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Abstract: In today’s technologically advancing world, many fields from
finance to healthcare and education are shifting toward a digital and
decentralized format. A significant transformation is underway with the
currency of the masses. Blockchain-based cryptocurrencies like Bitcoin and
Ethereum allow users to generate fungible tokens anonymously through
smart contracts. However, these features also facilitate illicit transactions and
cybercrimes like fraud, phishing, and money laundering. The proposed work
explores the identification of suspicious transactions on the Ethereum
blockchain by leveraging advanced machine-learning techniques. An
Extreme Gradient Boosting (XGBoost) classifier is optimized for spotting
unauthorized or malicious transactions, exploring features like transaction
patterns and value anomalies. Feature scaling and log transformations
normalize skewed distributions, while rigorous model training and
hyperparameter tuning enhance the system's precision, recall, and overall
accuracy. Other aids, such as feature importance rankings, precision-recall
curves, and diagnostic statistics, provide useful information on fraud
patterns. Evaluation of the model shows that integrating cost-sensitive
learning significantly reduces false positives, from 51 to 44, representing a
13.7% decrease, which enhances practical usability by minimizing false
alerts and manual verification efforts. Although there was a slight increase
in false negatives (from 14 to 15), the overall classification accuracy
improved. The model demonstrated strong performance in managing class
imbalance which is common in fraud detection contexts.

Keywords: Ethereum, Fraud Detection, Blockchain, XGBoost,
Classification, Anomaly Detection, Feature Engineering, Hyperparameter
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Introduction

The large-scale implementation of blockchain
technology has resulted in the exponential growth of
cryptocurrency transactions, especially in Ethereum. With
the growing adoption of blockchain technology, the
volume of cryptocurrency transactions on the Ethereum
network has significantly surged. Nevertheless, because of
its pseudonymous nature, blockchain technology has
become a popular target for illicit activities such as money
laundering, phishing attacks, and Ponzi schemes (Tripathy
et al., 2024). Identifying illicit accounts remains a significant
challenge due to the vast volume of cryptocurrency
transactions and the absence of clear, identifiable user
information (Ding et al., 2024). The rarity of fraudulent
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transactions, combined with the high dimensionality of
transaction features and the volatility of cryptocurrency
markets, poses significant challenges for accurate and
reliable fraud detection models (Jiang, et al., 2024).

Scholars have turned to Machine Learning (ML) (Kerr
et al., 2023), graph-based techniques and neural networks
which mimic the biological neural systems (Dutta et al.,
2023) for effective solutions because traditional fraud
detection methods are unable to handle the dynamic
nature of blockchain fraud, these suggested techniques
provide insights for investors, regulators about currency
types, fraud cases and risk factors.

Machine learning algorithms have shown significant
promise in detecting illegal activities by analysis of
transactional behavior, frequency, and patterns (Y
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Elmougy, and Liu, 2023). The ML component leverages
algorithms to classify transactions, while the blockchain
provides tamper-proof and transparent verification
(Sultana et al., 2023). Machine Learning plays a
transformative role in cryptocurrency markets by
revolutionizing trading strategies, enhancing risk
management, improving fraud detection, and enabling
advanced market analytics, offering valuable insights for
businesses seeking to adopt these technologies
effectively (Islam et al., 2025). Imbalanced
classification methods and explainable Al models have
been investigated to enhance fraud detection accuracy
while maintaining the ability to explain. The paper
discusses the application of a new fraud detection system
for Ethereum transactions. Sophisticated machine
learning algorithms with extensive data pre-processing
and feature selection methods reveal subtle patterns in
the anonymized blockchain transactions (EImougy and
Liu, 2023). These, combined with adaptive learning
features that identify changing patterns of fraudulent
transactions, increase the security and integrity of the
Ethereum network. The goal is to create a strong
framework that can identify multiple forms of fraudulent
activity, such as phishing attacks and token thefts, and
constantly adapt to new cybercrime attack schemes
(Taher et al., 2024), creating a more secure ecosystem
for users (Venkatesh et al., 2024).

