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Abstract: In today’s technologically advancing world, many fields from 

finance to healthcare and education are shifting toward a digital and 

decentralized format. A significant transformation is underway with the 

currency of the masses. Blockchain-based cryptocurrencies like Bitcoin and 

Ethereum allow users to generate fungible tokens anonymously through 

smart contracts. However, these features also facilitate illicit transactions and 

cybercrimes like fraud, phishing, and money laundering. The proposed work 

explores the identification of suspicious transactions on the Ethereum 

blockchain by leveraging advanced machine-learning techniques. An 

Extreme Gradient Boosting (XGBoost) classifier is optimized for spotting 

unauthorized or malicious transactions, exploring features like transaction 
patterns and value anomalies. Feature scaling and log transformations 

normalize skewed distributions, while rigorous model training and 

hyperparameter tuning enhance the system's precision, recall, and overall 

accuracy. Other aids, such as feature importance rankings, precision-recall 

curves, and diagnostic statistics, provide useful information on fraud 

patterns. Evaluation of the model shows that integrating cost-sensitive 

learning significantly reduces false positives, from 51 to 44, representing a 

13.7% decrease, which enhances practical usability by minimizing false 

alerts and manual verification efforts. Although there was a slight increase 

in false negatives (from 14 to 15), the overall classification accuracy 

improved. The model demonstrated strong performance in managing class 
imbalance which is common in fraud detection contexts. 
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Introduction 

The large-scale implementation of blockchain 

technology has resulted in the exponential growth of 

cryptocurrency transactions, especially in Ethereum. With 

the growing adoption of blockchain technology, the 

volume of cryptocurrency transactions on the Ethereum 

network has significantly surged. Nevertheless, because of 

its pseudonymous nature, blockchain technology has 

become a popular target for illicit activities such as money 

laundering, phishing attacks, and Ponzi schemes (Tripathy 

et al., 2024). Identifying illicit accounts remains a significant 

challenge due to the vast volume of cryptocurrency 

transactions and the absence of clear, identifiable user 

information (Ding et al., 2024). The rarity of fraudulent 

transactions, combined with the high dimensionality of 

transaction features and the volatility of cryptocurrency 

markets, poses significant challenges for accurate and 

reliable fraud detection models (Jiang, et al., 2024). 
Scholars have turned to Machine Learning (ML) (Kerr 

et al., 2023), graph-based techniques and neural networks 

which mimic the biological neural systems (Dutta et al., 

2023) for effective solutions because traditional fraud 

detection methods are unable to handle the dynamic 

nature of blockchain fraud, these suggested techniques 

provide insights for investors, regulators about currency 

types, fraud cases and risk factors. 

Machine learning algorithms have shown significant 

promise in detecting illegal activities by analysis of 

transactional behavior, frequency, and patterns (Y 
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Elmougy, and Liu, 2023). The ML component leverages 

algorithms to classify transactions, while the blockchain 

provides tamper-proof and transparent verification 

(Sultana et al., 2023). Machine Learning plays a 

transformative role in cryptocurrency markets by 

revolutionizing trading strategies, enhancing risk 

management, improving fraud detection, and enabling 

advanced market analytics, offering valuable insights for 

businesses seeking to adopt these technologies 

effectively (Islam et al., 2025). Imbalanced 

classification methods and explainable AI models have 

been investigated to enhance fraud detection accuracy 

while maintaining the ability to explain. The paper 

discusses the application of a new fraud detection system 

for Ethereum transactions. Sophisticated machine 

learning algorithms with extensive data pre-processing 

and feature selection methods reveal subtle patterns in 

the anonymized blockchain transactions (Elmougy and 

Liu, 2023). These, combined with adaptive learning 

features that identify changing patterns of fraudulent 

transactions, increase the security and integrity of the 

Ethereum network. The goal is to create a strong 

framework that can identify multiple forms of fraudulent 

activity, such as phishing attacks and token thefts, and 

constantly adapt to new cybercrime attack schemes 

(Taher et al., 2024), creating a more secure ecosystem 

for users (Venkatesh et al., 2024). 

The rapid adoption of cryptocurrencies has fueled 

financial technology innovations as well as posed fraud 

detection issues. Cryptocurrency transactions are 

susceptible to cybercrimes like phishing, Ponzi schemes, 

and money laundering. Researchers have responded by 

developing advanced fraud detection systems through 

Machine Learning and Deep Learning paradigms. 

Different research pieces have examined the identification 

and mitigation of fraudulent transactions in 

cryptocurrency systems, particularly on Ethereum. 

A study was conducted to evaluate various machine 

learning techniques for classifying fraudulent 

cryptocurrency transactions (Tripathy et al., 2024). They 

demonstrated that XGBoost achieved the highest 

performance, with an accuracy of 98%, outperforming 

several other models such as Random Forest, Logistic 

Regression, K-Nearest Neighbors, AdaBoost, and 

Support Vector Machines (SVM). The study emphasizes 

that classification-based machine learning approaches can 

effectively identify suspicious activities by leveraging 

behavior-derived transaction features. Another study 

presents a Directed Multigraph-Based Approach (DIAM) 

for discovering illegitimate accounts within crypto 

networks (Ding et al., 2024). Using Gated Recurrent 

Units (GRU) and Multilayer Perceptron (MLP), their 

algorithm excelled against the rest for classifying the 

existence of illicit accounts, presenting an example of 

what graph learning to counteract fraud can look like. 

