

© 2025 Akira Wahyu Putra and Nilo Legowo. This open-access article is distributed under a Creative Commons Attribution

(CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Greedy Algorithm Implementation for Test Case Prioritization

in the Regression Testing Phase

Akira Wahyu Putra and Nilo Legowo

Department of Information System Management, BINUS Graduate Program Master of Information System Management,
Bina Nusantara University, Jakarta, Indonesia

Article history
Received: 10-09-2024
Revised: 11-11-2024
Accepted: 18-11-2024

Corresponding Author:
Akira Wahyu Putra
Department of Information
System Management, BINUS
Graduate Program Master of
Information System
Management, Bina Nusantara
University, Jakarta, Indonesia

Email: akira.putra@binus.ac.id

Abstract: This study examines the implementation of Test Case

Prioritization (TCP) using the Greedy Algorithm (GA) to enhance regression

testing efficiency within a financial technology company's software

development cycle. With testing durations increasing significantly, this

study aims to address inefficiencies by applying the Greedy Algorithm to
optimize test suite size and fault detection. The research methodology

involves applying the Greedy Algorithm during the Regression Testing

phase, comparing the prioritized suite with the original suite using metrics

such as Average Percentage Fault Detection (APFD) and Test Suite Size

Reduction (TSSR). Results show that the Greedy Algorithm achieved

substantial improvements in both test suite size and fault detection

effectiveness across different projects. For Project A, the test suite was

reduced from 51-22 test cases, achieving a TSSR of 56.8%, with an APFD

increase of 206.21%, rising from 0.0853-0.2613. Project B demonstrated

even greater optimization, reducing the test suite from 36-8 test cases,

resulting in a TSSR of 77.8% and an APFD improvement of 83.92%, rising
from 0.3194-0.5875. These outcomes underscore the algorithm’s

effectiveness in eliminating redundant test cases, accelerating testing, and

enhancing fault detection thereby supporting the company's goal of faster

release cycles without compromising quality.

Keywords: Regression Testing, Greedy Algorithm, Test Case Prioritization,

APFD, Software Development

Introduction

Information Systems (IS) and the Software
Development Life Cycle (SDLC) are closely linked,

working together to deliver effective software solutions.
Within the SDLC, Software Testing (ST), especially
Regression Testing (RT), plays a crucial role in ensuring
software quality. However, as software evolves,
challenges like longer testing times arise, affecting
efficiency and early bug detection.

Testing guarantees that software updates work
properly and that a product satisfies quality criteria.
Software has to be current in the highly competitive
marketplace of today. Although using intuition to test
relies on personal ability, comprehensive testing by a
dedicated team is better. Improper testing causes

problems to go unnoticed, which raises expenses and
requires more labor to resolve. Problems are more
expensive to find after software is deployed than they are
in the early phases of planning.

In this research, the company, which operates in the

financial technology industry, currently executes

automated testing using Web driver IO for the backend is

implemented. However, with each update, the duration of

testing increases, impacting bug detection and development

time. To address this, Test Case Prioritization (TCP),

particularly using the Greedy Algorithm (GA), is suggested

to optimize testing processes.

Regression testing during development in the company

takes 2 days per week, with one day for testing and one for

bug fixing. This amounts to 8 h of testing per week, aligned

with the company's working hours. However, because

additional test cases are added with every system update, as

illustrated in Fig. (1), the time required for automated testing

has almost doubled to 6 h by the fifth release. Testing

efficiency and early bug detection are challenged by this

extended testing period. Therefore, it's essential to optimize

the testing procedure, particularly when the quantity of test

cases increases in subsequent releases.

Akira Wahyu Putra and Nilo Legowo / Journal of Computer Science 2025, 21 (2): 290.303

DOI: 10.3844/jcssp.2025.290.303

291

Fig. 1: Automated regression testing Time

Figure (2) illustrates the estimated time for manual

regression testing derived from the time estimation for a

single test case in minutes. In the current condition of the

company, manual regression testing is still conducted due

to scenarios that cannot be addressed through automated

testing. The average time required to complete manual

regression testing, based on the last 5 releases, exceeds 6 h.
As the system requirements evolved due to system

improvement and the increasing number of automated test

scripts, significant effort and time were required to

maintain and update the code to align with the changes in

system requirements. These factors can slow down

development and hinder early bug detection during

regression testing. This could jeopardize the company's

goal of increasing team productivity by 15% and adding

an optional additional release each week, bringing the

total to two releases per week and reducing the regression

testing time to only just 1 day and QA Engineers need to
maintain automation script due to changes in

requirements. With one release already consuming nearly

two days of work hours, there's a pressing need for

research to ensure efficient execution of automated testing

in line with system requirements.

To tackle this issue, numerous techniques for TCP

have been introduced in existing literature. Among the

various Test Case Prioritization (TCP) techniques, the

Greedy Algorithm (GA) has acquired significant

consideration since its proposal in 1999, mainly due to its

commonly acknowledged effectiveness.

The Greedy Algorithm (GA) has been recognized for
its effectiveness in TCP and this study aims to explore its

application to enhance regression testing efficiency and

effectiveness. Based on the provided problem statement,

here are two problem formulations:

1. RQ1: How can regression testing be effectively

conducted through the implementation of Test Case

Prioritization?

2. RQ2: What methodologies will be used to compare

the original test suite with the prioritized suite

optimized by the Greedy Algorithm?

Fig. 2: Automated regression testing time

This study aims to achieve two primary objectives in

enhancing the company's regression testing process. The

first objective is to implement the Greedy Algorithm for

test case prioritization in ongoing projects, specifically

Projects within the company. The research seeks to

streamline the testing process, reduce redundancy,

enhance time efficiency, and improve early fault

detection. The second objective involves a comparative

evaluation between the original and optimized test suites.
The research will assess the effectiveness of the optimized

test suite, prioritized using the Greedy Algorithm, by

comparing it to the original suite in terms of time

efficiency and overall software quality. This comparison

will provide valuable insights into improving the

regression testing process at the company.

Theoretical Background

Software Development Life Cycle

As a project roadmap, providing a flexible framework

to meet the software development's goals is the main

feature of the Software Development Life Cycle (SDLC).

It includes stages like defining requirements, designing,

developing, and testing the software. In implementing

software development practices, effort and resources play

an essential role, especially in the regression testing phase

(Hettiarachchi et al., 2016)

Regression Testing

Modifying and maintaining software often involves a

crucial activity known as regression testing. This

maintenance process, while incurring costs, is defined as

essential within the Software Development Life Cycle

(SDLC). Regression testing is conducted to revalidate and

provide confidence in the modified software, ensuring

that alterations have not negatively impacted the

software's behavior (Yoo and Harman, 2012).

Regression testing involves rerunning previously

executed tests to ensure that recent software changes have
not introduced new issues. This is a critical process in the

software development lifecycle, but it often consumes

significant testing resources. As software evolves, test

Akira Wahyu Putra and Nilo Legowo / Journal of Computer Science 2025, 21 (2): 290.303

DOI: 10.3844/jcssp.2025.290.303

292

suites tend to grow in size, making it impractical to

execute every test case. This challenge is amplified by

shorter release cycles, which heighten the importance of
efficient regression testing (Greca et al., 2023).