The rapid adoption of cryptocurrencies has fueled
financial technology innovations as well as posed fraud
detection issues. Cryptocurrency transactions are
susceptible to cybercrimes like phishing, Ponzi schemes,
and money laundering. Researchers have responded by
developing advanced fraud detection systems through
Machine Learning and Deep Learning paradigms.
Different research pieces have examined the identification
and mitigation of fraudulent transactions in
cryptocurrency systems, particularly on Ethereum.

A study was conducted to evaluate various machine
learning  techniques for  classifying  fraudulent
cryptocurrency transactions (Tripathy et al., 2024). They
demonstrated that XGBoost achieved the highest
performance, with an accuracy of 98%, outperforming
several other models such as Random Forest, Logistic
Regression, K-Nearest Neighbors, AdaBoost, and
Support Vector Machines (SVM). The study emphasizes
that classification-based machine learning approaches can
effectively identify suspicious activities by leveraging
behavior-derived transaction features. Another study
presents a Directed Multigraph-Based Approach (DIAM)
for discovering illegitimate accounts within crypto
networks (Ding et al., 2024). Using Gated Recurrent
Units (GRU) and Multilayer Perceptron (MLP), their
algorithm excelled against the rest for classifying the
existence of illicit accounts, presenting an example of
what graph learning to counteract fraud can look like.

Another major obstacle to cryptocurrency fraud
detection is anonymizing transactions. Jiang et al.
(2024) addressed this issue by using the Synthetic
Minority Oversampling Technique (SMOTE) for data
imbalance and Bayesian optimization for improving
fraud classification accuracy. Their work proved that
Machine Learning models were able to identify large
patterns of relevance to fraud using the anonymity of the
cryptocurrency transactions. Also, ensemble learning
approaches to detect fraudulent Bitcoin transactions
proved that assembling multiple classifiers facilitates
anomaly detection, specifically identification of a cluster
of malicious transactions (EImougy and Liu, 2023).

The adaptive nature of fraud makes it challenging for
adaptive learning mechanisms, so that fraud detection is
successful. Taher et al. (2024) employed ensemble
learning combined with explainable Al to develop a
strong fraud detection system that could learn to adapt to
changing fraudulent patterns. They did mention,
however, that the high computational cost is still a
limitation for real-time fraud detection. Likewise,
ChaosNet, a new technique applied chaos theory in
Machine Learning models for recognizing fraud in
Ethereum transactions (Dutta et al., 2023). Their model
was highly resistant to adversarial attacks and efficient
in identifying fraudulent behavior for anomalous
transaction patterns.

Pattern identification is the most important factor in
identifying fraudulent transactions in blockchain
networks. Sultana et al. (2023) combined Machine
Learning techniques with blockchain analysis, achieving
more than 99% accuracy in identifying fraudulent
transactions. Their work emphasized the necessity of
addressing imbalanced data through SMOTE and feature
selection techniques. Walavalkar et al. (2024) suggested
a token-based approach for Ethereum fraud detection
using  sophisticated data  pre-processing  and
classification methods. Their approach was centered on
detecting suspicious token transactions, which worked
in fraud detection.

Effective real-time fraud detection is critical due to the
heavy flow of cryptocurrency transactions. Kerr et al.
(2023), analyzed several cases of financial fraud in
crypto markets and offered a risk assessment framework
for blockchain transactions. They highlighted the use of
hybrid strategies that incorporate standard financial risk
measures with Machine learning-based anomaly
detection models. Islam et al. (2025), examined how
machine learning algorithms impact cryptocurrency
fraud detection and identified key methods that
organizations can utilize to improve security.