Another major obstacle to cryptocurrency fraud 

detection is anonymizing transactions. Jiang et al. 

(2024) addressed this issue by using the Synthetic 

Minority Oversampling Technique (SMOTE) for data 

imbalance and Bayesian optimization for improving 

fraud classification accuracy. Their work proved that 

Machine Learning models were able to identify large 

patterns of relevance to fraud using the anonymity of the 

cryptocurrency transactions. Also, ensemble learning 

approaches to detect fraudulent Bitcoin transactions 

proved that assembling multiple classifiers facilitates 

anomaly detection, specifically identification of a cluster 

of malicious transactions (Elmougy and Liu, 2023). 

The adaptive nature of fraud makes it challenging for 

adaptive learning mechanisms, so that fraud detection is 

successful. Taher et al. (2024) employed ensemble 

learning combined with explainable AI to develop a 

strong fraud detection system that could learn to adapt to 

changing fraudulent patterns.  They did mention, 

however, that the high computational cost is still a 

limitation for real-time fraud detection. Likewise, 

ChaosNet, a new technique applied chaos theory in 

Machine Learning models for recognizing fraud in 

Ethereum transactions (Dutta et al., 2023). Their model 

was highly resistant to adversarial attacks and efficient 

in identifying fraudulent behavior for anomalous 

transaction patterns. 

Pattern identification is the most important factor in 

identifying fraudulent transactions in blockchain 

networks. Sultana et al. (2023) combined Machine 

Learning techniques with blockchain analysis, achieving 

more than 99% accuracy in identifying fraudulent 

transactions. Their work emphasized the necessity of 

addressing imbalanced data through SMOTE and feature 

selection techniques. Walavalkar et al. (2024) suggested 

a token-based approach for Ethereum fraud detection 

using sophisticated data pre-processing and 

classification methods. Their approach was centered on 

detecting suspicious token transactions, which worked 

in fraud detection. 

Effective real-time fraud detection is critical due to the 

heavy flow of cryptocurrency transactions.  Kerr et al. 

(2023), analyzed several cases of financial fraud in 

crypto markets and offered a risk assessment framework 

for blockchain transactions. They highlighted the use of 

hybrid strategies that incorporate standard financial risk 

measures with Machine learning-based anomaly 

detection models. Islam et al. (2025), examined how 

machine learning algorithms impact cryptocurrency 

fraud detection and identified key methods that 

organizations can utilize to improve security. 

Studies have also been aimed at identifying certain 

forms of fraud that exist within the Ethereum 

environment. Zhang et al. (2024) proposed FRAD, a 

ternary classification framework for the detection of 
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front-running attacks in Ethereum. FRAD classifies 

transactions related to front-running attacks correctly, 

which allows developers to counter each attack form with 

proper strategies. Additionally, Palaiokrassas et al. 

(2024), created a framework utilizing Machine Learning 

for detecting multichain Decentralized Finance (DeFi) 

fraud. Their method draws features from various chains, 

such as Ethereum, and uses models such as XGBoost and 

neural networks to detect malicious accounts engaging 

with DeFi protocols. 

Notable contributions to detect fraud in Ethereum 

transactions include a Long Short-Term memory(LSTM) 

classifier to generate recommendations based on 

Classification Scores (Sureshbhai et al., 2020), One-Class 

Graph Neural Network based anomaly detection 

framework (Ibrahim et al., 2021),  Heterogenous Graph 

Neural Networks (Kanezashi et al., 2022),  the light 

gradient boosting machine(LGBM) algorithms (Aziz et 

al., 2022), XGBoost and Random Forest(RF) algorithms 

used for transaction classification(Ashfaq et al., 2022; 

Farrugia et al., 2020). 

Review papers on blockchain technology and its 

transactions explained the vulnerability of networks to 

anomalies and fraud, the need to identify emerging trends 

to mitigate these challenges (Osterrieder et al., 2023; 

Krishna and Praveenchandar, 2022), while another study 

focused on the usage of GPU-accelerated machine 

learning models for designing automated fraud detection 

systems (Elmougy and Manzi, 2021). Hu et al. (2023) 

proposed a temporal weighted heterogeneous multigraph 

embedding approach to identify phishing scams. Hu et al. 

(2022) introduced SCSGuard, a deep learning 

framework for fraudulent smart contracts. 

In summary, notable advancements have been made 

in the detection of cryptocurrency fraud, and Machine 

Learning Methods (Ibrahim et al., 2021; Sallam et al., 

2022) and Deep Learning methods (Giantsidi and 

Tarantola, 2025) have played a significant part. The 

examined studies emphasize the significance of effective 

fraud detection, dealing with data imbalance, adaptive 

learning, and pattern identification in stopping illegal 

transactions. Despite these advances, computational 

efficiency and the dynamic nature of fraud pose 

challenges. Future studies must emphasize improving 

real-time detection mechanisms and combining 

blockchain analytics with Machine learning-based 

solutions to improve cryptocurrency security. 

Despite progress, there remains a gap in developing 
holistic fraud detection systems that combine graph-

based features, cost-sensitive classification, and 

unsupervised anomaly detection to effectively handle 

class imbalance, dynamic fraud patterns, and transaction 

interconnectivity. 

