expressions and body movements of 

the patient. In order to evaluate the severity of depression 

experienced by MDD patients, the researchers developed 

a metric, the "Behavioral Depression Degree" (BDD). 

BDD combines the action and expression entropies. The 

results show a Pearson similarity of 74% between BDD 

and "Self-rating Depression Scale", "Self-rating Anxiety 

Scale" and “Hamilton Depression Scale”. 

The study by Jiang et al. (2021) proposed a 'Deep 

Neural Network' (DNN) using three hundred and sixty-

five video-based interviews (total of 88 h) from a group 

of twelve depression patients both pre and post "Deep 

Brain Stimulation" (DBS) treatment. A Regional CNN 

detector and an ImageNet pre-trained CNN, both pre-

trained on a very large public dataset, were used to extract 

7 basic emotions. The OpenFace toolkit was used to 

extract facial activity units. Using leave-one-subject-out 

cross-validation, an Area Under the Curve of 0.72 was 

obtained for the categorization of remission and 0.75 for 

response to treatment. 

The study (Huang et al., 2019) uses an analysis of the 

individual's Instagram posts to predict the likelihood of 

depression. In order to predict depressive propensity, it 

combined and assessed three features text, visuals, and 

behavior using a DL classifier. Using a five-layered CNN, 

the suggested model forecasts these users' propensity for 

depression with an F1 score of 82.3%. According to the 

study, the suggested model is more robust than models 

that just use text or visuals because it incorporates both. 

A multi-modal DCNN was developed by researchers 

Liu et al. (2022) to assess the degree of depression in real 

time based on the patient's body language and facial 

expressions. The researchers created a measure called the 

"Behavioural Depression Degree" (BDD) to assess the 

degree of depression that MDD patients endure. The action 

and expression entropies are combined in BDD. According 

to the findings, BDD and the "Self-rating Depression 

Scale," "Self-rating Anxiety Scale," and "Hamilton 

Depression Scale" have a 74% Pearson similarity. 

Visual Transformer Based Models 

Recent studies indicate that ViTs demonstrate superior 

performance in modern-day image categorization 

techniques in contrast to CNNs (Chaudhari et al., 2022; 

Bobojanov et al., 2023; Zakieldin et al., 2024; Raghu et al., 

2021; Bousaid et al., 2022). A ViT effectively retains the 

global image features, which allows it to classify natural 

images with high precision (Kim et al., 2022). The 

Squeeze ViT model in Kim et al. (2022), combines local 

and global features to improve FER performance while 

lowering computing complexity through a reduction in 

the number of features. A CNN is used to process an input 

image to extract the global and local features as landmark 

tokens and visual tokens. The squeeze module preserves 

strong discriminative aspects while modifying the feature 

dimensions. The Squeeze ViT receives concatenated 

tokens that are fed into its several encoders and squeeze 

module stacks. The model achieved an accuracy of 99.54 

for CK+. 

A Mask Vision Transformer (MVT) proposed in [29] 

comprises 2 modules: (i) A dynamic relabeling module to 

correct the wrong labels in facial emotion recognition 

datasets in the wild and (ii) Mask Generation Network 

(MGN), built using transformers, to generate a mask that 

can remove the backgrounds and occlusion of facial 

images. Results show that the MVT obtains an accuracy 

of 88.62% with RAF-DB, 89.22% with FER Plus, and 

64.57% with AffectNet-7 respectively. 

The study (Chaudhari et al., 2022) uses a fine-tuned 

ViT and applies it to an amalgamation dataset of 

'FER2013, AffectNet, and CK+48 (AVFER) for image 

recognition. The models used were fine-tuned ResNet-18, 

'ViT-B/16/S, ViT-B/16/SG and ViT-B/16/SAM’ attaining 

an accuracy of 50.1, 52.3, 52.4 and 53.1% respectively for 

8 emotions. The study looks at how the training and 

validation losses alter for the ViTs in comparison to 

ReSNet-18 and concludes that ResNet-18 has a high 

training loss as compared to ViT-based models and that 

'ViT-B/16/S, ViT-B/16/SG' have a higher validation loss 

because of inadequate data. 

Two 'Attentive Pooling' (AP) modules are proposed 

in the study by Xue et al. (2023). In order to prevent 

noisy patches from affecting identification performance 

in the modules, an 'Attentive Patch Pooling' (APP) 

module is used to pick the distinct local patches from 

CNN feature maps. The proposed AP modules with the 

Vision Transformer (APViT) model combine APP and 

'Attentive Token Pooling' (ATP). APViT achieves an 

accuracy of 66.91% on AffectNet images and 91.98% on 

RAF-DB images. 

In order to address FER in the wild, the study (Ma et al., 

2023) proposed the 'Visual Transformers with Feature 

Fusion' (VTFF) model, with two basic phases. To start 

with, 'Attentional Selective Fusion' (ASF) is used to 

leverage two distinct feature maps created from CNNs 

with two branches. ASF obtains discriminatory 

information by integrating several features with local-

global attention. This model achieves an accuracy of 

88.14, 88.81, and 61.85, on RAF-DB, FERPlus, and 

AffectNet respectively. 