Studies have also been aimed at identifying certain
forms of fraud that exist within the Ethereum
environment. Zhang et al. (2024) proposed FRAD, a
ternary classification framework for the detection of
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front-running attacks in Ethereum. FRAD classifies
transactions related to front-running attacks correctly,
which allows developers to counter each attack form with
proper strategies. Additionally, Palaiokrassas et al.
(2024), created a framework utilizing Machine Learning
for detecting multichain Decentralized Finance (DeFi)
fraud. Their method draws features from various chains,
such as Ethereum, and uses models such as XGBoost and
neural networks to detect malicious accounts engaging
with DeFi protocols.

Notable contributions to detect fraud in Ethereum
transactions include a Long Short-Term memory(LSTM)
classifier to generate recommendations based on
Classification Scores (Sureshbhai et al., 2020), One-Class
Graph Neural Network based anomaly detection
framework (lbrahim et al., 2021), Heterogenous Graph
Neural Networks (Kanezashi et al., 2022), the light
gradient boosting machine(LGBM) algorithms (Aziz et
al., 2022), XGBoost and Random Forest(RF) algorithms
used for transaction classification(Ashfaq et al., 2022;
Farrugia et al., 2020).

Review papers on blockchain technology and its
transactions explained the vulnerability of networks to
anomalies and fraud, the need to identify emerging trends
to mitigate these challenges (Osterrieder et al., 2023;
Krishna and Praveenchandar, 2022), while another study
focused on the usage of GPU-accelerated machine
learning models for designing automated fraud detection
systems (EImougy and Manzi, 2021). Hu et al. (2023)
proposed a temporal weighted heterogeneous multigraph
embedding approach to identify phishing scams. Hu et al.
(2022) introduced SCSGuard, a deep learning
framework for fraudulent smart contracts.

In summary, notable advancements have been made
in the detection of cryptocurrency fraud, and Machine
Learning Methods (lbrahim et al., 2021; Sallam et al.,
2022) and Deep Learning methods (Giantsidi and
Tarantola, 2025) have played a significant part. The
examined studies emphasize the significance of effective
fraud detection, dealing with data imbalance, adaptive
learning, and pattern identification in stopping illegal
transactions. Despite these advances, computational
efficiency and the dynamic nature of fraud pose
challenges. Future studies must emphasize improving
real-time detection mechanisms and combining
blockchain analytics with Machine learning-based
solutions to improve cryptocurrency security.

Despite progress, there remains a gap in developing
holistic fraud detection systems that combine graph-
based features, cost-sensitive classification, and
unsupervised anomaly detection to effectively handle
class imbalance, dynamic fraud patterns, and transaction
interconnectivity.

This paper aims to address this gap by proposing a
robust, adaptive fraud detection framework for

Ethereum. Cost-sensitive XGBoost classification was
used to treat class imbalance (by penalizing false
negatives), which allowed the model to improve its
ability to discover rare but important instances. Graph-
based feature augmentation techniques (i.e. PageRank &
betweenness centrality) were used to augment
relational/network level behavioral information in order
for the model to exploit the structural relationships
between entities. In addition, anomaly scores derived
from unsupervised learning methods (i.e. Isolation
Forest) were used to help identify previously
unseen/evolutionary patterns that may not be adequately
represented in labeled training set data. Finally, to ensure
that model results were sufficiently robust and unbiased,
Bayesian hyperparameter tuning in combination with
nested cross-validation was used to provide the best
possible hyperparameters while minimizing overfitting
and/or evaluation bias.

The goal is to deliver a scalable and explainable
system capable of detecting diverse types of fraudulent
activity including phishing attacks, token theft, and smart
contract abuse while adapting to emerging cybercrime
tactics. This contributes to strengthening the security and
trustworthiness of the Ethereum ecosystem.