Ansari et al. (2016) outlined several regression

testing techniques in their study. (Ansari et al., 2016)

The various methods for regression testing are detailed

in Fig. (3).

During regression testing, the addition of any code to

the application necessitates extensive retesting, resulting

in significant time consumption (Qiu et al., 2015).

Existing test cases may fail due to changes in the system's

behavior, which may reflect the modifications rather than

indicate issues. To ensure relevance, all test cases should

be reviewed before being reused to test new versions of

the system (Di Nardo et al., 2015).

The first step in the regression testing phase is to

identify the modified source code or source features.

During maintenance, developers modify related source

code to add new features or to fix faults. This can be done

by manually reviewing the code. Once the changed source

code or source features have been modified, the tester

needs to identify the test cases that cover those changes.

The regression testing phase can be illustrated in Fig. (4)

(Singh et al., 2016).

Fig. 3: Regression testing techniques (Ansari et al., 2016)

Regression testing can be done manually or through

automation. Automation is faster and reduces the risk of

human error. Implementing automation testing is

particularly beneficial for efficient regression testing with

automation. It cuts down on test execution time, making

the process more efficient (Sutapa et al., 2020).

Fig. 4: Regression testing phase (Singh et al., 2016)

Test Case Prioritization

Not all test cases covering changed source code or

features need retesting. Testers should focus on cases likely

to uncover new bugs related to feature requirements.

Regression testing introduced Test Case Prioritization to

strike a balance between test objectives and real-world

limitations. This involves strategically scheduling test case

execution (Lou et al., 2019). After selecting test cases, they're

added to the regression testing suite. Retesting is the final

phase, where chosen cases are executed to verify software

functionality after changes (Singh et al., 2016).

Test-suite prioritization techniques are implemented
to reduce the costs linked to storing and reusing test cases

in software maintenance. This is achieved by eliminating

duplicate test cases from test suites. The primary goal is

to optimize the testing process, making it more efficient

and cost-effective. By prioritizing test cases based on

specific criteria, these techniques contribute to a

streamlined approach, ensuring that testing efforts are

focused on critical aspects of software functionality and

changes during maintenance activities (Singh et al.,

2016). Prioritizing test cases involves arranging test cases

in an optimal sequence to enhance critical coverage
properties, such as detecting faults early in the testing

process (Yoo and Harman, 2012).

Apart from the fact that effective implementation of
Test Case Prioritization (TCP) positively impacts testing

duration and saves resources, this implementation could
also lead to gaining stakeholder assurance. In this context,
different methods and techniques have been utilized to
attain the most optimal test suite specifically for
Regression Testing (Qasim et al., 2021). The summary of
Test Case Prioritization is illustrated in Fig. (5).

Requirement-based methods are ranked as the fourth

most popular strategy out of the numerous ways shown in

Fig. (5). Based on its requirements, a system is built. As a

result, using requirements information may improve the

identification of key test cases in addition to what can be

accomplished using code-related data alone. In the
requirement-based approach, test cases are prioritized and

generated by requirement gathering.

Fig. 5: Test case prioritization techniques (Qasim et al., 2021)

Akira Wahyu Putra and Nilo Legowo / Journal of Computer Science 2025, 21 (2): 290.303

DOI: 10.3844/jcssp.2025.290.303

293

In comparing thirty studies on regression testing

approaches, Qiu et al. (2014) found that, of the total

studies reviewed, the majority (56.7%, or 17 out of 30)

used test case prioritizing techniques to optimize the order

in which test cases were executed with the goal of

increasing fault detection rates. Ten studies also used the

same method to reduce the total number of test cases

required to comprehensively cover all modified areas.

Only two research, nevertheless, used test suite

minimization strategies (Qiu et al., 2015).

Greedy Algorithm (GA)

Early efforts to improve test case efficiency in

regression testing primarily focused on reducing

redundant test cases, which contributed to increased

testing costs. A method was proposed to minimize the

overall test suite size by selecting only the most essential

test cases— those that are critical to covering all

specified requirements. This approach reduces

redundancy while ensuring that all necessary

functionality is tested. Essential test cases are those that

cannot be removed without compromising the test suite's

ability to meet all requirements. Identifying redundant

test cases involves a pairwise comparison with essential

cases, followed by the application of a Greedy

Algorithm to optimize the selection process. This

method aims to streamline regression testing by

balancing coverage needs with resource efficiency

(Jehan and Wotawa, 2023).

The Greedy Algorithm is used in test case

prioritization because of a number of advantages. First

of all, because of its effectiveness and simplicity, it's a

great option for test case prioritizing, especially when

dealing with large and complex test suites. The iterative

selection methodology helps to eliminate pointless test

cases and minimize the total size of the test suite in order

to optimize testing resources. If the testers' main goal is

to decrease the time required to perform the test suite

reduction technique, the Greedy Algorithm is the ideal

choice (Lin et al., 2017).

Table 1: Example of requirement coverage data from a test

suite's test cases. (Gladston et al., 2016)

 REQ1 REQ2 REQ3 REQ4 REQ5

TS1 ✔ ✔

TS2 ✔ ✔ ✔

TS3 ✔ ✔

TS4 ✔ ✔

TS5 ✔ ✔ ✔

TS6 ✔ ✔

Where: TS: Test case that is defined in a test suite; REQ:
Requirements that related to the test suite and system’s feature

The goal of a Greedy Algorithm search is to reduce the

estimated cost of reaching a particular objective. While it

is a straightforward approach, it becomes attractive in
situations where it delivers high-quality results because it

is generally cost-effective in terms of both

implementation and execution time (Li et al., 2007).

Gladston (2016) defines the greedy algorithm utilized

and the steps are as follows as illustrated in Table (1)

(Gladston et al., 2016):

1. Select essential test cases.

2. Start by choosing all essential test cases, which

typically represent the core functionality or critical

aspects of the system under test.
3. Remove redundant test cases.

4. Next, redundant test cases that provide overlapping

coverage or contribute minimally to overall test

coverage should be eliminated.

5. Address Uncovered Requirements After removing

redundant cases, check for any remaining uncovered

requirements. If any exist, select additional test cases

that fulfill most of these requirements to ensure

comprehensive coverage.

Previous Research

In a study conducted by Jehan and Wotawa (2023), the

greedy test suite minimization techniques coverage was

explored, with a comparison between the greedy

algorithm and the delayed greedy algorithm. The findings

reveal that the Greedy Algorithm achieved an 87.4%

reduction in test suite size, whereas the Delayed Greedy

Algorithm reduced it by 74.2%. Additionally, the Greedy

Algorithm demonstrated a faster test suite minimization

compared to the delayed greedy algorithm (Jehan and

Wotawa, 2023).
Khatibsyarbini et al. (2018) conducted research on

implementing test case prioritization techniques in

software testing. The study aimed to compare several

prioritization methods, evaluating their effectiveness

using Average Percentage Fault Detection (APFD) and

execution time. The results indicated that the Greedy

Algorithm produced APFD values that were very similar,

though slightly lower, compared to both Particle Swarm

Optimization (PSO) and Genetic Algorithm (GA).