'Few-Shot Facial Expression Recognition' with a 'Self-

Supervised Vision Transformer' (SSF-ViT) is proposed by 

Chen et al. (2023) to train a DL model with less labeled 

data. This was achieved by mixing 'Self-Supervised 

Learning' (SSL) with 'Few-Shot Learning' (FSL). The ViT 

encoder is pretrained with 4 self-supervised tasks: jigsaw 

puzzle, masked patch prediction, image rotation prediction, 
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and image denoising and reconstruction. According to the 

results, SSF-ViT claims to have an accuracy of 90.98, 

74.95, 66.04, and 63.69%, on RAF-DB, FER2013, 

AffectNet, and SFEW 2.0 respectively. 
The evolutionary approach using Particle Swarm 

Optimization (PSO) and the Vision Transformer are 

combined in the (Fliss and Zemzem, 2024) hybrid 

intelligent model. The majority of emotions in photos 

were correctly detected by the suggested model, which 
achieved an accuracy of 100% for the CK+ dataset and 

95.93% for the FER2013 Plus dataset. 

CNN and VIT 

Both CNN and ViT are two important techniques used 

in Computer Vision (CV) having different architectures 

and approaches. Convolutional Neural Networks (CNN) 

have been the predominant network for quite some time, 

but ViT demonstrated that they can outperform CNN-

based models in recognition, detection, segmentation, and 

other tasks. ViTs leverage transformer architectures to 

process images as sequences of tokens, allowing them to 

capture global dependencies and learn effective 

representations. The major benefit of ViTs lies in their 

capacity to efficiently gather global contextual data via 

the self-attention mechanism. In comparison to CNNs, 

ViTs are a recent approach to computer vision tasks. ViTs 

are based on transformer architectures that were initially 

developed in the context of Natural Language Processing 

(NLP) tasks. They treat images as a sequence of tokens 

after demarcating the image into a sequence of patches. 

They then use transformer blocks to process these token 

sequences thus enabling interactions among different 

parts of the image. ViTs use self-attention methods to 

extract global dependencies in the input image. This 

enables them to effectively model long-range interactions 

as compared to CNNs. They capture subtle spatial 

dependencies between facial features and expressions. 

Although it takes a huge amount of data to pre-train a ViT 

model, in comparison to CNNs, ViTs need less data to 

train effectively and they give more promising results. 

This makes them suitable for applications where there is 

a scarcity of labeled data. However, the specific 

performance of these architectures varies due to factors 

like dataset quality, dataset size, the complexity of the 

task, model architecture and design, etc. 

Convolutional Neural Network (CNN) 

A CNN has (i) a Convolution layer, (ii) a Batch 

normalization layer, (iii) a Rectified Linear Unit (ReLU) 

or non-linearity activation layer, (iv) a Max-pooling layer, 

and (v) a Fully connected layer. Convolutional layers are 

the first layers in a standard CNN architecture. They 

extract computationally interpretable characteristics from 

the picture by passing through the kernels or filters from 

left to right. Low-level characteristics (such as colors, 

gradient direction, edges, etc.,) are extracted by the first 

layer, while high-level features are extracted by the lower 

layers that follow. Then, the pooling layers minimize the 
data obtained by the convolutional layers, yet preserve the 

salient characteristics. Ultimately, the flattened output of 

the convolutional and pooling layers is passed into the 

fully connected layers, which carry out the classification. 

The convolutional layers are interspaced by non-linear 

activation functions and max-pooling layers (Figs. 1-2). 

CNNs adaptively learn spatial hierarchies of features from 

images through their convolutional layers in this manner. 

They process data via a 2D-grid manner by sliding a set 

of filters over the input image to extract features. This 

makes them proficient in focusing on the spatial 
hierarchies of the features such as edges, textures, and 

object parts. CNNs have been widely used to efficiently 

capture facial landmarks, expressions, and emotions. 

Some well-known CNN architectures that have been 

successfully fine-tuned for facial emotion recognition 

tasks include VGG, ResNet, Inception (Szegedy et al., 

2015), DeepFace (Taigman et al., 2014), etc. For effective 

training, CNNs need large volumes of data. Deep CNNs 

quite often suffer from issues such as vanishing gradients 

and overfitting. 

Vision Transformer (ViT) 

A transformer is a high-capacity network architecture 

that can approximate complex functions. It uses attention 

to understand the sequence of information. It is a general-

purpose architecture that can process a variety of data 

formats such as text, audio, image, and video. This makes 

them highly suited to multi-modal deep learning tasks. It 

consists of two main parts (i) Encoder and (ii) Decoder 

(Vaswani et al., 2017).  