This paper aims to address this gap by proposing a 

robust, adaptive fraud detection framework for 

Ethereum. Cost-sensitive XGBoost classification was 

used to treat class imbalance (by penalizing false 

negatives), which allowed the model to improve its 

ability to discover rare but important instances. Graph-

based feature augmentation techniques (i.e. PageRank & 

betweenness centrality) were used to augment 

relational/network level behavioral information in order 

for the model to exploit the structural relationships 

between entities. In addition, anomaly scores derived 

from unsupervised learning methods (i.e. Isolation 

Forest) were used to help identify previously 

unseen/evolutionary patterns that may not be adequately 

represented in labeled training set data. Finally, to ensure 

that model results were sufficiently robust and unbiased, 

Bayesian hyperparameter tuning in combination with 

nested cross-validation was used to provide the best 

possible hyperparameters while minimizing overfitting 

and/or evaluation bias. 

The goal is to deliver a scalable and explainable 

system capable of detecting diverse types of fraudulent 

activity including phishing attacks, token theft, and smart 

contract abuse while adapting to emerging cybercrime 

tactics. This contributes to strengthening the security and 

trustworthiness of the Ethereum ecosystem. 

Open Issues 

Balancing Data in Fraud Detection Models 

One of the largest challenges of fraudulent transaction 

detection in Ethereum is the enormous imbalance of 

datasets. Money laundering and Ponzi schemes are only a 

minority of all transactions, and it is difficult for machine 

learning models to learn useful patterns. Few studies 

(Jiang et al., 2024) explored an approach using the 

Synthetic Minority Over-sampling Technique (SMOTE) 

and cost-sensitive learning. Such approaches have a 

tendency to introduce artificial noise, leading to false 

positives and reducing the ability of the model to 

generalize real-world transactions. There are also 

consistently changing methods, forcing models to adapt 

dynamically. Creating advanced data-balancing 

techniques that preserve minority-class transaction 

integrity without compromising model accuracy is a key 

open problem in fraud detection. 

Developing sophisticated data-balancing methods that 

protect the integrity of minority-class transactions without 

sacrificing model accuracy is an important open question 

in fraud detection. 

Improving Real-Time Fraud Detection in Ethereum 

With Ethereum processing thousands of 

transactions per second, real-time fraud detection is 

key to avoiding financial losses. Yet, the majority of 

current fraud detection models are based on 

computationally costly methods like deep learning and 
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ensemble learning, which cannot match the velocity of 

blockchain transactions. Conventional methods 

examine transaction patterns once they have been 

written to the blockchain, which is too late for fraud 

detection and poses greater financial risks. In addition, 

the implementation of fraud detection algorithms 

within Ethereum’s transaction verification procedure is 

problematic in a decentralized platform like Ethereum. 

Fraud detection software has to walk a thin line 

between computational efficacy and precision, such 

that the suspicious transactions are flagged in real-time 

without delaying transactions appreciably. 

Front-Running Attacks in Ethereum Identification 

and Prevention 

Front-running is a serious security problem in 

Ethereum, whereby malicious traders use the 

transaction ordering mechanism to manipulate asset 

prices and achieve maximum personal benefits. Front-

running attacks leverage Ethereum’s public mempool, 

where transactions are stored temporarily before 

confirmation (Zhang et al., 2024). Attackers employ 

bots to track transactions and insert their own in front 

of high-value trades so that they can profit from price 

movements before the victim’s transaction is made. 

Although current countermeasures like transaction 

batching and encrypted mempools mitigate these 

attacks to some extent, they are not perfect. More 

effective detection techniques are required to 

distinguish between real high-frequency trading and 

malicious front-running. A critical challenge is 

designing ML models capable of detecting faint 

patterns characteristic of front-running while avoiding 

false positives, promoting equitable trading in 

Ethereum-based DeFi platforms. 

Maintaining the Scalability and Flexibility of Fraud 

Detection Systems 

Fraud detection models need to adapt and change 

constantly to combat new fraud strategies used by 

fraudulent parties. Palaiokrassas et al. (2024), point out 

the challenge of applying ML-based fraud detection 

systems to novel DeFi protocols and changing attack 

patterns. Most fraud detection systems use pre-defined 

rules or static ML models, which get obsolete very soon 

as fraudsters advance their methods. Moreover, as the 

volume of Ethereum transactions increases, the 

currently available fraud detection solutions 

experience scalability issues and find it hard to handle 

massive volumes of data quickly. One of the central 

open problems is developing fraud detection 

mechanisms that are based on adaptive learning 

methods, including reinforcement learning and online 

learning, and which are computationally efficient. This 

problem will be key to maintaining strong security for 

large-scale Ethereum networks. 

Methods 

Data Preprocessing 

Column management was an important part of the 

dataset cleaning process. The removal of any 

unnecessary columns, such as "Unnamed: 0", allowed 

for more efficient use of the data by consolidating 

multiple entries into one entry with relevant data. In 

addition, standardising column names throughout the 

preprocessing stage helped maintain consistency and 

create a more uniform result for analysis. Log 

transformations were applied to numerical attributes to 

reduce skewness, stabilise variance and create a more 

normally distributed dataset. All features were also 

normalized during preprocessing by scaling them to fall 

between the values of 0 and 1, as shown in the data 

preprocessing diagram (Figure 1), so that all features 

would have the same influence on the training of the 

model without having a disproportionate effect on those 

features that had a higher range of values. 

Model Training 

Algorithm Selection 

The XGBClassifier was used as the learning algorithm 

because of its robust performance in binary classification 

problems. The classifier works based on a binary logistic 

objective, which is appropriate for the current problem. 

