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Abstract: In today’s rapidly evolving technological landscape, surveillance 

systems have become critical for security and operational management. 

Extracting accurate facial data from low-light CCTV footage remains a 

significant challenge due to limited visibility. This research presents a 

comprehensive methodology to address the complexities of face detection, 

recognition and timestamp extraction in low-light environments. Our approach 

focuses on creating detailed face logs with in-time and out-time information for 

each identified individual. The methodology leverages the Enhanced Deep 

Curve Estimation (EDCE) technique to improve visibility, followed by the Dual 

Shot Face Detector (DSFD) for precise face detection in enhanced video frames. 

FaceNet is employed for robust face recognition, while a combination of the 

Kalman filter and tesseract OCR enables accurate face tracking and timestamp 

extraction. All extracted data, including facial details and timestamps, are 

systematically logged into an Excel file for further analysis. The integration of 

these techniques offers significant advancements in overcoming the challenges 

of face identification in low-light conditions, presenting a promising solution for 

enhanced surveillance systems. 

 

Keywords: Video Enhancement, Dual Shot Face Detector, FaceNet, Kalman 

Filter, Tesseract OCR 

 

Introduction 

The increasing reliance on surveillance systems for 

security and operational management has elevated the need 

for effective automated video analysis to accurately identify 

individuals from CCTV recordings. This task becomes 

particularly challenging in low-light environments, where 

facial features are often obscured. Traditional face 

detection methods, such as the Viola-Jones algorithm 

(Viola and Jones, 2001), rely on handcrafted features and 

classifiers but are limited in dynamic and complex 

conditions, especially in poor lighting, occlusions and 

variations in facial posture. Similarly, the Histogram of 

Oriented Gradients (HOG) (Dalal and Triggs, 2005) 

method has been widely used for feature extraction, but it 

struggles with pose and lighting variations in real-world 

low-light scenarios. 

In response to these limitations, deep learning-based 

approaches have emerged as more robust alternatives, 

capable of learning hierarchical features directly from data. 

Convolutional Neural Networks (CNNs) form the backbone 

of modern face detection and recognition systems (Zheng 

and Gupta, 2022). Models such as the Single Shot Detector 

(SSD) (Liu et al., 2016) and Multi-Task Cascaded 

Convolutional Networks (MTCNN) (Zhang et al., 2016) 

have improved face detection accuracy across varying 

scales. However, even advanced models like RetinaFace 

(Deng et al., 2020) and the Dual Shot Face Detector 

(DSFD) (Li et al., 2019) face difficulties in low-light 

environments, where noise and reduced visibility degrade 

their performance. 

To address the challenges of low-light face detection, 

image enhancement techniques such as Zero-reference 

Deep Curve Estimation (ZeroDCE) (Guo et al., 2020) and 

EnlightenGAN (Jiang et al., 2021) have been proposed. 

While these methods enhance image visibility, they are 

computationally expensive and can introduce noise, 

leading to false positives during face detection. 

Additionally, these methods are not fully integrated into 

face detection and recognition pipelines designed 

specifically for surveillance purposes. 

Recent studies have explored illumination-invariant 

models and robust feature extraction techniques to 

improve performance under varying lighting 

conditions. Despite these advances, models like HLA-

Face (Wang et al., 2021) and RetinaFace (Deng et al., 

2020) still encounter limitations in extremely low-light 

environments. 
In terms of face recognition, models such as FaceNet 

(Schroff et al., 2015) efficiently map faces into high-
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dimensional feature vectors for identification. However, 

their effectiveness is often constrained by the quality of 

face detection in low-light environments oupled with the 

challenge of tracking detected faces across frames using 

methods like the Kalman filter (Kalman, 1960), robust 

face detection and recognition in low-light scenarios 

require a more integrated approach that combines these 

techniques effectively. 

This study introduces a comprehensive methodology 

designed to improve face detection, recognition and 

timestamp extraction from low-light CCTV footage. Our 

approach integrates Enhanced Deep Curve Estimation 

(EDCE) for image enhancement, the Dual Shot Face 

Detector (DSFD) (Li et al., 2019) for accurate face 

detection and FaceNet (Schroff et al., 2015) for robust 

face recognition. Additionally, the Kalman filter is 

employed to track faces across video frames, while 

Tesseract OCR extracts in-time and out-time information 

for each detected face, resulting in accurate event logging 

for surveillance footage. 