 

 
 
Fig. 1: Blocks in a convolutional neural network 

 

 
 
Fig. 2: Block Architecture of VGG-19 having five blocks of 

convolutional layers (total 16) interspersed with a max-
pool layer. The last block has three fully connected 
layers. Adapted from (Simonyan and Zisserman, 2014) 
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A ViT is an encoder-only transformer (Dosovitskiy et al., 

2020). It does not have a decoder. The block diagram of a 

ViT is shown in Fig. (3). The major benefit of ViTs lies 
in their capacity to efficiently gather global contextual 

data via the self-attention mechanism. This allows them 

to represent long-range dependencies and contextual 

linkages, hence enhancing their resilience in tasks that 

need comprehending global context. Additionally, based 

on input data, ViTs can adaptively modify the self-

attention mechanism's receptive fields, improving their 

ability to record local and global characteristics and 

strengthening their resistance to changes in object 

perspective, rotation, or size.  

The operation of a vision transformer is detailed as 
follows. 

Image to Patches 

The ViT breaks down the image into smaller non-

overlapping sections called patches. Each patch is 

typically a square region of the image as shown in Fig. (3). 

For e.g., in the case of the PM-ViT each image has a size 

of 224224 pixels and the patch size is 16 pixels, so, the 

image is divided into 196 patches, as, 

[(224*224)/(16*16)] = 196 patches: 

 
𝑥 ∈ ℝ𝑊∗𝐻∗𝐶  

 
→ 𝑥𝑝

𝑖  ∈  ℝ𝑃∗𝑃∗𝐶  𝑤ℎ𝑒𝑟𝑒 𝑖 = 1 𝑡𝑜 196  

 

The stride determines how many pixels the sliding 

window will move in each step. In the case of the PM-

ViT, the stride is 16 pixels. Since the patch size is equal 

to the stride there is no overlap between the patches.  

These patches are then flattened/ reshaped from a 2D 

vector to a 1D vector. Each of these patches is divided into 
smaller units called tokens. Since most images input to the 

PM-ViT are colored (i.e. have 3 channels) and the patch 

size is 16, every patch has 16*16*3 = 768 tokens. Each 

patch is treated like a distinct input sequence of tokens 

where each token represents a specific part of the patch. 

Linear Projection of Flattened Patches  

The Linear Projection Layer works on each flattened 

patch by transforming each 1D vector into a lower 

dimensional vector while preserving the important 

features and relationships. The process of linear 

projection involves two main operations (a) Weight 

matrix multiplication and (b) Bias addition. This is very 

similar to the CNN models where we multiply weights 

with input and add the bias. It involves multiplying each 

element of the flattened sequence by a weight and adding 

a bias term. The bias may also be zero. Both these weights 

and biases are learned during the training process.  
Linear projection can be done for all patches in one 

step. The result of these steps is a transformed vector of 

lower dimensionality i.e., a vector that has fewer elements 
than the original vector. It leads to a reduction in the 

number of input features used to represent a particular 

object. The idea behind reducing the dimensionality is 

that the lower dimensional vectors require less memory 
and less computational resources thus ensuring faster and 

effectual operations. Moreover, dimensionality reduction 

makes the vector representations more robust and focused 

on essential features because it extracts the most essential 

features and the most essential information while 

discarding the less significant details, eliminating noise 

and irrelevant variations in the data. 

Position Embeddings 

It is important to understand that in the case of CNN, 

the operations of convolution translation and scaling are 

equivariant. This equivariant property is very important 

for object recognition, detection, and segmentation. The 

pooling operation in CNN is translation invariant and 

scale invariant. This means if an object is translated in 

scale the output of pooling is not affected. This invariant 

property is important in object recognition. Thus, CNNs 

have both equivariance and invariance.  

In contrast, transformers do not have a notion of 

equivariance. This issue is resolved by position 

embedding. Position Embedding Layer is added to each 

patch of the image. It indicates the location of each patch 

in the image. Positional encoding is needed because all the 

data is fed into the transformer together, so, the 

transformer has no knowledge about the sequence of 

patches or their position viz-a-viz the original image. 

Thus, positional embedding provides the position 

information to ViT.  

Position embedding means adding a unique position 

identifier to the linear projection of each patch. This 

enables the vision transformer to know the arrangement 

of the sequence of patches in the original image during 

training. This is the only inductive bias in a vision 

transformer. Everything else is learned.  

Further, the vision transformer has a learnable class 

embedding called class token. This is represented by the 

* sign at position 0 in the Fig. (3). 

 

 
 
Fig. 3: Architecture of vision transformer adapted from 

(Dosovitskiy et al., 2020) 
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Transformer Encoder 

The encoder consists of a stack of transformer blocks 

one on top of the other. A block diagram of a single 

transformer encoder block is shown in Fig. (4). It has 5 

key elements that enable its functioning: 

 

 Multi-Head Attention (MHA) 

 Multi-Layer Perceptron (MLP) 

 Layer Normalization (LN) 

 Residual Connections (RC) 

 Positional Embeddings (PE) 
 

In Fig. (4), the flow of information is upwards. The 

MHA lets the different patch embeddings communicate 

with each other while the MLP lets each embedding think 

independently about what it has just learned from its 

neighbors. There is no information sharing between 

patches. Both MHA and MLP are compute-heavy blocks 

and most of the processing of the transformer logic 

happens here. The RC and LN are the optimizations that 

are included to help the optimization process. Both RC 

and LN appear twice. RCs help gradients flow while LN 

aims to stabilize learning. Positional embeddings are 

added to the embedded patches at the input and they help 

the transformer identify which patch embedding comes 

from which location. The following subsection discusses 

Single-Head Attention (SHA) followed by a subsection 

that discusses MHA. 