The training evaluation was performed using the log loss 

metric, a common measure for evaluating the 

performance of binary classifiers. 

Hyperparameter Tuning 

To evaluate the model's performance against a wide 

range of hyper-parameter configurations, a complete 

parameter search grid containing many of the key 

hyper-parameters used in building an optimizing model 

(i.e. max depth, the number of estimators, and learning 

rate) is created so that every combination of hyper-

parameters will be thoroughly evaluated by 

GridSearchCV with Stratifsied K-Fold Cross 

Validation as shown in figure 2. By using an entirely 

stratified K-Fold Cross Validation technique, every 

fold is guaranteed to have the same class distribution 

as that of the original training data and will also allow 

multiple hyper-parameter combinations to be tested 

thoroughly without risking overfitting the training 

dataset. 
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Fig. 1: Pipeline of data preprocessing, feature engineering, and XGBoost modelling 

 

 
 

Fig. 2: Stratified K-fold Cross Validation 

 
Model Evaluation 

Performance Metrics 

The various ways that can be used to evaluate how 

well a classifier was performing include: The F1 Score, an 

overall measure of the accuracy of the classifier, and 

Recap, a performance measure which takes into account 

both the accuracy of the classifier's Positive Predictions 

and the Recall of those Predictions combined with the 

overall how well the model does as a classifier. Finally, 

the ROC-AUC (Receiver Operating Characteristic Area 

Under Curve) was calculated to quantify the effectiveness 
of the model in classifying events into more than two 

Classes, in the event of which a confusion matrix is used 

for detailed analysis of the model's classification 

performance and can provide additional insight into the 

types of errors made and where those errors originated 

from. 

Feature Importance 

The most important parameters used to identify 

fraudulent activity are seen within Figure 3 and are critical 

for identifying unusual financial behaviours. The average 

minimum time difference between outgoing transaction 

attempts is an important parameter for identifying 

transaction patterns, and in most cases, fraud is 

characterized by rapid succession or unusual frequency of 

attempt(s) made over a short period. The largest value 

received from a transaction is also an important indicator 

and can highlight fraudulent behavior when an incoming 
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transaction greatly exceeds the normal limits for a given 

account. Another set of transaction patterns that indicate 

fraudulent activity is transfers of large amounts of Ether 

(ETH) using ERC20 tokens; the irregularities associated 

with transfers of tokens do tend to highlight fraudulent 
behavior in all aspects of Blockchain & Decentralized 

Finance (DeFi). 

The model demonstrated in Figure 4 exhibits excellent 

performance with high accuracy, recall, and precision. It 

effectively minimizes both false positives and false 

negatives. Key diagnostic metrics confirm its strong 

predictive and diagnostic capabilities. Overall, the model is 

highly reliable for real-world deployment in critical tasks. 

Visualization and Analysis 

The ROC (Receiver Operating Characteristic) curve, 

as shown in figure 5, was plotted to visualize the balance 

between the true positive rate and the false positive rate 

over dynamic boundary values. The ROC graph illustrates 

the model's functionality to discriminate between classes. 

A score of 0.96 in AUC (Area Under the Curve) indicates 

excellent performance. The curve is well above the 

diagonal line, which signifies random guessing, showing 

that the model can easily distinguish fraudulent 

transactions from normal transactions. High AUC scores 

show good fraud detection with few false positives. 
 

  
Fig. 3: Feature Importance 

 

  
Fig. 4: Model Diagnostic Statistics showing comprehensive performance metrics of the classification model 
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Fig. 5: The ROC Curve 

 
Through the plotting of curves, the analysis provided 

a thorough investigation into the threshold effect and 
determined how well the model was able to balance its 
precision with recall. As such, the analysis showed that, 
although recall was elevated, this did not reduce the 
precision of the model; thus, it provided a strong 

foundation for the ability to effectively detect fraud. 
Specifically, the model provided high levels of precision, 
which minimized the possibility of labelling legitimate 
transactions as fraudulent, while at the same time 
producing high levels of recall that reduced the likelihood 
that fraud would be missed. Therefore, in summary, the 
model is able to demonstrate a high degree of sensitivity 
and specificity, both of which are necessary for the 
provision of reliable and accurate fraud detection. 

The Heatmap Visualization of a Confusion Matrix (as 
seen in Figure 6) provides one of the most visually 
appealing ways to view the performance of the 

classification model. It will provide a quick, easy to read 
view of how well this model is performing. The heatmap 
highlights all four areas of interest (TP, TN, FP and FN) 
so it will be easy to locate where errors are occurring. This 
heatmap shows the model classified 86% of all fraudulent 
transactions as TP, leaving only 14% of transactions as 
unidentified FPs, thus the threat of hidden fraud has been 
mitigated. It also shows that of the many legitimate 
transactions classified as FPs, a mere 0.10% were in error, 
indicating the model does not issue a high number of FPs. 
Additionally, the overall number of FN was very low and 
this is critical, as fraud detection scenarios can lead to dire 

consequences if FN occurs. 
 

 
 
Fig. 6: Confusion Matrix 

For improved stakeholder communication, an 

interactive dashboard was constructed with Plotly. The 
dashboard enabled users to interactively explore 

performance metrics, examine different visualizations, 
and develop a better intuitive understanding of the model's 

behaviour, as shown in Figure 9. When the user hovers 
over the graph in Figure 9, it displays the precise values 

of the features. 