Related Work 

Face identification is a complex task that has been 

addressed through various techniques, from traditional 

computer vision algorithms to more advanced deep learning 

approaches. One of the earliest successes in this area was the 

Viola-Jones algorithm (Viola and Jones, 2001), which used 

Haar-like features in conjunction with the AdaBoost learning 

algorithm to detect faces in images. While effective in 

constrained settings, its reliance on a limited set of features 

often resulted in challenges when faced with diverse facial 

variations, leading to the detection of non-face regions as 

faces. This limitation becomes particularly problematic in 

scenarios involving occlusions or variations in lighting. 

To address these limitations, Dalal and Triggs (2005) 

introduced the Histogram of Oriented Gradients (HOG) 

method, which focuses on gradient orientation and 

magnitude to capture edge and contour information. 

Although HOG improved detection performance over 

earlier methods, it continued to struggle in more complex 

conditions, such as significant variations in facial 

expression, lighting and pose. Other traditional methods, 

such as Scale-Invariant Feature Transform (SIFT) and 

Local Binary Patterns (LBP) (Ahonen et al., 2006), also 

advanced face detection but faced similar challenges with 

lighting changes, occlusions and differentiating between 

individuals with similar appearances. 

The rise of deep learning revolutionized face 

recognition by enabling models to automatically learn 

complex facial features directly from raw image data, 

making them adaptable to diverse and challenging 

conditions. A key breakthrough in this field was 

Facebook’s DeepFace (Taigman et al., 2014), which used 

convolutional and fully connected layers to achieve 

impressive accuracy in face recognition, even under 

varying lighting and pose conditions. With a 97.35% 

accuracy on the Labeled Faces in the Wild (LFW) dataset, 

DeepFace set a new benchmark in face recognition. 

However, it required large amounts of labeled data and 

significant computational power, making it less practical 

for low-resource environments. 

Building on these advancements, Multi-Task Cascaded 

Convolutional Networks (MTCNN) (Zhang et al., 2016) 

were introduced to enhance both face detection and 

alignment. MTCNN employs three cascaded CNNs (P-Net, 

R-Net and O-Net) to generate candidate bounding boxes, 

refine those boxes and detect facial landmarks, improving the 

accuracy of face alignment. Despite its effectiveness, 

MTCNN is resource-intensive, making it difficult to deploy 

in environments with limited computational power. 

Similarly, the Single Shot Detector (SSD) (Liu et al., 2016) 

was designed to enable real-time face detection using 

VGG16 as its backbone network. While SSD achieved fast 

detection speeds, it struggled with extreme poses and 

occlusions, sometimes producing false positives. 

The PyramidBox model (Tang et al., 2018) introduced a 

novel approach by utilizing pyramid-based feature extraction 

to detect faces at multiple scales and resolutions, even in low-

resolution and occluded conditions. While PyramidBox 

achieved strong performance, its high computational demand 

limited its practicality in low-resource environments. Several 

researchers have since focused on improving face detection 

accuracy by addressing the challenge of detecting faces of 

varying sizes. For instance, the Deep Pyramid Single Shot 

Face Detector (DPSSD) (Ranjan et al., 2019) significantly 

enhanced the ability to detect large-scale facial variations but 

required days of training, making it unsuitable for rapid 

deployment. Suma et al. (2021) proposed a method that 

combines Haar-cascade classifiers with LBP and CNN to 

detect faces under various lighting and pose conditions. 

While this approach improved accuracy, it was relatively 

slow, requiring 4.67 seconds per image, which is too slow for 

real-time applications. 

Recent models, such as FRNetFuse (Huang and Chen, 

2022), have aimed to improve face recognition under 

challenging conditions, particularly low-light environments. 

FRNetFuse first detects and crops faces using MTCNN 

before applying Dynamic Histogram Equalization (DHE) to 

enhance illumination. The images are then processed using a 

Feature Restoration Network (FRNet) to generate 

embeddings for face recognition. While promising, this 

approach remains computationally intensive due to the 

denoising and enhancement stages, making it less suitable for 

real-time or large-scale deployments. 