Single-Head Attention  

An image is divided into 𝑝  patches. Then 𝑝 +  1 

(that accounts for the class token) =  𝑁 , which is the 

length of embedding. Let 𝐷 be the dimension of each 

embedding. Presume 𝑋 is the input to the self-attention 

head of the vision transformer, then, 𝑋 is given by the 

relation 𝑋 ∈  ℝ𝑁×𝐷.  

The input 𝑋  is a sequence of embeddings, that is 

projected thrice to produce 3 matrices of the same shape - 

queries, keys, and values as follows: 

 
𝑄𝑢𝑒𝑟𝑦 = 𝑄 =  𝑊𝑄𝑋 

𝐾𝑒𝑦 = 𝐾 =  𝑊𝐾𝑋 
𝑉𝑎𝑙𝑢𝑒 = 𝑉 =  𝑊𝑉𝑋 

 

In ViT, the attention mechanism operates on pairs of 

patches in the image grid using the Query-Key-Value 

concept. These new projections can be thought of as 

having particular meanings:  

 

 The query may be interpreted as the features of interest 

 Keys are features relevant to the Query 

 Values are what actually gets communicated, it is a 

matrix of the original features that are to be scaled by 

the probabilities computed by the attention function 

 
 
Fig. 4: The transformer encoder (Vaswani et al., 2017; 

Dosovitskiy et al., 2020) 

 

When 𝑄 is the matrix of queries with dimension 𝑑𝑘, 𝐾 is 

the matrix of keys with dimension 𝑑𝑘, and 𝑉 is the matrix 

of values of the original features with dimension 𝑑𝑣 . 

Then, the matrix of outputs is given by the ‘scaled dot 

product attention’. It is expressed by the function- 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) as shown in Eq. (1):  
 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉  (1) 

 
The dot products of the 𝑞𝑢𝑒𝑟𝑦 are computed with all 

𝑘𝑒𝑦𝑠  and each of them is divided by √𝑑𝑘 , the 

normalizing factor. Then the normalized dot product is 

changed to probabilities by the softmax function. These 

probabilities determine the weights of the 𝑣𝑎𝑙𝑢𝑒𝑠 and are 

used to scale the original input features. The results are 

added to the residual connections and normalized.  

Upon multiplying 𝑄 by 𝐾𝑇  (K transpose) we get an 

𝑁 × 𝑁 matrix in which each row has similarities from the 

query of one embedding (what we are interested in) to the 
keys of all the other embeddings (what is relevant to the 

query). The softmax function is applied along the rows of 

the matrix to normalize them to probability vectors. Since 

the softmax is sensitive, when one input is much bigger 

than the other, it does not give useful gradients. Therefore, 

to avoid peaky affinities when the inner products are 

large, the product 𝑄𝐾𝑇 is divided by √𝑑𝑘, the square root 

of the dimension of keys. The justification for this 

normalization constant is that if we assume we have a 

query and key vectors as Q and K respectively and that Q 

and K are independent random variables with mean zero 

and variance one. Then, their inner product has a variance 

that is the same as the key dimension that can cause the 

magnitudes to get very big for high dimensions which in 

turn saturates the softmax and ruins the gradients. If this 

assumption is approximately correct then normalizing by 

√𝑑𝑘 will keep the variance around one. Finally, 𝑉 is used 
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to compute a weighted sum of values effectively. Every 

embedding gets a weighted sum of the values of all other 

embeddings as per query-key likeness. 

Multi-Head Attention (MHA) 

The first layer of the transformer encoder in a ViT is 

the MHA Layer. It has multiple attention blocks in an 

encoder module (Fig. 5). 

Queries, keys, and values are represented by 𝑄, 𝐾, and 

𝑉 respectively and ℎ represents the number of attention 

heads. All these attention blocks have the same network 

structure. This makes a difference because different 

learned representations from the multiple heads can 

improve the overall network performance. Rather than 

using the same attention function on 𝑚𝑜𝑑𝑒𝑙-dimensional 

keys, values, and queries, better results are obtained by 

linearly projecting queries, keys, and values ℎ times using 

different learned linear projections to 𝑑𝑘 , 𝑑𝑘 , and 𝑑𝑣 

dimensions, in that order. (Here ℎ  corresponds to the 

number of heads in the multi-head attention module). The 

attention function is applied simultaneously to all 

projected copies of queries, keys, and values to provide 

𝑑𝑣  dimensional outputs. They are concatenated and 

projected again to find the concluding results as shown in 

Fig. (5). MHA permits the model to cooperatively work 

on information from various representation subspaces at 

various positions. If a single attention head is used, this is 

inhibited by averaging. 