Functional Requirements 

Data Collection and Preprocessing 

The data collected included Ethereum transactions that 

were both acceptable and fraudulent. These data were 
sourced from blockchain explorers, proprietary 

transaction logs, and from security-focused organizations 
through a combination of all three. Each transaction is 

labelled accurately as either a fraudulent or legitimate 
transaction so that a supervised learning model can be 

trained and assessed effectively. 
The preprocessing phase of preparing data includes 

finding all transactions with missing or null values for 
critical fields such as transaction amounts, sender and 

receiver addresses, and timestamps. The imputation 
method was used on transactions that had missing values 

when appropriate. Records that did not meet the required 
data quality were discarded from the dataset in order to 

maintain the validity and integrity of the data. 
The validation of data was required to be done on an 

as needed basis in order to confirm the correctness and 
reliability of the data. The validation process involved 
checking for anomalies such as duplicate records and 
incorrect or inconsistent data entries which would 
negatively affect how well models perform. Another 
component of the validation process was the 
standardization of all fields (i.e., date and time, number of 
decimal points) so that the consistency of the various 
features within the dataset could be maintained. 

Normalizing and scaling techniques were utilized on 

the data to allow for meaningful comparison of numerical 
features. Various scaling techniques (i.e., MinMax scaling 

or Z-score standardization) were applied to the data in 
order to ensure that all features were on the same scale so 

that features with large numerical ranges would not have 
a disproportionate effect on the learning process. 
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The feature engineering process was conducted to 

derive meaningful attributes from transaction data that 

could be used to describe fraudulent behavior. Some of 

the features derived from the raw transaction data that 

could effectively describe fraudulent activity included: 
frequency of transactions; transaction amount; transaction 

intervals; and network metrics which were designed to 

reflect the pattern of behavior and relationship of entities 

in the transaction network. 

Fraud Detection 

A variety of classification techniques have been tested 

to determine which are most effective at detecting fraud. 

Logistic Regression serves as a baseline linear approach 

when estimating the likelihood that any given transaction 

is fraudulent. The benefit of this type of algorithm is its 

intuitive nature and ease of interpretation in binary 

classification scenarios. To enhance the overall accuracy 

of classification, Random Forest employs an ensemble 

approach consisting of several decision trees, which 

address the potential for both overfitting and aspects of 

the data that are complex and non-linear. The K-Nearest 

Neighbors method uses the distance of a transaction to 

surrounding transactions in the feature space to classify it, 

offering a very intuitive distance-based process. However, 

the performance of K-Nearest Neighbors is generally poor 

in high-dimensional environments. AdaBoost is another 

boosting methodology which utilizes the concept of 

combining several weak learners to create one powerful 

learning model through the iterative application of errors 

from prior iterations. Lastly, XGBoost stands out as an 

efficient method for creating models that can 

accommodate large-scale datasets containing complex 

interactions between multiple features, thereby 

allowing for the efficient identification of fraudulent 

transactions. 

Model Selection and Evaluation 

Analyzing the model’s performance included a set of 

metrics that would evaluate how well the model is able to 

accurately classify data based on the presence of an 

example class imbalance between fraud and non-fraud 

cases while also evaluating robustness across multiple 

metrics. The correctness of the positive predictions was 

used to measure the accuracy of fraud detection. In the 

fraud detection scenario, high values indicate that fraud 

was correctly identified and thus that false positives are 

minimized. Recall was used to evaluate the model’s 

ability to identify fraudulent transactions out of all 

fraudulent transactions. This helped to reduce the number 

of false negatives. The F1 Score was calculated as the 

harmonic mean of correctness of positive predictions and 

recall, and serves as a balanced evaluation metric for 

imbalanced datasets. The model’s overall accuracy was 

also measured through the as the degree of correctness, 

although this value is viewed with caution, given that this 

evaluation may be misleading when it is used to evaluate 

fraud detection systems that have large numbers of non-

fraudulent transactions. The ROC-AUC metric was used, 

though it was optional, to assess the model’s ability to 

differentiate fraudulent from non-fraudulent transactions 

across all thresholds. 
After training multiple models, their performance was 

compared using the above metrics and the most efficient 

classifier (for example, XGBoost) was selected based on 

a balanced evaluation of these metrics. This step may 

involve further hyperparameter tuning to optimise the 

selected model. 

Anomaly Detection 

By comparing a person's transactions with others' 

transactions, we can identify any unusual activity, such as 

sudden increases in the amount of a transaction, unusually 

high numbers of transactions made by one person, and 

time-of-day transaction patterns that do not fit the typical 

patterns. Collaboratively detected anomalies were also 

found where groups of related accounts exhibited similar 

unusual activities, indicating that the accounts were being 

coordinated for fraud. In addition to using supervised 

classification techniques to identify fraudulent 

transactions, we also utilized unsupervised techniques 

such as clustering and density-based methods (like 

DBSCAN) to identify transactions that fall outside the 

overall distribution of data, helping us identify new or 

changing fraud patterns. 