Face recognition has evolved significantly from 

traditional handcrafted feature extraction methods like 

Eigenfaces and Fisherfaces (Belhumeur et al., 1997) to deep 

learning-based approaches. Eigenfaces, which employed 

Principal Component Analysis (PCA), offered a 

computationally efficient way to reduce the dimensionality 
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of face images, but it struggled to handle lighting, pose 

variations and facial expressions. Fisherfaces, utilizing 

Linear Discriminant Analysis (LDA), improved 

robustness to lighting changes by enhancing class 

separability, but still encountered difficulties with 

occlusions and significant pose changes. 

To address these challenges, texture-based methods 

like Local Binary Patterns (LBP) (Ahonen et al., 2006) 

were developed. LBP improves robustness to lighting 

changes by comparing pixel intensities, creating a 

histogram to represent facial texture. However, LBP and 

other traditional methods such as SIFT and HOG 

struggled to generalize in real-world conditions, 

particularly under extreme pose variations and occlusions. 

These limitations paved the way for deep learning-based 

models that could learn more complex and abstract facial 

features directly from data. 

DeepFace (Taigman et al., 2014) marked a major leap 

forward by leveraging Convolutional Neural Networks 

(CNNs) to automatically learn hierarchical features, 

significantly improving accuracy under difficult 

conditions. However, the high computational costs and 

the large amounts of training data required limited its 

scalability. FaceNet (Schroff et al., 2015) further 

revolutionized the field by introducing an embedding-

based model that employed a triplet loss function to 

minimize the distance between embeddings of the same 

person while maximizing the distance between different 

individuals. This embedding-based approach allowed for 

highly efficient face verification, recognition and clustering, 

making FaceNet a widely adopted model in various real-

world applications due to its accuracy and efficiency. 

Another important model, VGGFace (Parkhi et al., 

2015), used a deeper CNN architecture (VGG16) to learn 

facial representations from millions of labeled images. 

Although VGGFace performed well in face recognition 

tasks, its training requirements and computational 

demands remained high, similar to DeepFace. More 

recent models, such as ArcFace (Deng et al., 2019) and 

CosFace (Wang et al., 2018), have introduced new 

approaches for improving the discriminative power of 

face embeddings. ArcFace introduced an additive angular 

margin loss to improve intra-class compactness and inter-

class separability, while CosFace used a large margin cosine 

loss to enhance the decision boundary between classes. 

Despite the progress in face detection, tracking and 

recognition, there is limited research that seamlessly 

integrates timestamp extraction from surveillance videos, 

especially in low-light conditions. Current methods often 

treat face tracking and timestamp extraction as separate 

processes, lacking an integrated approach to associate faces 

with specific timestamps in challenging environments. 

Materials and Methods 

The methodology employed in this study addresses the 

challenges of face detection in low-light video 

environments and the extraction of in-time and out-time 

for each detected face. The experimental process follows 

several critical steps. First, a dataset of low-light videos is 

collected and prepared for analysis. The Enhanced Deep 

Curve Estimation (EDCE) technique (Sony Priya and 

Minu, 2023) is applied to improve visibility in the video 

frames. Following this, the Dual Shot Face Detector 

(DSFD) (Li et al., 2019) is used to accurately detect faces 

within the enhanced footage. Detected faces are then 

recognized using FaceNet (Schroff et al., 2015). Optical 

Character Recognition (OCR) with Tesseract (Smith, 

2007) is employed to extract timestamp information for 

each detected face. Finally, all detected face details and 

their corresponding timestamps are recorded and saved in 

an Excel file. Figure (1) illustrates the complete workflow 

of the proposed methodology. The subsequent sections 

will provide further detail on each of these steps. 

Video Enhancement 

Video enhancement is crucial for improving face 

detection performance in low-light environments. In such 

low-light conditions, the quality of video footage is often 

compromised, resulting in reduced visibility and clarity of 

facial features. Utilizing video enhancement techniques 

significantly enhances the caliber of the input data, which 

improves the visibility of facial features and, in turn, 

enhances the effectiveness of face detection algorithms or 

models. In this study, we employ the EDCE (Enhanced Deep 

Curve Estimation) model, (Sony Priya and Minu, 2023) to 

improve the quality of low-light CCTV recordings. 