 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1 , . , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 (2) 

 

where, ℎ𝑒𝑎𝑑𝑖 =  𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) and the 

projections are the parameter matrices: 

 

𝑊𝑖
𝑄 ∈  ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊𝑖

𝐾 ∈  ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 

𝑊𝑖
𝑉 ∈  ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣 and 𝑊𝑖

𝑂 ∈  ℝℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙  

 

 
 
Fig. 5: The MHA module consists of many layers running in 

parallel (Vaswani et al., 2017) 

The Attention function is a mapping between a query 

and a set of key-value pairs to output. Attention aids each 

patch to attend to and also gather information from all 

other patches. It captures dependencies between the 

patches and also enables the model to consider the global 

context. Each patch of the image is converted to a high-

dimensional feature vector and the attention is calculated 

as the dot product of two feature vectors. It is the length 

of the projection between the two vectors. MHA 

concatenates all the attention outputs linearly to the 

correct dimensions. The multiple attention heads focus on 

the local and global dependencies in the image. 

Every patch of the image is treated as both a “query” 

and a “key” for attention calculation. At a point in time, the 

query represents the patch (q) whose representation is being 

updated based on its relationship with other patches. The 

key represents all the patches that the query patch (q) 

attends to. It determines how much attention each key patch 

should receive from the query patch (q). The value 

component represents the content of each patch and it is 

used to compute the weighted sum of values. This weighted 

sum becomes the output of the attention mechanism.  

The attention mechanism computes attention scores 

between the query and key patches. These attention scores 

determine to what extent each key patch contributes 

toward the updated representation of the query patch. The 

attention scores are typically calculated using a dot 

product between the query and key embeddings, followed 

by a softmax operation to get attention weights. 

Thereafter, the attention weights determine the weighted 

sum of the value embeddings. This weighted sum of value 

embeddings is the updated representation of the query 

patch. It captures information from all relevant key 

patches. This helps the deep learning model to understand 

the relationship between the different parts of the image 

by assigning importance scores to the patches and 

focusing on the most relevant information which helps the 

model to make better sense of the image.  

Each embedding gets a weighted sum of the values of 

other embeddings based on the query, and key similarity. 

The attention mechanism is useful but could become very 

slow if the patches want to send multiple messages. The 

solution to this problem as proposed by the original 

authors of ViT is to perform multiple attention operations 

in parallel using a collection of ℎ separate attention heads. 

For each of the ℎ heads there is a separate learned query 

matrix to produce the queries, another learned key matrix 

to produce the keys, and yet another learned value matrix 

to produce the values. The scaled dot product attention is 

applied just as before to obtain an output once this is done 

for all ℎ heads. 

Asymptotic Complexity of Multi-Head Attention 

The asymptotic complexity of MHA (ignoring the 

projections) is O(n2 * D) which means that the cost of 
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attention is quadratic in the sequence length. Many 

researchers have provided ways to reduce this complexity 

but no model to the best of our knowledge, outperforms 
the vanilla transformers. 

Fully Connected MLP 

Now that the embeddings have shared their thoughts 
with each other in the MHA, they may be allowed to do 
some thinking alone about what they have learned. This is 
achieved via a two-layer MLP that is applied 
independently on each embedding. Therefore, the self-

attention layer is followed by a "feed-forward network 
layer". This layer consists of a couple of FC layers with 
non-linear activation functions. The output from each 
patch is passed to this layer. The layer captures the 
complex non-linear relationships amongst the various 
patches. The original transformer used ReLU for its 
nonlinearity. More recently Gaussian Error Linear Unit 
(GELU) has become more popular for this task. Both these 
nonlinearities are fairly similar in shape except that the 
GELU is a little smoother near the origin. The operation of 
the MLP may be mathematically expressed as:  
 
𝑀𝐿𝑃(𝑥) =  𝑊2𝜎(𝑊1𝑥 + 𝑏1) + 𝑏2 (3) 
 

Residual Connections 

In the transformer encoder block in Figs. (4-5) and the 

residual connections are depicted by arrows going around 

the side. Residual connections help with optimization. The 

residual corresponds to simply adding the input back to the 
output. The original authors suggest that optimizing the 

residual mapping is simpler when compared to optimizing 

the original unreferenced mapping (Vaswani et al., 2017). 

Empirically residual connections make a big difference to 

optimization He et al., 2016). 

Normalization Layer 

The normalization layer reduces training time and 

stabilizes training. The two-layer Norm blocks appear before 

the MHA and the MLP layers in a transformer encoder. 
Norm is very similar to batch Norm. In both cases, inputs are 

normalized by subtracting their mean and dividing by the 

square root of variance plus some positive constant offset for 

numerical stability. To avoid losing expressiveness the 

results are scaled by a learned gain parameter and a learned 

bias parameter is added. Mathematically:  
 

𝑦 =  
𝑥 − 𝔼[𝑥]

√𝑉𝑎𝑟[𝑥] + 𝜖
 . 𝛾 + 𝛽  

 
Where, 𝛾 is the learned gain and 𝛽 is the learned bias, 𝜖 

for numerical stability.  

Classification Head 

The last layer of the transformer encoder is the 

Classification Head (aka Prediction Head). It maps the 

output of the transformer into the desired output format. 