User Interaction 

The dashboard has been designed with the 

administrator interface to allow the administrator to 

interact effectively with the fraud detection system using 

an intuitive and user-friendly method of use. The 

administrator is presented with current statistics and 

trends of suspicious activity within the dashboard; 

therefore, the administrator has the ability to monitor the 

performance of the fraud detection system and to quickly 

identify any potential new threats. In addition, the 

dashboard has a means for updating the fraud detection 

rules and decision thresholds; thus, the administrator can 

quickly react to new information as it becomes available 

or to any changing patterns of fraud. The dashboard 

supports the analysis of individual transactions with the 

ability to drill down into the details of each transaction, 

view transaction history, and view the relative importance 

of individual features or the detection of anomalies 

corresponding to specific predictions. In addition, the 

dashboard provides visualization tools, including ROC 

Curve (Figures 5), Confusion Matrix (Figure 6), Precision 

and Recall Curve, and Feature Importance Chart (Figure 

9) that give clear understanding of how well models 

perform and provide reasons behind the predictions. This 
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will help the administrator with making better decisions 

and aiding interpretation of the information. 

Detailed Methodology 

Data Preprocessing 

The dataset underwent six primary preprocessing 

methods. These are described as follows. 

Data Reduction 

Columns with redundant information, such as 

“Unnamed: 0,” were removed to streamline the dataset 

and eliminate unnecessary details. 

Labeling Consistency 

Column labels were cleaned by removing extra spaces 

to ensure consistency and avoid errors during model 

training. 

Target Feature Encoding 

The target feature, “FLAG”, which indicates 

fraudulent transactions, was encoded using 

LabelEncoder. This transformed categorical data into a 

numerical format, as shown in Equation (1): 

 

FLAGencoded={
−1, 𝑖𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓𝑟𝑎𝑢𝑑𝑢𝑙𝑒𝑛𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
 (1) 

 

Addressing Feature Skewness 

Features like “Total ether balance” and “Avg min 

between sent tnx” were log-transformed to resolve 

skewness.  
The model’s understanding of these features was 

enhanced by the normalization step using Equation (2): 

 

𝑌′ =  log(𝑌 + 1)                                         (2) 

 

Here Y is the original feature value and Y’ is the 

transformed value. 

Feature Scaling 

MinMaxScaler was applied to scale all feature values 

to a range of [0,1]. Equation (3) was used for feature 

scaling: 

 

𝑌𝑠𝑐𝑎𝑙𝑒𝑑  =
𝑌−𝑌𝑚𝑖𝑛

𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛
                                             (3) 

 
Here Y is the original feature value, Ymin is the 

maximum value of the feature, and Ymax is the maximum 

value of the feature. 

Data Splitting 

The dataset was split into training and testing subsets 

using a 70-30 ratio. Stratified sampling was employed to 

maintain the natural distribution of fraudulent and 

legitimate transactions in both subsets. 

Model Development and Deployment 

Model Training 

The training process focused on selecting and 

optimizing the model to classify fraudulent Ethereum 

transactions. 

Model Selection 

An XGBoost classifier was selected for its high 
efficiency and strong performance, particularly with 

imbalanced datasets. The classifier was initialized using a 

binary logistic objective function, which refers to the 

model’s assumption of how the output is generated. Here, 

we are predicting a binary outcome such as fraudulent (1) 

or non-fraudulent (0) transactions. 

The probability that a given input Y results in a positive 

classification a = 1 is modelled using the sigmoid 

function: 

 

𝑃(𝑎 = 1|𝑌)  =  
1

1+𝑒^−𝑧
                                           (4) 

 
This sigmoid function in Equation (4) is used to map 

the linear output of the model, denoted by z, to a 

probability between 0 and 1.  

The term z is a linear combination of the input features 

Y, that produces a value that is passed through the sigmoid 

function to give a probability estimate: 

 
𝑧 = 𝑤𝑇𝑌 + 𝑏                                                      (5) 

 
Where w is the weight vector associated with the input 

features, Y is the input feature vector, and b is the bias 

term that shifts the decision boundary. 

Equation (5) transforms the linear combination z into 

a probability between 0 and 1, allowing the model to 

interpret its output probabilistically for classification 

decisions. 

Hyperparameter Tuning 

Key hyperparameters, such as max_depth, 

n_estimators, and learning_rate, were optimized to 

balance model complexity, training time, and predictive 

performance. 

Hyperparameter Optimization 

GridSearchCV with 5-fold Stratified K-Fold cross-

validation was used to determine the optimal set of 

hyperparameters. 

The following hyperparameter grid was explored: 

max_depth ∈ {3, 5, 7}, n_estimators ∈ {100, 500, 1000}, 

and learning_rate ∈ {0.1, 0.05, 0.013}. This grid was 
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chosen to balance underfitting and overfitting while 

ensuring manageable training time. 

The cross-validation error was optimized using 

Equation (6): 

 

𝐸𝑐𝑣  =  
1

𝑘
∑ 𝐸𝑘

𝑘
𝑘=1                                              (6) 

 

Here Ek is the validation error on the kth fold, k is the 

number of cross-validation folds (here, k = 5), and the 

summation collects the error from each fold. 

Cost-Sensitive Learning 

To address the issue of class imbalance in fraud 

detection, cost-sensitive learning was applied by 

assigning higher misclassification penalties to fraudulent 

transactions. The approach adopted reflects the business 

risk, where failing to detect fraud (false negative) is 
considered significantly more costly than flagging a 

legitimate transaction as fraud (false positive). 

 A cost matrix is defined in Equation (7): 

 

𝐶𝑜𝑠𝑡 =  [
0 𝐶𝑓𝑛

𝐶𝑓𝑝 0
]                                             (7) 

 

Here, Cfn is the cost of misclassifying a fraudulent 

transaction as legitimate, while Cfp is the cost of 

misclassifying a legitimate transaction as fraudulent. 