The EDCE model consists of seven convolutional 

layers, each containing 32 filters with dimensions of 33 

and a stride of 1. The ReLU activation function is utilized 

in all layers except for the final one, which employs the 

Tanh activation function. The model processes an input 

image to produce higher-order curves for image 

enhancement. Equation (1) is used to derive the 

enhancement curve, capturing detailed variations in the 

input image. 

 

 
 
Fig. 1: Overall architecture 
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In Eq. (1), pinput (j) represents the pixel in the input picture, 

1-pinput (j) represents its counterpart. The parameter λ, learned 

during training, regulates the enhancement applied to the 

low-light input image. Higher values of λ result in a stronger 

enhancement effect, whereas lower values yield a more 

modest augmentation. 

To utilize the enhancement equation in video processing, 

the initial step is the conversion of the video into separate 

frames. Subsequently, the frames undergo processing using 

EDCE model to achieve enhancement. The enhancement 

curve is iteratively applied to each frame until the desired 

level of enhancement is achieved. Before commencing the 

iterative procedure, a preliminary threshold value of 0.3 is 

established. The enhancement procedure will terminate 

outputs the final improved image when the difference 

between the enhanced frames of the current and previous 

iterations falls below a predetermined threshold. If the 

discrepancy exceeds the specified threshold, the procedure 

proceeds with another iteration. Figure (2) depicts the whole 

framework for video improvement. The processed frames 

quality is improved using different loss functions, such as 

Spatial Consistency Loss (Lscl), Color Constancy Loss (Lccl), 

Exposure Control Loss (Lecl) and Total Variation Loss (Ltvl). 

The overall loss function is thereafter defined as: 

 

Ltotal = Lscl +  wccl Lccl + Lecl +  wtvl Ltvl (2) 

 

Here, wccl and wtvl are weight factors. 

Face Detection and Recognition 

For each video frame, the algorithm first employs a face 

detection algorithm, DSFD (Li et al., 2019) to identify faces 

present in the frame. For face recognition transfer learning 

approach is used. It attempts to find a match for the detected 

face within the database. If a match is found, the person's 

name associated with the face is assigned. Otherwise, it is 

marked as unknown. 

 

 
 
Fig. 2: Video Enhancement using EDCE 

Additionally, the time in the CCTV video is recorded as 

the in-time for the newly detected face and added to the in-

times list. If the face is already being tracked, as indicated by 

its presence in the current face detected list, the algorithm 

updates its position using a face-tracking algorithm Kalman 

Filter (Kalman, 1960) This helps to accurately track the face's 

movement across frames. In cases where a face cannot be 

tracked i.e., it is not available in the consecutive frames, the 

algorithm marks the time as out-time which is added to the 

out-times list. After processing all video frames, the 

algorithm creates an Excel file to store the detected face, 

person's name, in-time and out-time. 

DSFD Face Detection Model 

DSFD (Li et al., 2019) tailored for face detection. It 

excels in handling faces across diverse perspectives and 

challenging conditions, making it particularly suitable for 

face detection in surveillance video scenarios. The model 

operates within a dual-shot detection framework, 

incorporating two essential components: The Feature 

Enhance Module (FEM) and Improved Anchor Matching 

(IAM). FEM strategically leverages information from 

different levels, thereby enhancing feature discriminability 

and robustness. IAM employs advanced techniques, such as 

partitioning strategies for anchors and data augmentation 

based on anchors. These enhancements refine the matching 

of anchors with ground truth faces, leading to superior 

regressor initialization and, consequently, more precise and 

accurate face detection. The DSFD framework, employs the 

same backbone network as the SSD network. A notable 

distinction lies in the transformation of six feature maps at 

different depths into six "enhanced" feature maps, achieved 

through Feature Enhance Module. The two shots use 

different loss functions to capture small and large faces. Loss 

function for the second shot (Lssl) is defined as: 

 

𝐿𝑠𝑠𝑙(𝑝 �̂� , 𝑚�̂� , 𝑡�̂� , 𝑔𝑘 , 𝑎𝑘) =  
1

𝑁𝑐𝑜𝑛𝑓

∑ 𝐿𝑐𝑜𝑛𝑓𝑘 (𝑝 �̂� , 𝑚�̂�) +

𝛽
1

𝑁𝑙𝑜𝑐

∑ 𝑚 �̂�𝑘 𝐿𝑙𝑜𝑐(𝑡�̂�  , 𝑔𝑘 , 𝑎𝑘) (3) 