Additionally, the Greedy Algorithm demonstrated

significant efficiency improvements, reducing execution
time by nearly half compared to PSO and approximately

one-ninth compared to GA. These findings suggest that

the Greedy Algorithm offers a competitive approach in

terms of both fault detection effectiveness and execution

efficiency (Khatibsyarbini et al., 2018).

Yamuç et al. (2017) conducted research to reduce test

suites comprising test cases and test requirements. Tests

were conducted on the dataset to compare the Greedy

Algorithm with the Genetic Algorithm (GA). The

Akira Wahyu Putra and Nilo Legowo / Journal of Computer Science 2025, 21 (2): 290.303

DOI: 10.3844/jcssp.2025.290.303

294

Greedy Algorithm yielded a minimum execution time of

193 sec, while the GA completed the tests in 153 sec.

(Yamuç et al., 2017).

Alian et al. (2016) collect and examine papers focused
on regression testing techniques, specifically those related
to test suite reduction. The assessed techniques for
reducing test cases are categorized into Greedy

Algorithm, hybrid algorithm, requirement-based,
coverage-based, clustering, genetic algorithm, fuzzy
logic, and slicing approaches. Techniques based on the

Greedy Algorithm offer noteworthy reductions in the
number of test cases (Alian et al., 2016).

In their 2016 research, Singh et al. (2016) conducted a
comparative analysis of various test suite minimization

techniques. Among the techniques considered, the Greedy
Algorithm was included for evaluation. The findings
revealed that the Greedy Algorithm, as one of the

evaluated techniques, achieved a notable TSSR ranging
between 41.67 and 50%. This outcome underscores the
efficacy of the Greedy Algorithm in reducing the size of
test suites, showcasing its potential as a valuable approach

in test suite minimization strategies, as demonstrated in
Singh and Shree's research.

In Srivastava's (2008) research, the application of the

Greedy Algorithm in reducing effort and prioritizing test
cases during regression testing was explored. The study
involved an analysis that distinguished between

prioritized and non-prioritized test cases. By utilizing the
Average Percentage of Faults Detected (APFD) method,
Srivastava evaluated the effectiveness of the two test case
categories. During the regression testing phase, the result

of prioritized test cases was more efficient, surpassing the
non-prioritized test suite with an impressive 81%
effectiveness rate. This research highlights the

significance of the Greedy Algorithm in optimizing the
execution of test cases, particularly in the context of
regression testing (Srivastava, 2008).

In summary, the collective evidence from the research

studies strongly supports the effectiveness of the Greedy
Algorithm in test case prioritization and suite
minimization. The Greedy Algorithm consistently

demonstrated significant reductions in test suite size.

Test Suite Size Reduction (TSSR)

Test Suite Size Reduction (TSSR) serves as a
quantitative statistic that indicates how much of the total

size of the test suite can be reduced using a certain

approach. This rate percentage offers a quantifiable

indication of the test suite's optimization and streamlining

efforts, in addition to reflecting the effectiveness of the

selected methodology. In the context of software testing

and quality assurance procedures, TSSR provides useful

insights into the effectiveness and influence of the used

method on improving the manageability and efficacy of

the test suite prioritization process by quantifying the

decrease (Wong et al., 1995):

100%
orig red

orig

TS TS
TSSR

TS

 (1)

where:

TSorig = Total number of the original test suite

TSred = Total number of the reduced test suite

AFPD (Average Percentage Fault Detection)

APFD is an approach for measuring the percentage ratio

of bugs detected in each test execution suite and is an

evaluation method for the fault detection rate (Elbaum et al.,

2004) This measure functions as a weighted average

indicator of detected bugs problems and is used as a

benchmark for assessing how well test cases are

prioritized. A value of APFD close to 1 indicates a good

fault detection performance (Maspupah et al., 2023).

AFPD provides insights into the fault detection

capabilities within the refined test suite (Srivastava, 2008).

This assessment offers numerical insights into how well the

implemented greedy algorithm performs, illuminating its

capacity to improve fault detection rates during the

regression testing phase:

 1 2 3

1
1 ... / ()

2
mAPFD TF TF TF TF nm

n

 (2)

where:

TF = Fault from selected executed test suite

m = Counts of faults found

n = Total number of test cases

Materials and Methods

This section outlines the materials and methodologies

employed in implementing the Greedy Algorithm for test

case prioritization during the regression testing phase at

PT XYZ.

Data Collection

The research was conducted on PT XYZ’s Core

Transaction Payment System, a financial technology

platform that processes large volumes of financial

transactions daily. This system consists of multiple

modules, including payment initiation, confirmation, and

reconciliation, each requiring thorough testing due to its

critical nature. The study examined two distinct projects

within the system:

1. Project A: Focused on the partial payment feature.

This project had 15 existing test cases that were

reused for regression testing, making it ideal for

evaluating the optimization of pre-existing suites

2. Project B: A newly developed feature with no prior
test cases. This allowed for the creation and

prioritization of a test suite from scratch

Akira Wahyu Putra and Nilo Legowo / Journal of Computer Science 2025, 21 (2): 290.303

DOI: 10.3844/jcssp.2025.290.303

295

Testing Environment

The automation testing framework WebdriverIO was

utilized to execute the test cases. WebdriverIO, a Node.js-

based tool, facilitated automated testing for browser and

API interactions. The framework was integrated into PT

XYZ’s Continuous Integration/Continuous Deployment

(CI/CD) pipeline to streamline execution. The

programming language JavaScript was employed for

scripting. The testing infrastructure was hosted on local

development environments, with capabilities to simulate

real-world transactional scenarios.

Test Suite Metrics

Two primary metrics were used to evaluate the

effectiveness of the prioritization approach:

1. Test Suite Size Reduction (TSSR): This metric

assessed the efficiency of the optimization by

quantifying the reduction in the number of test cases

2. Average Percentage Fault Detection (APFD): This

metric measured the fault-detection effectiveness of

the prioritized test suite. Higher APFD values

indicated faster and more efficient detection of

software faults

Methods

Figure (6) shows the research framework.

Development is started when there is an issue within the

system, or there is a need for improvement of certain

features in the system. The programmer will analyze

which code needs to be improved after the product team

breaks down the requirements of the project.

Upon completion of the system development phase,

regression testing will be conducted to ensure that recent

modifications do not negatively impact existing

functionalities. This process requires the careful

selection of test cases most likely to uncover new

defects. The selected test cases should be closely aligned

with the requirements of the modified features to verify

that these features function correctly in light of recent

changes, while also safeguarding the integrity of the

overall system functionality. This approach aims to

enhance the detection of defects introduced by

modifications and supports the continued reliability of

both new and existing functionalities.

This research will focus on Steps 5 and 7 of the

regression testing process as outlined by Singh et al.

(2016) and will apply the Greedy Algorithm methodology

as utilized by Gladston et al. (2016). Regression testing

will be initiated when system bugs are identified,

prompting developers to debug and locate faults or areas

of the source code requiring modification. Once these

steps are completed, the research will proceed, beginning

with the collection of relevant test cases. These test cases

will be grouped according to similar requirements linked

to specific features, creating an organized framework to

enhance the relevance and coverage of the testing process

for each feature.