The Multi Linear Perceptron Head is an extra linear layer 

for the final classification.  
The proposed model PM-ViT uses a ViT large 

architecture as the backbone. It is trained end-to-end using 

labeled data and the Cross-Entropy loss function. During 

training, parameters of the model (including those of the 

transformer encoder layers, positional encodings, and 

embedding layers) are optimized using the Adam 

(Adaptive Moment Estimation) optimizer. Adam is based 

on two main techniques: adaptive learning rates and 

momentum optimizer.  

Datasets Used 

The experiments were conducted using images from the 

two benchmarked datasets AffectNet (Mollahosseini et al., 

2019) and CK+ (Lucey et al., 2010). The details of the 

images used from these datasets are in Table (1). 

AffectNet Dataset 

AffectNet is a vast collection of nearly 1000,000 

spontaneous pictures in the wild. Spontaneous 

expressions occur naturally and are not controlled by 
anyone. Consequently, the feelings are better captured in 

natural evocations of expressions. The pictures in this 

dataset were gathered from the Internet using 3 search 

engines and 1250 emotion-specific keywords in 6 

languages. In light of the resources available to carry out 

the proposed study, a subset of these images for six basic 

emotions, namely- 'happy (joy), surprise, sad, fear, disgust, 

and anger' was extracted as a stratified random sample as 

depicted in Fig. 6(a). Thereafter the images were combined 

as 2 classes happy and surprise taken in one class as positive 

emotions and sad, fearful, disgust, and anger taken in the 
class as negative emotions (Fig. 7(a)). 

Extended Cohn-Kanade Dataset (CK+) 

The dataset CK+ has posed images featuring 123 

different individuals using 593 videos. These videos have 

been flattened into 5876 images. For the creation of posed 

datasets, the participant is requested to 'pose the emotion'. 

Posed datasets are relatively easy to collect and thus more 

common. In CK+, 327 images have associated emotion 

labels. Of these 327, 309 pictures have the 6 emotions 
considered in this study (Fig. 6(b)). The number of images 

in CK+ is small, therefore they were augmented 7 times 

before training the model (Fig. 7(b)). 
 
Table 1: Images used in this study 

Dataset 

Emotion 

type Train Validate Test 

Total 

images 

AffectNet 
Positive 6404 804 804 8012 

Negative 6408 816 816 8040 

Total # images 12812 1620 1620 16052 

CK+ 
Positive 113 19 20 152 

Negative 117 20 20 157 

Total # images 230 39 40 309 
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(a) 

 

 
(b) 

 
Fig. 6: (a) Count of images extracted from AffectNet 

(Mollahosseini et al., 2019) dataset and used in the 
current study. (b) Count of Images Extracted from CK+ 
(Lucey et al., 2010) dataset, augmented 7 times and then 

used in the current study 
 

 
(a) 

 

 
(b) 

 
Fig. 7: Sample Images from AffectNet and CK+ datasets; (a) 

AffectNet images; (b) Augmented CK+ images 

Materials and Methods  

Implementation Environment 

The experiments were conducted using a virtual 

machine at Google Collaboratory Pro on an ASUS 

RYZEN 7 laptop with 16 GB RAM. These models were 

built using PyTorch and run on an NVIDIA Ampere 

Architecture (A100 GPU). The virtual machine had 40 
GB GPU RAM and 80 GB RAM in the execution 

environment. All experiments were conducted 3 times, 

executing 100 epochs each time and this study reports the 

average outcomes.  

CNN Based Fine-Tuned Model (Model 1) 

Model 1 uses the VGG-19 as backbone architecture 

and is fine-tuned to process facial images from AffectNet 

and augmented CK+ datasets. It takes a facial image as 

input and does a two-step classification. In the first step, 
it recognizes the emotions in the input image and does a 

binary classification into two classes – negative emotions 

and positive emotions. In case the emotions found are 

negative it does a further ternary classification into three 

classes mild, moderate, and severe based on the perceived 

strength of the negative emotion and hence the chance of 

the individual having a mental illness. The thresholds 

used for classifying the negative emotions into 

corresponding strengths is shown in Table (2).  

The block diagram of Model 1 is shown in Fig. (8). 

Model 1 is trained using labelled data. The image size used 

was 224224. It uses weighted "cross entropy loss" as loss 

function, weighted "Stochastic Gradient Descent (SGD)" as 
optimizer and has a learning rate of 1.00e-03, weight decay 

of 5.00e-04 and momentum of 0.9, as its hyperparameters. 