Open Issues
Balancing Data in Fraud Detection Models

One of the largest challenges of fraudulent transaction
detection in Ethereum is the enormous imbalance of
datasets. Money laundering and Ponzi schemes are only a
minority of all transactions, and it is difficult for machine
learning models to learn useful patterns. Few studies
(Jiang et al., 2024) explored an approach using the
Synthetic Minority Over-sampling Technique (SMOTE)
and cost-sensitive learning. Such approaches have a
tendency to introduce artificial noise, leading to false
positives and reducing the ability of the model to
generalize real-world transactions. There are also
consistently changing methods, forcing models to adapt
dynamically. Creating advanced data-balancing
techniques that preserve minority-class transaction
integrity without compromising model accuracy is a key
open problem in fraud detection.

Developing sophisticated data-balancing methods that
protect the integrity of minority-class transactions without
sacrificing model accuracy is an important open question
in fraud detection.

Improving Real-Time Fraud Detection in Ethereum

With  Ethereum  processing  thousands  of
transactions per second, real-time fraud detection is
key to avoiding financial losses. Yet, the majority of
current fraud detection models are based on
computationally costly methods like deep learning and
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ensemble learning, which cannot match the velocity of
blockchain  transactions. Conventional methods
examine transaction patterns once they have been
written to the blockchain, which is too late for fraud
detection and poses greater financial risks. In addition,
the implementation of fraud detection algorithms
within Ethereum’s transaction verification procedure is
problematic in a decentralized platform like Ethereum.
Fraud detection software has to walk a thin line
between computational efficacy and precision, such
that the suspicious transactions are flagged in real-time
without delaying transactions appreciably.

Front-Running Attacks in Ethereum Identification
and Prevention

Front-running is a serious security problem in
Ethereum, whereby malicious traders use the
transaction ordering mechanism to manipulate asset
prices and achieve maximum personal benefits. Front-
running attacks leverage Ethereum’s public mempool,
where transactions are stored temporarily before
confirmation (Zhang et al., 2024). Attackers employ
bots to track transactions and insert their own in front
of high-value trades so that they can profit from price
movements before the victim’s transaction is made.
Although current countermeasures like transaction
batching and encrypted mempools mitigate these
attacks to some extent, they are not perfect. More
effective detection techniques are required to
distinguish between real high-frequency trading and
malicious front-running. A critical challenge is
designing ML models capable of detecting faint
patterns characteristic of front-running while avoiding
false positives, promoting equitable trading in
Ethereum-based DeFi platforms.

Maintaining the Scalability and Flexibility of Fraud
Detection Systems

Fraud detection models need to adapt and change
constantly to combat new fraud strategies used by
fraudulent parties. Palaiokrassas et al. (2024), point out
the challenge of applying ML-based fraud detection
systems to novel DeFi protocols and changing attack
patterns. Most fraud detection systems use pre-defined
rules or static ML models, which get obsolete very soon
as fraudsters advance their methods. Moreover, as the
volume of Ethereum transactions increases, the
currently available fraud detection solutions
experience scalability issues and find it hard to handle
massive volumes of data quickly. One of the central
open problems is developing fraud detection
mechanisms that are based on adaptive learning
methods, including reinforcement learning and online

learning, and which are computationally efficient. This
problem will be key to maintaining strong security for
large-scale Ethereum networks.

Methods
Data Preprocessing

Column management was an important part of the
dataset cleaning process. The removal of any
unnecessary columns, such as "Unnamed: 0", allowed
for more efficient use of the data by consolidating
multiple entries into one entry with relevant data. In
addition, standardising column names throughout the
preprocessing stage helped maintain consistency and
create a more uniform result for analysis. Log
transformations were applied to numerical attributes to
reduce skewness, stabilise variance and create a more
normally distributed dataset. All features were also
normalized during preprocessing by scaling them to fall
between the values of 0 and 1, as shown in the data
preprocessing diagram (Figure 1), so that all features
would have the same influence on the training of the
model without having a disproportionate effect on those
features that had a higher range of values.