 

where,  �̂� predicted confidence score for the anchor, �̂�: 

Binary indicator (0 or 1) denoting whether the anchor 

is positive, �̂�: Predicted bounding box parameters for 

the anchor, g: Ground-truth bounding box for the 

object, a: Anchor. β: Weight parameter that is utilized 

to equalize the effects of the classification and 

localization components. Lconf is the SoftMax loss used 

to measure how well the model predicts the class 

probabilities for each anchor. Lloc represents a smooth 

L1 loss function that quantifies the discrepancy 

between the predicted bounding box and the actual 

ground truth. This loss function incentivizes the model 

to precisely estimate the spatial position and 

dimensions of the object (face) within the anchor. Loss 

function for the first shot (Lfsl) for small anchors (sa) is 
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defined in Eq. (4). Finally, 𝐿𝑠𝑠𝑙  and Lfsl are combined to 

find the total loss which is known as Progressive 

Anchor Loss (Lpal) which is depicted in Eq. (5): 

 

𝐿𝑓𝑠𝑙(𝑝 �̂� , 𝑚�̂� , 𝑡�̂� , 𝑔𝑘 , 𝑠𝑎𝑘) =  
1

𝑁𝑐𝑜𝑛𝑓

∑ 𝐿𝑐𝑜𝑛𝑓𝑘 (𝑝 �̂� , 𝑚�̂�) +

𝛽
1

𝑁𝑙𝑜𝑐

∑ 𝑚 �̂�𝑘 𝐿𝑙𝑜𝑐(𝑡�̂�  , 𝑔𝑘 , 𝑠𝑎𝑘) (4) 

 

𝐿𝑝𝑎𝑙 = 𝐿𝑓𝑠𝑙(𝑠𝑎) + 𝛼𝐿𝑠𝑠𝑙(𝑎) (5) 

 

FaceRecognition Using FaceNet 

FaceNet (Sony Priya and Minu, 2023) developed by 

Google Researchers, revolutionizes face recognition by 

compressing a person's face into a 128-dimensional vector 

through the feature embedding function g(x). This function 

maps an input image x into a feature space ℝd with the goal 

of reducing the squared distance between embeddings of 

identical identities while increasing the separation between 

embeddings of distinct identities. This property facilitates 

accurate face recognition across varying imaging conditions. 

This is mathematically formulated as: 

 

∥ 𝑓(𝑥𝑎𝑛𝑐ℎ𝑜𝑟
𝑖 ) − 𝑓(𝑥𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑖 ) ∥2+ 𝛾 < ∥ 𝑥𝑎𝑛𝑐ℎ𝑜𝑟
𝑖 ) −

𝑓(𝑥𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
𝑖 ) ∥2 (6) 

 

Here: 

f ( 𝑥𝑎𝑛𝑐ℎ𝑜𝑟
𝑖 ) represents the feature vectors of the 

anchor image. 

f  (𝑥𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
𝑖 ) represents the feature vectors of all other 

positive images of the same person. 

f (𝑥𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
𝑖 ) represents the feature vectors of any 

negative images of any other person. 

γ is a margin enforced between positive and 

negative pairs. 

This formulation captures the essence of the desired 

relationship, ensuring that in the feature space, the anchor 

image is positioned nearer to positive images of the same 

individual compared to negative images of different 

individuals, maintaining a minimum margin of γ. During 

training, triplets (anchor, positive, negative) are sampled 

from the dataset. Then the embedding function (f) is used 

to map the examples to the feature space. Then the 

distance between the embeddings is found using the 

Triplet loss function. Which is depicted as: 

 

Ltriplet  =  𝑚𝑎𝑥 (∥  𝑓 (𝑥𝑎𝑛𝑐ℎ𝑜𝑟
𝑖 ) –  𝑓 (𝑥𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑖 )  ∥2  − ∥

𝑥𝑎𝑛𝑐ℎ𝑜𝑟
𝑖 )  −  f (𝑥𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑖 ) ∥2 +  𝛾, 0) (7) 

 

In summary, Triplet loss encourages the model to 

learn embeddings that capture the inherent structure of 

the data, making it suitable for tasks where relative 

similarity is crucial. 

FaceTracking Using Kalman Filter 

Tracking faces in complicated settings can provide a 

challenge owing to camera noise and fluctuating lighting 

conditions. The Kalman Filter (KF) (Kalman, 1960) is 

utilized to forecast the face's location in consecutive frames. 