The PM-ViT Model 

The PM-ViT is a fine-tuned vision transformer based 

on ViT Large as backbone architecture (Fig. 9). It is 

trained end-to-end using labelled data. Exactly like model 

1, the PM-ViT recognizes the emotions in the input image 

and does a binary classification into two classes negative 

emotions and positive emotions in step 1. In case the 
emotions found in the image are negative it does a further 

classification into 3 classes mild, moderate and severe 

based on the strength of negative emotion and predicts the 

chance of the individual having a mental illness. The logic 

of this experiment is based on the Algorithm 1 below. The 

image size used by PM-ViT is 224224, the patch size is 

1616 and the stride is also 16. The model uses “Cross-

Entropy Loss" as loss function, a learning rate of 1.04e-4 

and weight decay of 1.00e-4. During training, the 

parameters for this model were optimized using grid 

search and Adam (Adaptive Moment Estimation) 

optimizer. Even though grid search is time consuming, it 
was used to tune the hyperparameters because it is easy to 

implement and when the search space is not very large it 
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guarantees finding the best combination. Adam is based 

on two main techniques: Adaptive learning rates and 

momentum optimizer. Adam was used as it is known to 
work well with ViT large. The tuning details of learning 

rates and weight decay used for optimizing PM-ViT using 

AffectNet images is as shown in Table (3). GELU was 

used for non-linearity. 
 
Table 2: Classification of images with negative emotions vis-a-

vis the intensity (mild, moderate or severe) that the 
person could be suffering from a mental illness 

Extent of negativity Class 

0.75 > prob >= 0.50 mild 

0.90 > prob >= 0.75 moderate 

>= 0.90 severe 

 
Table 3: Performance of PM-ViT for various learning rates and 

weight decay values 

Parameter Value  Accuracy (%) 

Learning Rate 

1.04e-03 82.15 
1.04e-04 82.80 
5.04e-04 82.63 

Weight Decay 

1.00e-04 82.38 
5.00e-04 82.59 

1.00e-03 82.17 

 

 
 
Fig. 8: Model 1, the fine-tuned model CNN using VGG-19 as 

backbone architecture 

 
 

Fig. 9: Proposed PM-ViT Model, using ViT large as its 

backbone architecture, fine-tuned to classify 

AffectNet and CK+ augmented dataset image. 

 

Results and Discussion 

Experiments were conducted using images extracted 

form AffectNet and images from augmented CK+ 

datasets. The results demonstrate that using the CNN 

based Model 1 the experiment achieves an accuracy of 

81.48% and a F1-score of 81.0% on AffectNet dataset. 

Model 1 achieves an accuracy of 97.8% and a F1-score of 

97.8% on CK+ augmented dataset. These results are 

presented in Fig. (10) and Table (4). 

The ViT based proposed PM-ViT framework 

surpasses the performance of the CNN based Model 1 by 

achieving an accuracy of 83.78% and a F1-score of 84.0% 

on AffectNet and an accuracy of 99.7% and an F1-score 

of 99.7% on CK+ augmented dataset (Table 4).  

The Figs. (11-12) show the performance of PM-ViT in 

comparison to the various ViT based SOTA models that 

have been used to recognize emotions using the AffectNet 

and CK+ datasets respectively. The findings therein clearly 

demonstrate that the proposed PM-ViT’s superiority over 

the SOTA ViT based models used for emotion recognition 

using the same datasets as PM-ViT (Table 4). 

 

Algorithm 1: Logic of PM-Vit Model 

Input: An image of a face 

Output: Class Label, Intensity Label 

1. Cut the input image into non overlapping square patches and arrange them into a sequence from top left to bottom right 

2. Patch Embedding: Convert each patch into a vector of lower dimensions by applying linear projection.  

3. Generate positional embeddings for each patch and tokenize- combine patch embeddings with positional encoding. 

4. Class token- include a learnable embedding at the position zero to represent the entire image.  

5. Pass the tokenized embeddings through multiple transformer encoder layers.  

6. Global Representation Extraction: The patch embeddings are aggregated to obtain a global representation of the image. 

This is achieved using mean pooling. 

7. Obtain Classification Head output- a linear layer that uses the global representation to do a binary classification followed 

by a three-way classification if required: 

 a. Classify the image as depicting positive emotions or negative emotions. 

 b. If the image depicts negative emotions, categorize the chance of the person having a mental illness as 

mild, moderate or severe using the thresholds in Table (2). 
End 
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Table 4: Performance of proposed study vs state-of-the-art 

Study Method used/ technique Dataset 
Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-Score 
(%) 

Georgescu et al. (2019) KNN (Supervised Learning) AffectNet  63.31 
   

Handrich et al. (2020) CNN (Supervised Learning) AffectNet 79 
   

Georgescu et al. (2019) 
CNN and BOVW+ global 
SVM (supervised learning) 

AffectNet 63.2 
   

Ma et al. (2021) 
CNN based MTCNN 
(supervised learning) 

AffectNet 61.85 
   

Hasani et al. (2022) 
BReG-NeXt (supervised 
learning) 

AffectNet 68.50 
   

Aina et al. (2024) DNet (a CNN), ViT and 
ResNet50. 