Model Training
Algorithm Selection

The XGBClassifier was used as the learning algorithm
because of its robust performance in binary classification
problems. The classifier works based on a binary logistic
objective, which is appropriate for the current problem.
The training evaluation was performed using the log loss
metric, a common measure for evaluating the
performance of binary classifiers.

Hyperparameter Tuning

To evaluate the model's performance against a wide
range of hyper-parameter configurations, a complete
parameter search grid containing many of the key
hyper-parameters used in building an optimizing model
(i.e. max depth, the number of estimators, and learning
rate) is created so that every combination of hyper-
parameters will be thoroughly evaluated by
GridSearchCV ~ with ~ Stratifsied K-Fold Cross
Validation as shown in figure 2. By using an entirely
stratified K-Fold Cross Validation technique, every
fold is guaranteed to have the same class distribution
as that of the original training data and will also allow
multiple hyper-parameter combinations to be tested
thoroughly without risking overfitting the training
dataset.
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Fig. 1: Pipeline of data preprocessing, feature engineering, and XGBoost modelling

Fitting 5 folds for each of 27 candidates, totalling 135 fits

Best Hyperparameters:

Best Training F1 Score: 8.9927413884461625

Test Accuracy: 6.9895084233700254
Test ROC-AUC: 8.9978959881375449
Test F1 Score: 0.9932748290735518

{'learning_rate': ©.85, 'max_depth': 7, 'n_estimators': 10€@}

Fig. 2: Stratified K-fold Cross Validation

Model Evaluation

Performance Metrics

The various ways that can be used to evaluate how
well a classifier was performing include: The F1 Score, an
overall measure of the accuracy of the classifier, and
Recap, a performance measure which takes into account
both the accuracy of the classifier's Positive Predictions
and the Recall of those Predictions combined with the
overall how well the model does as a classifier. Finally,
the ROC-AUC (Receiver Operating Characteristic Area
Under Curve) was calculated to quantify the effectiveness
of the model in classifying events into more than two
Classes, in the event of which a confusion matrix is used
for detailed analysis of the model's classification

performance and can provide additional insight into the
types of errors made and where those errors originated
from.

Feature Importance

The most important parameters used to identify
fraudulent activity are seen within Figure 3and are critical
for identifying unusual financial behaviours. The average
minimum time difference between outgoing transaction
attempts is an important parameter for identifying
transaction patterns, and in most cases, fraud is
characterized by rapid succession or unusual frequency of
attempt(s) made over a short period. The largest value
received from a transaction is also an important indicator
and can highlight fraudulent behavior when an incoming
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transaction greatly exceeds the normal limits for a given
account. Another set of transaction patterns that indicate
fraudulent activity is transfers of large amounts of Ether
(ETH) using ERC20 tokens; the irregularities associated
with transfers of tokens do tend to highlight fraudulent
behavior in all aspects of Blockchain & Decentralized
Finance (DeFi).

The model demonstrated in Figure 4 exhibits excellent
performance with high accuracy, recall, and precision. It
effectively minimizes both false positives and false
negatives. Key diagnostic metrics confirm its strong
predictive and diagnostic capabilities. Overall, the model is
highly reliable for real-world deployment in critical tasks.

Visualization and Analysis

The ROC (Receiver Operating Characteristic) curve,
as shown in figure 5, was plotted to visualize the balance
between the true positive rate and the false positive rate
over dynamic boundary values. The ROC graph illustrates
the model's functionality to discriminate between classes.
A score of 0.96 in AUC (Area Under the Curve) indicates
excellent performance. The curve is well above the
diagonal line, which signifies random guessing, showing
that the model can easily distinguish fraudulent
transactions from normal transactions. High AUC scores
show good fraud detection with few false positives.