In the critical phase of this research, the Greedy

Algorithm is implemented to generate a prioritized list of

test cases. Each Test scenario (T) is mapped to a
corresponding Requirement (R), ensuring that only the

chosen test cases are selected for regression testing. This

implementation involves two test suite scenarios: One that

is implemented with the greedy algorithm for test case

prioritization and another that remains as the original test

suite. This approach allows a comparative analysis,

highlighting the efficiency and effectiveness of the greedy

algorithm in optimizing test case selection.

Fig. 6: Research framework

Akira Wahyu Putra and Nilo Legowo / Journal of Computer Science 2025, 21 (2): 290.303

DOI: 10.3844/jcssp.2025.290.303

296

After prioritizing test cases and adding new test cases

to address recent requirements and features, the process

moves to the re-testing phase. In this phase, testers
execute the prioritized test cases to ensure that the

software operates correctly following the modifications.

This step serves two critical functions: It verifies the

stability of both updated and existing functionalities and

identifies any defects that may have been introduced

during development. Re-testing is vital for confirming

that the modifications meet their intended objectives and

that no unintended issues have disrupted the system,

thereby maintaining overall reliability and functionality.

The research proceeds by executing both the

prioritized and initial (unprioritized) test suites, following
the prioritization phase. This stage includes a comparative

analysis to highlight the differences between the

prioritized test suite, arranged through the Greedy

Algorithm, and the unprioritized test suite. The tests are

conducted locally on a laptop using the Visual Studio

Code terminal, with both expected and actual outcomes

documented in cases of test failure.

The methodology for evaluating prioritized test cases

encompasses two main metrics. First, the Test Suite Size

Reduction (TSSR) is calculated to quantify the reduction

in test cases achieved by prioritization with the Greedy

Algorithm. TSSR compares the count of prioritized test
cases against the original suite, yielding a percentage that

reflects the reduction rate, thereby demonstrating the

efficiency benefits of the proposed approach. This

measure assesses the extent of test suite minimization

while preserving coverage quality.

Following this, the original and prioritized test suites

undergo separate testing to measure bug detection rates in

each. Upon completion, the fault detection effectiveness

is assessed through the Average Percentage Fault

Detection (APFD) metric, which calculates the rate and

extent of bug discovery across test executions. The APFD
results for both the original and prioritized suites are

compared to evaluate the efficiency of fault detection

achieved through prioritization. This comparison

underscores the impact of test case prioritization on

regression testing efficiency, thereby affirming the

effectiveness of the Greedy Algorithm in optimizing test

execution and fault detection.

Results

In this research, the development team at the company

is responsible for improving the current system by

implementing two new features: Project A and Project B.

Following the finalization of backlog grooming and sprint

planning, the development phase begins. During this

phase, the lead engineer assigns user stories to engineers,

enabling them to start their tasks without delay.

During this phase, engineers analyze the code changes,

identify impacted code segments, and make necessary

modifications. Engineers also conduct self-testing to

ensure that the developed code aligns with the specified

requirements. Upon completing all tasks, engineers
initiate a pull request for the code to be promptly tested

by QA Engineers.

During the development phase, testing is initially

conducted manually, alongside the creation of automation

scripts primarily focused on API testing. While efforts to

develop automation testing for UI and UI flow cases are

underway, they are currently limited to manual tests. Once

the development phase is completed, testing progresses to

regression testing and User Acceptance Testing (UAT).

Automation tests play a crucial role in reducing manual

testing efforts during the regression testing phase in the

staging environment. By automating repetitive test cases

and ensuring comprehensive coverage, automation

testing enhances efficiency, accelerates the testing

process, and facilitates the timely identification of any

regressions or discrepancies.

Currently, the software tester team has generated a

repository of at least more than 1200 automated test cases.

These test cases span across a diverse range of features

and requirements that relate to the company's operations.

Developed by individual teams, each test case specifically

targets specific feature scopes, ensuring full test coverage

across the system. Moreover, the QA team has engineered

an automation test framework that is made for flexibility.

This framework contains component files offering

consumable functions, database components, and

reusable data, assisting the whole test automation creation

and testing process. By adopting this strategic approach,

the company not only promotes efficiency in test case

development but also facilitates cleaner and more

maintainable code, ultimately enhancing the robustness of

its testing procedures.

Test Case Creation

Test cases that are relevant to the ongoing

development are consistently created by the QA Team and

kept in a well-organized repository. Unfortunately, the

majority of test cases that are currently in use are no

longer relevant. This is due to the inherent flexibility of

software development, whereby newly specified features

and requirements overrule and substitute previously

established requirements and test cases. As a result of later

improvements and revisions, a large number of the test

cases that were initially designed to verify particular

functionalities have been classified as obsolete.
Despite the majority of test cases becoming obsolete,

there remains a subset that retains relevance and validity

in the context of the ongoing development efforts. These

are the select few test cases that have managed to be

relevant after a few iterations and enhancements, still

applicable as reliable indicators of system behavior and

performance. Its relevance within the software

Akira Wahyu Putra and Nilo Legowo / Journal of Computer Science 2025, 21 (2): 290.303

DOI: 10.3844/jcssp.2025.290.303

297

development phase reflects its significance and

underscores the importance of evaluating and reusing

existing test cases where feasible.

QA engineers will develop new test cases in response
to the product team's requirements in order to meet the
software's changing needs. The purpose of these newly
created test cases is to verify the most recent features and
functionalities, assuring that the program fulfills the
standards set out in the requirements. Using the
requirements that were acquired during the backlog
grooming process, the writer will create test cases.

It's important to note that only test cases that have not
yet covered predetermined requirements will be created.
Additionally, test cases will be crafted following a
specific template as shown in Fig. (7), which includes:

1. Description: A brief explanation of the test case being

created
2. Precondition: The stages or conditions that must be

met before executing the test case

3. Scenario: The steps involved in the test case

execution phase

4. Expected result: Determination of the anticipated

outcome as a validation measure. If the test case

deviates from the expected result, it will be marked

as failed. Conversely, if the test case aligns with the

expected result, it will be deemed as passed.

To further enhance test organization, test cases are
categorized by type, distinguishing between UI Test
Cases and API Test Cases. During execution, this
distinction guides the testing approach, with UI Test
Cases focusing on elements such as layout, buttons, and
textual content, while API Test Cases emphasize backend
validation. API testing ensures logical consistency, data
integrity, and proper user access restrictions, making it

critical for verifying the reliability of core functionalities.
UI testing, meanwhile, is limited to aspects like layout

consistency, wording, and other visual elements. While
UI testing is valuable for ensuring an intuitive user
experience, the primary emphasis is on API functionality
due to the current testing infrastructure, which is centered
around API automation developed by the tester team.

Test Case Sample

The total number of API test cases developed by the
QA team for the features of Project A and Project B is
51 and 36 test cases, respectively, only 15 existing test
cases for Project A are being re-used as the rest of the
test cases became obsolete. As for Project B, there are
no existing test cases because it's a new feature to be
developed by the development team. Therefore, testing
for the Project B feature will be based on newly created

test cases. After the test cases were created and reviewed
with the product manager. After carefully weighing the
needs and functionality of every feature, these numbers
were determined.