KF is a corrective predictor method. The core principle of the 

Kalman filter revolves around utilizing former state 

information to predict the subsequent state. To track the face, 

the position is characterized by its coordinates (x, y). The 

state vector, denoted as 'x,' encapsulates vital information 

encompassing both the facial position and its associated 

velocity. More formally, it takes the form x = [xposition, yposition, 

xvelocity, yvelocity]. The prediction phase involves projecting the 

anticipated state of the system for the upcoming time step, 

leveraging the information from the previous state and 

accounting for inherent system dynamics. The following 

equations are key components of this predictive process: 

State Prediction: The predicted state, denoted as 'xp', is 

obtained by multiplying the state transition matrix 'F' with 

the current state 'x'. 

 

𝑥𝑝  =  F *𝑥  (8) 

 

Here, 'xp' serves as an approximation of the forthcoming 

state, while 'F' represents the state transition matrix that 

encapsulates the evolution of the state over time. 

Covariance prediction. The state covariance matrix 'P' 

undergoes an update based on the prediction. This update 

is facilitated by considering the influence of 'F' and the 

process noise covariance matrix 'Q': 

 

P = F * P * FT (9) 

 

The matrix 'P' now embodies the state covariance, 

while 'Q' reflects the covariance associated with the 

process noise. This noise matrix quantifies uncertainties 

linked with the inherent dynamics of the system. 

Update step: Upon formulating predictions, the Kalman 

filter proceeds to fuse these projections with newly acquired 

measurements, refining the state estimate. This update phase 

involves the following equations. 

Measurement residual: The residual, denoted as 'y, ' 

signifies the discrepancy between the observed 

measurement 'z' (e.g., facial position) and the 

measurement projection based on the predicted state 'xp': 

 

𝑦 =  𝑧 − H * xp (10) 

 

Here, 'z' represents the observed state and 'H' denotes 

the measurement matrix mapping the projected state to the 

measurement space. 

Residual covariance: The covariance matrix 'S' 

characterizing the measurement residual is determined by 

Eq. (11): 
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𝑆 =  H * P * HT  +  𝑅 (11) 

 

The matrix 'S' encapsulates the covariance associated 

with the measurement residual, while 'R' captures the 

uncertainties intrinsic to the measurement process. 

Kalman gain: The Kalman gain matrix 'K' serves as a 

crucial factor for combining the predictions with 

measurements. It is derived from the Eq. (12): 

 

𝐾 =  P * HT * S-1 (12) 

 

State update: The final state update takes into account 

the Kalman gain 'K' and the measurement residual 'y,' 

incorporating the corrections from the measurement to 

refine the estimated state 'x': 

 

x = xp + K * y (13) 

 

Covariance update: The covariance matrix 'P' is refined 

further by considering the Kalman gain and the measurement 

matrix. This process ensures that the covariance matrix 

effectively reflects the updated state estimate: 
 

𝑃 =  (1 − K * H) 
* 𝑃  (14) 

 

The prediction and update steps iteratively unfold as 

new measurements of the facial position are obtained. 

The Kalman filter adeptly amalgamates these 

projections and measurements, rigorously 

accommodating the associated uncertainties to generate 

an optimal and refined state estimate. 
 

 
 
Fig. 3: Time extraction from CCTV video frames 

Time Extraction 

To extract time from an image, the process begins by 

enhancing the image quality to optimize the effectiveness 

of the Optical Character Recognition (OCR) process 

using Tesseract. Tesseract OCR (Smith, 2007) is a widely 

utilized open-source OCR engine known for its versatility 

and support for multiple languages and platforms. The 

extraction of date and time is carried out through a series 

of image processing steps. First, the Region of Interest 

(ROI) containing the timestamp is cropped and 

upsampled to improve its resolution. The image is then 

converted to a binary representation, creating a binary 

mask where the timestamp is highlighted in white and the 

background is masked in black. This mask is applied to 

the original ROI using a bitwise AND operation, isolating 

the timestamp from the background. Finally, adaptive 

thresholding is applied to enhance contrast and further 

separate the timestamp text from the background, 

allowing accurate extraction of the time details. Figure (3) 

illustrates these steps. 