In this study, Cfn was set to 5 and Cfp to 1, reflecting a 
5:1 cost ratio. This ratio is justified as the financial and 

reputational loss from undetected fraud is typically far 

greater than the inconvenience of a false alert.  

To integrate this cost-sensitive into training, the binary 

cross-entropy loss function in Equation (8) was modified 

using Class weights: 

 

𝐿𝑜𝑠𝑠 =  ∑ 𝑤𝑖(𝑎𝑖 log 𝑝𝑖) + (1 − 𝑎𝑖) log(1 − 𝑝𝑖))𝑖  (8) 

 

Here, wi represents the weight assigned to each class 

based on class distribution, ai   is the actual class label for 

instance i (either 0 or 1), pi    is the predicted probability 

for class 1 i.e., the model's output. 

The loss function is used to train the classifier by 

penalizing incorrect predictions. 

Final Model Training 

After identifying the best hyperparameters, the model 

was trained on the scaled dataset. The XGBoost model 
follows an additive training approach as illustrated in 

Equation (9): 

 
F(Y)= ∑ 𝑎𝑚 ∗ ℎ𝑚(𝑌)𝑀

𝑚=1                                      (9) 

Here, F(Y) is the final estimation for input Y, M is the 

total number of decision trees, hm(Y) represents 

individual decision trees, and am is the weight of each tree 

XGBoost trains the model additively, one tree at a 

time. Each tree hm(Y) is added to correct the errors of the 

previous ensemble of trees.  Over M iterations, the final 

model is an ensemble of these weighted trees. The weights 

am determined how much influence each tree has on the 

final prediction. 

Enhanced Methodological Suggestions. 

To improve the model's detection of relational and 

network-level fraud patterns, features were developed 

from graphs. PageRank and betweenness centrality scores 

for each address in the transaction network quantized how 

influential and intermediary the address was in the graph. 

Community detection labels were added as categorical 

features so that the model could better recognize fraud 

through multiple transactions as opposed to only through 

individual transaction attributes. 

Anomaly detection was added as an additional feature 

to improve the model's ability to detect fraud by 

incorporating an Isolation Forest model to identify 

outliers of transactions. The unsupervised model 

produced an anomaly score and this was added as another 

input feature for the classifier to consider when evaluating 

a transaction to identify unusual or previously unseen 

behaviors associated with transactions from the overall 

data distribution. 

Through the application of Bayesian optimization, 

model hyperparameters and settings that included cost 

sensitivity could be efficiently optimized. Optuna was 

used to optimize parameters, such as maximum depth of 

trees and learning rates, and to create a joint optimization 

with respect to the cost weights for class-specific false 

negatives and false positives. This provided an improved 

computational efficiency for searching through the 

hyperparameter space as compared to typical grid-based 

optimizing techniques. 

In order to conduct performance evaluations of models 

that would be unbiased and reliable, nested cross-

validation with a two-level validation process was used. 

The hyperparameter tuning and cost-weighting were done 

in the inner loop while the outer-loop was for estimating 

the performance of the model on unseen data. By 

separating tuning from evaluation, it helped to avoid 

having any information that could be leaked between the 

two processes, thus providing a stronger indication of how 

well the model would work in the real world. 

Evaluation 

The trained model’s performance was evaluated using 

several metrics to assess its ability to correctly classify 

fraudulent transactions. 
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Performance Metrics 

Key evaluation metrics included the following. 

Degree of exactness i.e. the overall correctness of 

predictions was calculated using Equation (10): 
 
𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝐸𝑥𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =  

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
               (10) 

 
Using Equation (11), correctly identified positives out 

of all predicted positives were calculated: 
 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (11) 

 
Equation (12) correctly identifies positives out of all 

actual positives: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                              (12) 

 

Equation (13) illustrates the harmonic mean of 

precision and recall i.e. F1 score: 

 

𝐹1 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                (13) 

 
Here, TP (True Positives) are the fraudulent 

transactions, TN (True Negatives) are the transactions 

identified as non-fraudulent correctly, FP (False 

Positives) are the genuine transactions incorrectly 
predicted as fraudulent, and FN (False Negatives) are the 

fraudulent transactions incorrectly predicted as genuine. 

Practical Considerations and Future Outlook 

The EMSCAD dataset used in this study is one of the 

most comprehensive public datasets available for 

Ethereum fraud detection. However, it is important to 

know that this dataset may not capture all types of fraud 

(e.g., sophisticated smart contract exploits or flash loan 

attacks). Future work could include live data feeds and 
API accessible blockchain platforms to improve real-time 

applicability. 

Scalability Considerations: While the proposed 

system performs well on a static dataset, real-time 

deployment would require optimizations for latency and 

throughput. This includes using streaming data 

architectures (e.g., Apache Kafka), parallelizing feature 

extraction with Spark, and compressing model inference 

with ONNX or TensorRT. 

These considerations lay the groundwork for 

transitioning the proposed system from a research 
prototype to a production-ready, ethically responsible 

fraud detection solution. 

Results and Discussion 

As a way of determining the effectiveness of the 

proposed fraud detection technique, we compared the 

performance of an XGBoost classifier with cost-sensitive 

learning and without cost-sensitive learning. The models 

were determined by the degree of exactness with which 

they precisely detect fake and genuine Ethereum 

transactions. Performance measures such as confusion 
matrices were employed to calculate the proportion of 

false negatives and false positives. 