Currently, the QA team primarily conducts automation
testing from an API perspective, utilizing Web Driver IO
as the test automation framework. Although the
automated testing is executed locally, the execution report
is integrated into the company’s overall Test Report.
This report not only captures the execution results but
also documents the steps taken, the actual outcomes, and
the final results of each test execution, as illustrated in
Fig. (7). This process ensures transparency and

traceability in the testing phase, contributing to the overall
quality assurance efforts for the projects.

The automated test framework currently focuses on
API automation testing, as the team primarily develops
API-related features for payment functionalities. Since UI
testing can be effectively conducted manually, the testing
efforts are concentrated on validating the backend
processes through automation. This strategic focus
ensures that the critical aspects of the payment system are
thoroughly tested, enhancing the overall reliability and
performance of the developed features.

Requirement Mapping

Table (2) illustrates the requirement mapping for the

Project A and B features for the development team,

encompassing a total of 43 and 18 distinct requirements,

respectively. These requirements serve as crucial guidelines

for the forthcoming implementation of the greedy algorithm.

Each requirement represents specific functionalities,

constraints, and expectations, providing a comprehensive

user journey for the development team. Project A focuses on

enhancing the repayment method features for a designated

loan, followed by the progression of the payment process

until the status is successfully updated to “paid” status.

Project B focuses on the loan management system. By

following these requirements, the development team

attempts to ensure the seamless integration of all features into

their system, highlighting the must-have features for the

developed software. By breaking down these requirements,

the Development Team pinpoints the most important test

cases that cover everything the system needs to do. This

ensures the team gets all bases covered and that the current

software behaves as expected in all situations. The chosen

test cases will play a pivotal role in validating the approach’s

efficacy in meeting these requirements, including enhancing

the overall user experience and system performance.

Fig. 7: Test execution launch example

Akira Wahyu Putra and Nilo Legowo / Journal of Computer Science 2025, 21 (2): 290.303

DOI: 10.3844/jcssp.2025.290.303

298

Table 2: Total requirements of the system in each project
enhancements

Project Total requirement (s)

Project A 41

Project B 18

Greedy Algorithm Implementation

Once all requirements have been clearly defined, the

next step is to implement the Greedy Algorithm to

determine which requirements are addressed by the

selected test cases. This method facilitates the creation of

a prioritized test suite by identifying the test cases that

should be executed first and those that can be excluded.

Table (3) shows the implementation of the Greedy

Algorithm for Project A Feature. The selection process

ensures comprehensive coverage by including test cases

that cover the most requirements first, followed by those

that cover essential requirements. The 22 test cases were

chosen by methodically selecting test cases that optimize

requirement coverage while guaranteeing that all

essential requirements are tested. Initially, Test Case 1A

and Test Case 24A were selected because they cover the

highest number of requirements, 12 and 10 respectively.

The algorithm identifies and selects essential test cases,

which cover unique requirements not addressed by any

other test cases.

The discarded test cases in the implementation of the

greedy algorithm are discarded because other test cases

already covered all their requirements. If the requirements

are already covered by other test cases, the Greedy

Algorithm will consider those related test cases as

redundant. If the number of covered requirements and the

specific requirements covered are identical between test

cases, one test case is chosen at random.

Table (4) shows the implementation of the greedy

algorithm for the Project B feature. Project B test cases

are able to be minimized into 8 test cases from the initial

36 test cases. Test case 29 was chosen because it covers

the highest coverage with 8 requirements. The algorithm

identifies and selects essential test cases, which cover

unique requirements not addressed by any other test

cases, which are Test Case TC20B, TC26B, TC28B,

TC32B, and TC36B.

The other 3 test cases, which are Test cases TC27B,

TC29B, and TC10B are also included to ensure no

requirements are left untested and to reinforce coverage.

Once the writer identifies and prioritizes the essential

test cases, the writer organizes them into a

comprehensive test suite. This suite is carefully put

together to match the main goals of the testing phase. It

serves as a comparison as well between the prioritized

test suite with the original ones.

Table 3: Greedy algorithm implementation on Project A feature

Test case
Total
coverage

Representing essential
requirements?

TC 1A 12 Yes

TC 2A 2 Yes

TC 4A 2 Yes

TC 5A 2 Yes

TC 6A 2 Yes

TC 8A 4 Yes

TC 9A 1 Yes

TC 10A 1 Yes

TC 11A 1 Yes

TC 19A 2 Yes

TC 24A 10 Yes

TC 26A 2 Yes

TC 27A 2 Yes

TC 45A 3 Yes

TC 46A 2 Yes

TC 47A 2 Yes

TC 48A 2 Yes

TC 49A 2 Yes

TC 51A 2 Yes

TC 18 4 Yes

TC 3A 2 No

TC 28A 2 No

Table 4: Greedy algorithm implementation on Project B feature

Test case
Total
coverage

Representing essential
requirements?

TC 20B 2 Yes

TC 26B 1 Yes

TC 28B 1 Yes

TC 32B 2 Yes

TC 36B 1 Yes

TC 27B 2 No

TC 29B 8 No

TC 10B 2 No

Test Suite Execution

The testing execution will be integrated into the Allure

Test Launch test report and if there is any error or the case

does not meet the expected result, the expected and actual

results will be attached to the test report.

Table (5) illustrates the execution result of both the test

suite for Project A. In this execution, the original test suite

contained a total of 51 test cases, whereas the prioritized

test suite contained 22 test cases due to Greedy

Algorithm Implementation. Both of the executions

resulted in 4 identical failed test cases during the test run.

While the execution time shows a clear difference, the

prioritized test suite, which has less number of test cases,

is able to finish the execution in 1 h and 1 min. On the

other hand, the original test suite finished the test

execution in 2 h and 17 min.

Akira Wahyu Putra and Nilo Legowo / Journal of Computer Science 2025, 21 (2): 290.303

DOI: 10.3844/jcssp.2025.290.303

299

Table 5: Test execution result on Project A feature

Description Project A original

Project A greedy
algorithm
implemented

Number of test
cases

51 22

Execution time 2 h 17 min 1 h 1 min

Failed test case 4 Failed test cases 4 Failed test cases

Table 6: Test execution result on Project B feature

Description
Project B
Original

Project B greedy
algorithm
implemented

Number of test cases 36 8

Execution time 56 min 23 sec 15 min 32 sec

Failed test case 5 Failed test cases 5 Failed test cases

The results of both test suites' execution for Project B

are shown in Table (6). Due to the implementation of the

greedy algorithm, the prioritized test suite in these

executions had 8 test cases out of the 36 total test cases in

the original test suite. During the test run, both executions

produced five identically failed test cases. The prioritized

test suite, which contains fewer test cases, is able to

complete the execution in 15 min and 32 sec, despite the

execution time showing a noticeable difference. However,

the original test suite took 56 min and 23 sec to complete

the test execution.