Results and Discussion 

All experiments were conducted in a Google Collab 

environment with GPU acceleration enabled. We 

implemented our model using TensorFlow, Kera’s and 

various open-source libraries. In this study, we collected 

a dataset of low-quality CCTV videos from public places, 

consisting of 47 videos. Each video is 5 min long and 

recorded at 30fps. An example of the input frames is 

shown in Fig. (4). 
 

 
 
Fig. 4: Input video frames 
 

 
 
Fig. 5: Enhanced video frames by EDCE 
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Figure (5) displays the enhanced video frames produced 
by the EDCE model. As illustrated, the EDCE model 
significantly improves the visual clarity of low-light and low-
quality CCTV video footage. This enhancement is 
particularly crucial in surveillance videos where lighting 
conditions are suboptimal, which can negatively affect the 
accuracy of subsequent face detection and recognition tasks. 
By improving contrast, brightness and sharpness, the 
enhanced frames provide more distinct facial features, which 
greatly aids the face detection models in identifying facial 
regions more accurately. 

Figure (6) presents the training and validation loss curves 
during the training phase of the EDCE model. The loss 
curves plot the model's training performance across epochs, 
showing both the training loss and the validation loss. The 
EDCE model was trained for 100 epochs to enhance the 
video frames. As seen in the figure, the training loss 
decreases initially, indicating that the model is learning to 
improve video frame quality over time. The validation loss 
follows a similar pattern, albeit with some fluctuations. 
These fluctuations may be due to the variability in the quality 
of the video frames across different scenes in the CCTV 
footage, which introduces challenges for the model. Despite 
these fluctuations, both training and validation losses show a 
decreasing trend overall, demonstrating that the model is 
learning effectively and generalizing reasonably well to 
unseen data. By applying the EDCE model for video 
enhancement, we were able to improve the quality of input 
frames used for face detection and recognition, leading to 
better performance in those subsequent tasks. 

After enhancing the video frames using the EDCE model, 
we applied face detection on the enhanced frames using 
various pre-trained face detection models, including DSFD 
(Li et al., 2019), MTCNN (Zhang et al., 2016), RetinaFace 
(Deng et al., 2020), SSD (Liu et al., 2016), YOLOv3 
(Chun et al., 2020) and HaarCascade (Viola and Jones, 
2001), to find which model is suitable for our dataset. 
Figure (7) presents the detection results, showing the 
bounding boxes generated by each model on the improved 
frames. The use of the EDCE model significantly improves 
face recognition performance by making facial features more 
discernible, which enhances the reliability of pre-trained 
models in detecting faces, especially in low-resolution 
conditions. The Haar Cascade classifier, while effective in 
controlled environments, struggles in complex scenes or with 
variable lighting, leading to missed detections. YOLOv3, a 
real-time detection model, performs well but can miss 
smaller or partially occluded faces. The SSD model, known 
for its speed, occasionally produces oversized bounding 
boxes and may overlook faces in challenging conditions. 
MTCNN, which employs a multi-stage convolutional 
network, excels in face alignment and detection but may miss 
individuals in low-light or crowded scenes. RetinaFace, 
leveraging landmark detection, shows strong performance 
but may face limitations when detecting multiple faces in 
dynamic settings. Lastly, DSFD, designed for large-scale 
face detection, demonstrates the ability to accurately detect 
numerous faces, showing the best results for our dataset. 

 

 
Fig. 6: Training and validation curve for video enhancement 

by EDCE 

 

 

 
Fig. 7: Face detection results (a) DSFD (b) Retina face (c) 

MTCNN (d) SSD (e) Haarcascade (f) YOLOV3 

 

After face detection, embeddings were extracted from 

each face using deep learning. The FaceNet deep learning 

model computes a 128-dimensional embedding that 

quantifies the features of the face. For face recognition, we 

created a custom database, where each individual is 

represented by a folder containing four images of their face. 