AffectNet, FER 
2013 

78 
   

Gao et al. (2023) 
SSA-ResNet18 (supervised 
learning) 

AffectNet 65.04 
   

Gao et al. (2023) 
SSA-ICL-ResNet18 
(Supervised Learning) 

AffectNet 65.78 
   

Hossain et al. (2023) CNN Fusion (transfer learning)  SFEW 2.0 
80.34 

   

Kurian and Tripathi (2022) 
UDA - Generative adversarial 
model (GAN) 

FER-2013, 
Kaggle Autism 
dataset 

71.53 
   

Kurian and Tripathi (2022) 
UDA - Generative adversarial 
model (GAN) 

CK+, Kaggle 
Autism dataset 

71.53 
   

Jain et al. (2024) CNN based EM-UDA Transfer 

Learning 

AffectNet, FER 

2013 
74.55 

  74.87 

Jain et al. (2024) CNN based EM-UDA Transfer 
Learning 

AffectNet, CK+ 83.9 
  82.8 

Chaudhari et al. (2022) ResNet-18 AVFER 
(FER2013, 
AffectNet, 

CK+48) 

52.77 50.90 60.05 49.43 

Chaudhari et al. (2022) ViT-B/16/S AVFER 
(FER2013, 
AffectNet, 
CK+48) 

54.89 54.85 62.25 51.84 

Chaudhari et al. (2022) ViT-B/16/Sharpness Aware 
Minimizer 

AVFER 
(FER2013, 
AffectNet, 

CK+48) 

56.94 54.70 63.10 62.20 

Ma et al. (2023) Visual Transformers with 
Feature Fusion (VTFF) 

AffectNet 61.85    

Li et al. (2021) Mask Vision Transformer 
(MVT) 

AffectNet 64.57    

Chen et al. (2023) SSF-ViT AffectNet 66.04    

Xue et al. (2023) APViT AffectNet 66.91    

Kim et al. (2022) Squeeze ViT CK+ 99.54    

Present Study Model 1 CNN-VGG  AffectNet 81.48 82.0 82.0 81.0 

Present Study Model 1 CNN-VGG CK+ Augmented 97.8 96.4 99.2 97.8 

Proposed Model PM-ViT ViT  AffectNet 83.78 84.0 84.0 84.0 

Proposed Model PM-ViT ViT  CK+ Augmented 99.7 99.4 100 99.7 
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Fig. 10: Performance of CNN based Model 1 Vs PM-ViT  

 

 
 
Fig. 11: Performance of PM-ViT Vs other ViT based SOTA 

models Using AffectNet Dataset 
 

 
 
Fig. 12: Performance of PM-ViT Vs other ViT based SOTA 

models Using CK+ Dataset 

 

 
 
Fig. 13: Sample images from AffectNet and CK+ augmented, 

after the first step binary classification, showing 
positive emotions along with the strength of the positive 
emotions 

 
 
Fig. 14: Sample output of PM-ViT, showing images from 

AffectNet and CK+ augmented, after the 2nd step, the 3-
way classification, showing negative emotions along 
with the perceived strength of the negative emotions 

 

The outputs of the second stage of classification by 

PM-ViT to determine the proclivity towards mental 

illness in case the emotion in the image is found to be 

negative. The results of the images processed at this stage 

are as depicted in Figs. (13-14). 

Conclusion 

The current study proposes a novel framework PM-

ViT that takes facial images as input, recognizes the 

emotions in the input image. It does a binary classification 

of these images into classes negative emotions and 

positive emotions as step 1. In case the emotions found in 

the image are negative it does a further classification, as 

step 2, whereby it classifies the negative emotion images 

into three classes mild, moderate and severe basis the 

perceived strength of negative emotion in that image. This 

is to predict the proclivity of the individual towards a 

mental illness.  

The experimental findings demonstrate that using the 

CNN based model 1 the experiment achieves an accuracy 

of 81.48% and a F1-score of 81.0% on AffectNet dataset. 

It achieves an accuracy of 97.8% and a F1-score of 97.8% 

on CK+ augmented dataset, whereas the PM-ViT 

framework achieves an accuracy of 83.78% and a F1-

score of 84.0% on AffectNet and an accuracy of 99.7% 

and an F1-score of 99.7% on CK+ augmented dataset. 

This, is indicative of the superiority of the vision 

transformers over CNN for image processing tasks.  

The experimental findings also show that the proposed 

PM-ViT model has a better performance over the other 

SOTA vision transformer-based models proposed in the 

recent studies.  

The proposed model has the potential to supplement 

existing mental health assessments, allow regular low-

cost evaluation, automated evaluation in situations where 

a specialist is not easily accessible or the patient is 

unwilling or unable to engage. Similar framework could 

also be used to recognizing early signs of mental health 

deterioration or prodrome detection. 
This research may contribute to the creation of fresh 

approaches for the early identification or diagnosis of 
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mental illnesses like anxiety and depression through the 

use of facial emotion. 

Future Directions  

The work can be extended for finer categorizations of 

emotions, for a better assessment of the emotional states 

vis-à-vis mental ailment prediction using the facial 

images. Researchers would also like to extend this study 

for use with multimodal dataset. 

Translational applications require real-time emotion 

detection and hence focused research towards making 

efficient architectures that can detect emotions without 

hampering a user’s experience of the device may be 

helpful. Developing light models with smaller 

architectures and few trainable parameters that are 

capable of performing well in real-time emotion 

recognition tasks for handheld computational devices can 

be an application area of the proposed model. 
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