Test Suite Size Reduction Rate (TSSR) Project A

From the implementation of the Greedy Algorithm in

Project A and Project B, the resulting prioritized test

suites for each project have been determined and are

presented respectively. The number of test cases in each

test suite is 22 for Project A and 8 for Project B. In detail,

the table includes the following components:

1. Total initial test cases: Indicates the initial number of

test cases before reduction, which is 51 test cases

2. Total test cases after reduction: Indicates the number

of test cases after the reduction process using the

greedy algorithm, which is 22 test cases.

3. Number of reduced test cases: Shows the number of

test cases that were reduced, which is 29 test cases
(51-22 = 29)

Percentage of test case reduction: Uses the TSSR

formula to calculate the percentage reduction in test cases.

TSSR is calculated as.

Test Suite Size Reduction Rate (TSSR) Project A

51 22
100% 56.8%

51
TSSR

 (3)

Project A, the initial 51 test cases were reduced to 22,

yielding a TSSR of 56.8%. The implementation of the

Greedy Algorithm in Project A has successfully reduced

the test suite size significantly, which can help in reducing

the time and resources required for testing while
maintaining adequate test coverage.

Average Percentage Fault Detection (APFD)

original Project a Test Suite

1

1 45 46 47 51 / 51 4 0.0853
2 51

APFD

 (4)

Average Percentage Fault Detection (APFD)
prioritized Project a Test Suite.

1

1 14 15 16 22 / 22 4 0.2613
2 22

APFD

 (5)

There are significant differences in Project A's test

suite when comparing the Average Percentage of Failures

Detected (APFD) results between the Greedy algorithm's

test suite and the original suite. Establishing an APFD

value of 0.2613, the Greedy Algorithm method prioritizes

critical test cases in order to maximize fault detection

efficiency. In a shorter amount of time, the approach

ensured comprehensive testing efficiently. At 0.0853, the

APFD value of the original test suite was lower, despite

its goal of thorough coverage tests. Larger execution

durations and less effective fault detection were caused by

its potential redundancy and wider coverage.

Test Suite Size Reduction Rate (TSSR) Project B

In detail, the table includes the following components:

1. Total initial test cases: Indicates the initial number of

test cases before reduction, which is 36 test cases

2. Total test cases after reduction: Indicates the number

of test cases after the reduction process using the

greedy algorithm, which is 8 test cases.

3. Number of reduced test cases: Shows the number of

test cases that were reduced, which is 28 test cases

(36-8 = 28)

36 8
100% 77.8%

36
TSSR

 (6)

This high reduction rate indicates that many of the

original test cases were deemed redundant. The

prioritization and reduction of test cases can

significantly impact the execution time, as fewer test

cases mean less time needed for testing. Overall, the

results show that the Greedy Algorithm effectively

reduced the test suite size, leading to a more efficient

testing process for Project B.

Akira Wahyu Putra and Nilo Legowo / Journal of Computer Science 2025, 21 (2): 290.303

DOI: 10.3844/jcssp.2025.290.303

300

Average Percentage Fault Detection (APFD)

Original Project B Test Suite

1

1 (10 20 26 28 36) / 36 5 0,3194
2 36

APFD

 (7)

Average Percentage Fault Detection (APFD)

Prioritized Project B Test Suite

1

1 (1 2 3 5 8) / 8 5 0,5875
2 8

APFD

 (8)

Comparing the Average Percentage of Failures

Detected (APFD) values between Project B's original test

suite and the suite implemented by the Greedy algorithm

provides valuable insights into their respective testing

strategies. The prioritized test suite for Project B has a

higher APFD of 0.5875 compared to the original test

suite's APFD of 0.3194.

Discussion

The implementation of the Greedy Algorithm across

Projects A and B resulted in significant reductions in the

test suite sizes, as evidenced by the Test Suite Size

Reduction Rate (TSSR) metrics. For Project A, the initial

51 test cases were reduced to 22, yielding a TSSR of 56.8%.

This high reduction rate indicates that many of the original

test cases were deemed redundant. The prioritization and

reduction of test cases can significantly impact the

execution time, as fewer test cases mean less time needed

for testing. This efficiency gain helps save resources and

accelerate the testing process while still ensuring that
essential functionalities are covered.

Project B saw a reduction from 36 test cases to 8,

resulting in a TSSR of 77.8%, indicating the identification

and elimination of many redundant test cases. The

prioritization and reduction of test cases can significantly

impact the execution time, as fewer test cases mean less

time needed for testing. This efficiency gain helps save

resources and accelerate the testing process while still

ensuring that essential functionalities are covered.

The application of the Greedy algorithm to Project A's

testing strategy led to a more efficient approach by
prioritizing critical test cases essential for verifying core

functionalities. This optimization resulted in an APFD

value of 0.2613, which is notably higher than the 0.0853

achieved by the original test suite. This enhanced APFD

indicates that the Greedy algorithm significantly

improved fault detection effectiveness, allowing for

quicker identification of critical issues within a reduced

number of test cases.

The implementation of the Greedy algorithm reduced

the number of test cases from 51-22, contributing to a

more streamlined and time-efficient testing process. This
reduction not only improved fault detection but also

significantly shortened the execution time, highlighting

the Greedy algorithm's effectiveness in optimizing both

test coverage and efficiency.

In contrast, the original test suite for Project A aimed

to cover a broader range of scenarios and functionalities.

Despite its extensive coverage, the original suite's APFD

value of 0.0853 reflects lower effectiveness in detecting

faults. The original suite's longer execution time,

approximately 2 h and 17 min, compared to the prioritized

suite's 1 h and 1 min, suggests that the broader coverage

may have introduced inefficiencies and redundancy.

Comparing the Average Percentage of Failures

Detected (APFD) values between Project B's original test

suite and the suite implemented by the Greedy algorithm

provides valuable insights into their respective testing

strategies. The prioritized test suite for Project B has a

higher APFD of 0.5875 compared to the original test

suite's APFD of 0.3194. This indicates that the

prioritization strategy has significantly improved the

effectiveness of detecting faults early in the test process.

The higher APFD value suggests that the prioritized test

suite is better at identifying faults, and enhancing overall

testing efficiency.

The implementation of the Greedy algorithm in

Project B's testing strategy demonstrated a focused

approach to maximizing fault detection efficiency. By

prioritizing critical test cases that were essential for

verifying core functionalities, the Greedy algorithm

achieved an APFD value of 0.5875. This approach

ensured that important requirements were thoroughly

tested within a shorter execution time. The algorithm's

ability to swiftly identify failures indicated a streamlined

testing process that efficiently detected critical issues

early in the development cycle. This efficiency in fault

detection underscores the Greedy algorithm's

effectiveness in optimizing test coverage without

compromising the thoroughness of critical tests.

The longer execution time and potential redundancy in

test case coverage may have contributed to this lower

APFD value. The execution of both Project B test suites

shows notable differences, original test suite finishing in

56 min and 23 sec, while the prioritized test suite finishes

in 15 min and 32 sec.