This database was used to train the face recognition model, 

enabling the system to map detected faces to their 

corresponding identities during the recognition process. The 

structured database plays a crucial role in ensuring accurate 

identification of individuals. After training the model on 

these embeddings, the system is able to recognize faces. In 

this study, we applied face recognition across different face 

detection models, with the results shown in Table (1). From 

the results, it is evident that the combination of DSFD and 

FaceNet provides the highest accuracy for our dataset, which 

led us to choose this combination. 
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Table 1: Performance analysis for face recognition 
Model name Accuracy Precision Recall F1 score 

DSFD + FaceNet 94% 0.93 0.92 0.93 

MTCNN + Face 

Net 

92% 0.90 0.89 0.89 

RetinaFace +  

FaceNet 

94% 0.92 0.91 0.91 

SSD + FaceNet 91% 0.89 0.88 0.88 

YOLOv3 +  

FaceNet 

89% 0.87 0.85 0.86 

HaarCascade +  

FaceNet 

88% 0.86 0.84 0.85 

 

In our model, once a face is detected and enhanced, facial 

recognition is performed using the FaceNet model, which 

compares the detected face with a custom database to 

identify the individual. Concurrently, the Kalman filter 

tracking algorithm continuously monitors the presence of the 

recognized face in the video. If the algorithm loses track of 

the face, the exact moment is recorded as the "out time" for 

that individual. This process ensures that each recognized 

face is tracked throughout the video, with accurate entry and 

exit times logged. All timestamps, along with the recognized 

faces and corresponding names, are stored in an Excel file 

for easy reference and further analysis. Figure (8) shows the 

code used to create the Excel file, while Fig. (9) presents an 

example of the generated Excel file. 

While the model demonstrates strong performance in 

face detection, recognition and tracking, there are several 

challenges encountered. First, the accuracy of face detection 

is compromised by varying facial angles, partial occlusions 

and low-resolution video frames, which can lead to missed 

detections or false positives. Sudden movements and 

changes in lighting conditions further complicate the 

tracking process, occasionally causing the system to lose 

track of individuals or misidentify them. This often results in 

duplicate entries for the same person across different 

timestamps, which reduces the efficiency of the tracking 

mechanism. Additionally, the model’s reliance on 

continuous face detection in each frame for tracking 

purposes creates processing overhead, particularly in 

crowded or fast-paced environments. This increases the 

computational complexity and may lead to delayed or 

inaccurate recognition outputs. Future improvements may 

focus on enhancing the model's resilience to these challenges 

through more sophisticated handling of occlusions, dynamic 

lighting conditions and smoother integration of the tracking 

and recognition components. 
 

 
 
Fig. 8: Code snippet to create excel file 

 
 
Fig. 9: Face log 

 

Conclusion 

This study presents an approach for generating face logs 

from low-light CCTV footage by enhancing visibility and 

integrating advanced face detection, recognition and 

timestamp extraction techniques. Leveraging the DSFD face 

detection algorithm and FaceNet for recognition, our method 

successfully identifies and tracks individuals in challenging 

lighting conditions. Additionally, Tesseract OCR is utilized 

to extract timestamps for each detected face, while a Kalman 

filter tracks the faces to record their in-time and out-time, 

with all results systematically logged in an Excel file for 

analysis. The research makes notable contributions by 

demonstrating how visibility enhancement can improve the 

accuracy and reliability of face detection and recognition in 

low-light surveillance footage. This method is particularly 

effective in environments where traditional techniques 

face challenges due to poor lighting, thus advancing the 

application of facial recognition technologies in 

complex scenarios. 

However, there are some limitations to this method. 

The system's processing time for video enhancement and 

face detection presents challenges, particularly for real-

time applications. Additionally, the accuracy of Tesseract 

OCR in extreme low-light conditions and when handling 

complex backgrounds can be compromised, leading to 

potential inaccuracies in timestamp extraction. Face 

tracking can also be disrupted by occlusions, causing 

erroneous "out-time" entries for individuals. 

Future research should aim to optimize the processing 

pipeline for real-time face detection and recognition. 

Enhancing the accuracy of OCR under low-light 

conditions and introducing more advanced face-tracking 

algorithms, possibly using deep learning, could improve 

overall performance. Moreover, developing adaptive 

video enhancement techniques that adjust dynamically to 

changing lighting conditions would further enhance 

detection and recognition accuracy. These improvements 



Somasundaram Sony Priya and Rajasekharan Indra Minu / Journal of Computer Science 2025, 21 (3): 469.478 

DOI: 10.3844/jcssp.2025.469.478 

 

477 

would broaden the method’s applicability to real-world 

scenarios, such as public surveillance, traffic monitoring 

and security operations. 
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