Feature importance: Analysis was conducted to assess 

the most striking features of deceptive conduct. The 

results emphasize progress achieved by cost-saving 

strategies and offer insights into important transaction 

attributes for fraud detection. 

XGBoost With Cost-Sensitive Learning 

Examining the outputs in Fig. 7 provided confirmation 
that this was a successful model with regard to correctly 

identifying and incorrectly classifying transactions. In 

total, 1271 transactions correctly identified as legitimate 

(non-fraud) i.e., true negatives and 44 transactions 

classified as fraudulent while being legitimate i.e., false 

positives. Conversely, 15 fraudulent transactions were 

misidentified as legitimate i.e., false negatives. As per the 

total fraudulent transactions, this resulted in a total of 

4575 correct classifications (true positives) of fraudulent 

transactions. During the entire assessment period, this 

distribution supports this model’s ability to classify 
transactions correctly in a limited capacity with low error 

rates. 

XGBoost Without Cost-Sensitive Learning 

The model's classification accuracy is depicted in 

Figure 8 through a display of the classification results for 

both correctly classified and misclassified transactions. 

Out of a total of 1,264 non-fraudulent transactions 

classified correctly, 51 legitimate transactions were 

misclassified as fraud (false positive). Of the 14 

fraudulent transactions classified incorrectly (false 

negative), 4,576 were accurately identified as fraud (true 

positive). The overall results indicate a high level of 

accuracy with regard to detection of fraudulent activity 

and a low level of misclassification in distinguishing 

between legitimate and fraudulent transactions. 
The cost-sensitive model improved in lowering the 

false positives by reducing them from 51 to 44, a decrease 

by 13.7%. This is especially useful in practical 

applications, where reducing false positives can increase 

user confidence and avoid unnecessary manual checks. 

The cost-sensitive model did have a minor increase in 
false negatives, from 14 to 15, which means that one more 

fraudulent transaction was not detected. Despite this 

compromise, the overall classification accuracy was 

better, especially in dealing with class imbalances, which 

is a major issue in fraud detection. Table 1 summarizes 

the precision, recall, and F1-score for both cost-sensitive 

and baseline models. 
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From a business point of view, false positive reduction 

is important because it minimizes the operational load on 

fraud investigators and allows for more effective resource 

deployment. 
 

 
Fig 7: XGBoost with Cost-Sensitive Learning 
 

 
 
Fig 8: XGBoost without Cost-Sensitive Learning 

 
Table 1: Comparative table with precision, recall, and F1-score 

for both cost-sensitive and baseline models 

Model Precision Recall F1 Score 

XGBoost (Base) 98.90% 99.69% 99.29% 
XGBoost (Cost-
Sensitive) 

99.05% 99.67% 99.36% 

 

Feature Importance Analysis: Of the features that were 

tested, 'ERC20 most sent token type' was a prominent 

predictor in the fraud detection model, as illustrated in 

Figure 9. Its high importance indicates a strong 

correlation with the target variable ('FLAG'), which labels 

transactions as fraudulent or genuine. ERC20 i.e. 

Ethereum Request for Comment 20. It is an extensively 

used protocol for fungible tokens on the Ethereum 

blockchain to provide compatibility with wallets, 

exchanges, and smart contracts. ERC20 is widely 

employed for financial transaction purposes such as 

payments, capital raising, and decentralized applications. 

Due to extensive usage, a particular type of token might get 
disproportionately linked to fraudulent transactions and 

hence become a key component of fraud detection systems. 

Certain types of ERC20 tokens can be common in 

fraudulent transactions, and thus, this can be a good 

predictive sign of suspicious activity. Furthermore, the 

pattern of token types could differ markedly between non-

flagged and flagged transactions, with some tokens being 

overrepresented among fraudulent cases. This feature 

does not necessarily perform independently but may 

complement transaction volume, frequency, and balance in 

order to detect fraud better. XGBoost picks up such 
interactions, and its contribution to classification increases. 

Because label encoding was used on this feature, the 

numerical representation may have introduced patterns that 

were used by the model for improved classification. The 

transformation can have allowed the model to identify 

differences between various token types more effectively. 

Infrequently occurring token types that often occur in 

suspicious transactions can serve as implicit signals of 

fraud, enabling the model to detect high-risk activity. 

Conclusion 

This work demonstrates the performance of blending 

cost-sensitive learning into the XGBoost Classifier for 

identifying illicit transactions on the Ethereum 

blockchain. To improve the real-world fraud detection 

systems, the model adopted class imbalance strategies, 

which resulted in a significant reduction in false positives.  

The cost-sensitive approach had a slight increase in false 

negatives; however, the overall performance reflected a 

balanced and improved classification capability. In 

addition, feature importance analysis explored that 

specific transaction attributes, especially ERC20 token 
types, were crucial in distinguishing fraudulent behavior. 

The key contributions include a 13.7% reduction in 

false positives through cost-sensitive XGBoost tuning, 

aptly identifying ERC20 token type as a novel, high-

impact feature in fraud classification and a prototype 

dashboard for real-time on-chain monitoring, enhancing 

practical deployability. 

It can be concluded that the cost-sensitive XGBoost 

approach, integrated with in-depth feature extraction, 

offers a robust framework for blockchain-based fraud 

detection, enhancing both accuracy and practical 
relevance in security applications. 
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