The results of implementing the greedy algorithm can

be summarized as follows. The application of the Greedy

Algorithm led to a significant reduction in the test suite

sizes, improved fault detection effectiveness, and a

notable decrease in execution time for both Project A and

Project B. The detailed calculations for Average

Percentage Fault Detection (APFD) and execution time

reduction are as follows:

100%
prioritized original

original

APFD APFD
APFDincreas

APFD

 (9)

Akira Wahyu Putra and Nilo Legowo / Journal of Computer Science 2025, 21 (2): 290.303

DOI: 10.3844/jcssp.2025.290.303

301

Average Percentage Fault Detection (APFD)

Increase in Project A

0.2613 0.0853
100% 206.21%

0.0853
Project A

 (10)

For Project A, the APFD value increased by 206.21%,

from 0.0853-0.2613, which indicates a substantial

enhancement in detecting faults early in the testing

process. This improvement suggests that the greedy

algorithm successfully prioritized the test cases that were

more likely to uncover defects, thus enhancing the

efficiency of the testing process.

Average Percentage Fault Detection (APFD)

Increase in Project B

0.5875 0.3194
100% 83.92%

0.3194
Project B

 (11)

Project B APFD increased by 83.92%, from 0.3194-

0.5875, showing a similar improvement in fault detection

effectiveness. This increase demonstrates the algorithm's

ability to prioritize test cases that uncover faults more

effectively, thus contributing to higher software quality.

Time Reduction Percentage

The reduction in execution time reflects the efficiency

gains achieved through test case prioritization will

calculated as follows:

100%
original prio

original

Time Time
Time Reduction

Time

 (12)

Time Reduction Percentage Project A

137 61
100% 55.47%

137
Time Reduction

 (13)

where, in Project A:

 Original execution time = 137 min

 Prioritized execution time = 61 min

In Project A, the execution time decreased by 55.47%,

from 137-61 min, highlighting a significant improvement

in testing efficiency. This reduction was achieved by

prioritizing test cases, which led to a smaller, more

efficient suite that could be executed more quickly.

Time Reduction Percentage Project B

56.38 15.53
100% 72.44%

56.38
Time Reduction

 (14)

where, in Project A:

 Original execution time = 56.38 min

 Prioritized execution time = 15.53 min

For Project B, the execution time was reduced by

72.44%, from 56.38-15.53 min, demonstrating even

greater efficiency gains. This timesaving directly

contributes to faster test cycles, aligning with the goal of

reducing testing durations and accelerating the software

release process.

The overall Average Percentage Fault Detection

(APFD) value indicates that the prioritization strategy has

significantly enhanced the effectiveness of early fault

detection in the testing process. A higher APFD value

reflects that the prioritized test suite is more adept at

identifying faults, thereby improving overall testing

efficiency. The accuracy of fault detection is crucial for

ensuring software quality and optimizing the use of

testing resources. By implementing the Greedy Algorithm

for prioritization, teams can effectively select test cases

that are most likely to reveal defects early in the testing

cycle. This approach not only increases the chances of

identifying critical faults but also minimizes the time and

effort required for executing tests that may have less

impact. While there is an inherent risk in testing processes

due to the possibility of missed scenarios, PT XYZ has

addressed this by hiring a third-party team to manually

test edge cases. The internal team focuses solely on testing

based on the project requirements and acceptance criteria.

The research that was conducted reinforces previous

studies by demonstrating that the Greedy Algorithm

effectively prioritizes test suites, eliminates redundant test

cases, and enhances the efficiency of the testing process

through the elimination of test cases based on redundant

requirement coverage. This study substantiates the

findings of Srivastava (2008); Harris (2015); Singh et al.,

(2016); Jehan and Wotawa (2023), which showed that

implementing the Greedy Algorithm and evaluating it

using Test Suite Size Reduction (TSSR) and Average

Percentage of Faults Detected (APFD) results in superior

outcomes compared to the original test suite. A novel

aspect of this research is its application during the

regression testing phase and the use of automated testing

with Web driver IO using the current projects. This

research not only confirms the efficiency of the Greedy

Algorithm but also showcases its effectiveness in modern

automated testing environments, further optimizing test

case execution and improving overall testing efficiency.
Previous research examining the application of

Greedy algorithms in regression test optimization has

shown significant potential in reducing test suite size and

improving fault detection efficiency. For example, a study
by Singh et al. (2016), showed that the Greedy algorithm

was able to reduce Test Suite Size Reduction (TSSR) by

Akira Wahyu Putra and Nilo Legowo / Journal of Computer Science 2025, 21 (2): 290.303

DOI: 10.3844/jcssp.2025.290.303

302

50% compared to traditional optimization techniques.

Similarly, a study by Srivastava (2008), highlighted that

Average Percentage Fault Detection (APFD) improved by
11% when using this algorithm.

While these results are promising, there are some

unaddressed gaps in the previous research. Firstly,

previous research did not mention the domain feature of

the test cases sample, whereas this research is using the

Core Transaction Payment System feature at the

company, using specified test cases that related to the

transaction feature. Secondly, most of the previous studies

did not measure the impact of applying the Greedy

algorithm on regression test execution time at scale,

especially in a constantly changing environment such as
that experienced by the company.

This research aims to fill the gap by investigating the

adaptation of the Greedy algorithm in the context of

regression testing involving dynamic data and system

configuration. One of the main focuses is to significantly

reduce the test execution time compared to the currently

used testing approach, so as to be able to fulfill operational

needs more quickly and efficiently.

Conclusion

The implementation of the Greedy Algorithm is a

technique for achieving effective Test Case Prioritization.

The Greedy Algorithm works by selecting test cases that

cover the most critical requirements or are most likely to

detect faults, optimizing the test suite to reduce

redundancy and enhance efficiency. As demonstrated in

Projects A and B, the Greedy Algorithm significantly

reduced the test suite sizes while maintaining or even

improving fault detection effectiveness, as evidenced by
the increased Average Percentage of Faults Detected

(APFD) values.

By reducing the number of test cases and prioritizing

the most critical ones, the execution time for regression

testing can be significantly shortened, making regression

testing more efficient, and reducing the time and resources

needed while still ensuring comprehensive coverage of

critical functionalities. This allows for faster feedback and

quicker identification of potential issues, enabling more

efficient use of resources.

Overall, the application of the Greedy Algorithm has

shown varying degrees of success in optimizing test suite
sizes and improving fault detection effectiveness across

different projects. In Project A, the test suite was reduced

from 51-22 test cases, achieving a TSSR of 56.8% (a

reduction of 43 test cases or 84.3%). For Project B, the

Greedy Algorithm delivered even more impressive

results, reducing the test suite from 36-8 test cases,

resulting in a TSSR of 77.8% (a reduction of 28 test cases

or 77.8%). Projects A and B showed notable reductions

and improvements in efficiency, with APFD values rising

by 206.2% (from 0.0853-0.2613) in Project A and by

83.9% (from 0.3194-0.5875) in Project B. This

optimization reduced redundant test cases, sped up

testing, and supported the company’s goal of achieving
faster release cycles.

Acknowledgment

We would like to thank Bina Nusantara University for

providing the resources and support necessary for this

research. We also acknowledge the valuable contributions

of our colleagues and collaborators, whose expertise and

assistance were greatly appreciated.

Funding Information

This research was entirely self-funded and conducted

without external financial support.

Author’s Contributions

Akira Wahyu Putra: Conducting the whole research

phase. Gather data needed to conduct the research.

Nilo Legowo: Guiding the whole research phase.

Giving feedback and constructive opinions related to the

research.

Ethics

The authors confirm that this manuscript has not

been published elsewhere and that no ethical issues are

involved.

Reference

Alian, M., Suleiman, D., & Shaout, A. (2016). Test Case

Reduction Techniques - Survey. International

Journal of Advanced Computer Science and

Applications, 7(5).

https://doi.org/10.14569/ijacsa.2016.070537

Ansari, A., Khan, A., Khan, A., & Mukadam, K. (2016).

Optimized Regression Test Using Test Case

Prioritization. Procedia Computer Science, 79,

152–160.

https://doi.org/10.1016/j.procs.2016.03.020

Di Nardo, D., Alshahwan, N., Briand, L., & Labiche, Y.

(2015). Coverage‐based regression test case

selection, minimization, and prioritization: a case

study on an industrial system. Software Testing,

Verification and Reliability, 25(4), 371–396.

https://doi.org/10.1002/stvr.1572

Elbaum, S., Rothermel, G., Kanduri, S., & Malishevsky,

A. G. (2004). Selecting a Cost-Effective Test Case

Prioritization Technique. Software Quality Journal,

12(3), 185–210.

https://doi.org/10.1023/b:sqjo.0000034708.84524.22

https://doi.org/10.14569/ijacsa.2016.070537
https://doi.org/10.1016/j.procs.2016.03.020
https://doi.org/10.1002/stvr.1572
https://doi.org/10.1023/b:sqjo.0000034708.84524.22

Akira Wahyu Putra and Nilo Legowo / Journal of Computer Science 2025, 21 (2): 290.303

DOI: 10.3844/jcssp.2025.290.303

303

Gladston, A., Nehemiah, H. K., Narayanasamy, P., &

Kannan, A. (2016). Test Suite Reduction Using HGS

Based Heuristic Approach. Computing and
Informatics, 34(5), 1113–1132.

Greca, R., Miranda, B., & Bertolino, A. (2023). State of

Practical Applicability of Regression Testing

Research: A Live Systematic Literature Review.

ACM Computing Surveys, 55(13s), 1–36.

https://doi.org/10.1145/3579851

Hettiarachchi, C., Do, H., & Choi, B. (2016). Risk-based

test case prioritization using a fuzzy expert system.

Information and Software Technology, 69, 1–15.

https://doi.org/10.1016/j.infsof.2015.08.008

Jehan, S., & Wotawa, F. (2023). An Empirical Study of
Greedy Test Suite Minimization Techniques Using

Mutation Coverage. IEEE Access, 11, 65427–65442.

https://doi.org/10.1109/access.2023.3289073

Khatibsyarbini, M., Isa, M. A., Jawawi, D. N. A., &

Tumeng, R. (2018). Test case prioritization

approaches in regression testing: A systematic

literature review. Information and Software

Technology, 93, 74–93.

https://doi.org/10.1016/j.infsof.2017.08.014

Li, Z., Harman, M., & Hierons, R. M. (2007). Search

Algorithms for Regression Test Case Prioritization.

IEEE Transactions on Software Engineering, 33(4),
225–237. https://doi.org/10.1109/tse.2007.38

Lin, C.-T., Tang, K.-W., Wang, J.-S., & Kapfhammer, G.

M. (2017). Empirically evaluating Greedy-based test

suite reduction methods at different levels of test suite

complexity. Science of Computer Programming, 150,

1–25. https://doi.org/10.1016/j.scico.2017.05.004

Lou, Y., Chen, J., Zhang, L., & Hao, D. (2019). Chapter

One - A Survey on Regression Test-Case

Prioritization. In A. M. Memon (Ed.), Advances in

Computers (Vol. 113, pp. 1–46). Elsevier.

https://doi.org/10.1016/bs.adcom.2018.10.001
Maspupah, A., Muharram, M. K., & Daeli, S. G. (2023).

Analisis Efektifitas Algoritma FAST Menggunakan

Metrik Average Percentage Fault Detection dan

Waktu Eksekusi Pada Test Case Prioritization.

Journal of Information System Research (JOSH),

4(2), 451–457.

https://doi.org/10.47065/josh.v4i2.2822

Qasim, M., Bibi, A., Hussain, S. J., Jhanjhi, N. Z.,

Humayun, M., & Sama, Najm Us. (2021). Test case

prioritization techniques in software regression
testing: An overview. International Journal of

Advanced and Applied Sciences, 8(5), 107–121.

https://doi.org/10.21833/ijaas.2021.05.012

Qiu, D., Li, B., Ji, S., & Leung, H. (2015). Regression

Testing of Web Service: A Systematic Mapping

Study. ACM Computing Surveys, 47(2), 1–46.

https://doi.org/10.1145/2631685

Singh, S., & Shree, R. (2016). An Analysis of Test Suite

Minimization Techniques. International Journal of

Engineering Sciences & Research Technology

International Journal of Engineering Sciences &
Research Technology, 5(11), 252–260.

https://doi.org/10.5281/zenodo.165632

Srivastava, P. R. (2008). Test case prioritization. Journal

of Theoretical and Applied Information Technology,

5, 178–181.

Sutapa, F. A. K. P. G., Kusumawardani, S. S., &

Permanasari, A. E. (2020). A Review of Automated

Testing Approach for Software Regression Testing.

IOP Conference Series: Materials Science and

Engineering, 846, 012042.

https://doi.org/10.1088/1757-899x/846/1/012042

Wong, W. E., Horgan, J. R., London, S., & Mathur, A. P.
(1995). Effect of test set minimization on fault

detection effectiveness. ICSE ’95: Proceedings of the

17th International Conference on Software

Engineering, 41–50.

https://doi.org/10.1145/225014.225018

Yamuç, A., Cingiz, M. O., Biricik, G., & Kalipsiz, O.

(2017). Solving test suite reduction problem using

greedy and genetic algorithms. 2017 9th International

Conference on Electronics, Computers and Artificial

Intelligence (ECAI), 1–5.

https://doi.org/10.1109/ECAI.2017.8166445
Yoo, S., & Harman, M. (2012). Regression testing

minimization, selection and prioritization: a survey.

Software Testing, Verification and Reliability, 22(2),

67–120. https://doi.org/10.1002/stvr.430

https://doi.org/10.1145/3579851
https://doi.org/10.1016/j.infsof.2015.08.008
https://doi.org/10.1109/access.2023.3289073
https://doi.org/10.1016/j.infsof.2017.08.014
https://doi.org/10.1109/tse.2007.38
https://doi.org/10.1016/j.scico.2017.05.004
https://doi.org/10.1016/bs.adcom.2018.10.001
https://doi.org/10.47065/josh.v4i2.2822
https://doi.org/10.21833/ijaas.2021.05.012
https://doi.org/10.1145/2631685
https://doi.org/10.5281/zenodo.165632
https://doi.org/10.1088/1757-899x/846/1/012042
https://doi.org/10.1145/225014.225018
https://doi.org/10.1002/stvr.430