Feature Importances

ERC20 most sent token type
ERC20_most_rec_token_type
Time Diff between first and last (Mins)
ERC20 uniq sent addr

avg val received

Number of Created Contracts
ERC20 unig rec token name
Avg min between received tnx
total ether balance

ERC20 total Ether sent contract
Received Tnx

ERC20 total ether sent

Avg min between sent tnx
ERC20 total Ether received

avg val sent

Features

Sent tnx
total Ether sent
max value received

0.0 01 0.2

0.3 0.4 0.5 0.6
Importance

Fig. 3: Feature Importance

Model Diagnostic Statistics

Metric

recall

false_neag_rate
false_pos_rate
true_neg_rate
positive_likelihood_ratio
negative_likelihood_ratio
pracision
false__omission_rate
false_discovery_rate
negative_predictive_wvalue
markedness
diagnostic_odds_ratio
informedness
prevalence_threshold
prevalence

accuracw

Fig. 4: Model Diagnostic Statistics showing comprehensive performance metrics of the classification model

Value

0.99738B56209150327
0.00261437908496732
0.028022813688212903
0.96197718B63117871
26.22124183006536
0.00271771422666563332
0.2891961970613656
0.009397024275645046
0.010802802938634399
0.990602975724354
0.9797991 727857196
9651.95
0.9593628072268197
0.163235479093255626
0.7773073060284492
0.2895004233 700254
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ROC Curve

Rate

Fig. 5: The ROC Curve

Through the plotting of curves, the analysis provided
a thorough investigation into the threshold effect and
determined how well the model was able to balance its
precision with recall. As such, the analysis showed that,
although recall was elevated, this did not reduce the
precision of the model; thus, it provided a strong
foundation for the ability to effectively detect fraud.
Specifically, the model provided high levels of precision,
which minimized the possibility of labelling legitimate
transactions as fraudulent, while at the same time
producing high levels of recall that reduced the likelihood
that fraud would be missed. Therefore, in summary, the
model is able to demonstrate a high degree of sensitivity
and specificity, both of which are necessary for the
provision of reliable and accurate fraud detection.

The Heatmap Visualization of a Confusion Matrix (as
seen in Figure 6) provides one of the most visually
appealing ways to view the performance of the
classification model. It will provide a quick, easy to read
view of how well this model is performing. The heatmap
highlights all four areas of interest (TP, TN, FP and FN)
so it will be easy to locate where errors are occurring. This
heatmap shows the model classified 86% of all fraudulent
transactions as TP, leaving only 14% of transactions as
unidentified FPs, thus the threat of hidden fraud has been
mitigated. It also shows that of the many legitimate
transactions classified as FPs, a mere 0.10% were in error,
indicating the model does not issue a high number of FPs.
Additionally, the overall number of FN was very low and
this is critical, as fraud detection scenarios can lead to dire
consequences if FN occurs.

Confusion Matrix

o - 1265 50

Actual

Predicted

Fig. 6: Confusion Matrix

For improved stakeholder communication, an
interactive dashboard was constructed with Plotly. The
dashboard enabled users to interactively explore
performance metrics, examine different visualizations,
and develop a better intuitive understanding of the model's
behaviour, as shown in Figure 9. When the user hovers
over the graph in Figure 9, it displays the precise values
of the features.

Functional Requirements
Data Collection and Preprocessing

The data collected included Ethereum transactions that
were hoth acceptable and fraudulent. These data were
sourced from blockchain  explorers, proprietary
transaction logs, and from security-focused organizations
through a combination of all three. Each transaction is
labelled accurately as either a fraudulent or legitimate
transaction so that a supervised learning model can be
trained and assessed effectively.

The preprocessing phase of preparing data includes
finding all transactions with missing or null values for
critical fields such as transaction amounts, sender and
receiver addresses, and timestamps. The imputation
method was used on transactions that had missing values
when appropriate. Records that did not meet the required
data quality were discarded from the dataset in order to
maintain the validity and integrity of the data.

The validation of data was required to be done on an
as needed basis in order to confirm the correctness and
reliability of the data. The validation process involved
checking for anomalies such as duplicate records and
incorrect or inconsistent data entries which would
negatively affect how well models perform. Another
component of the validation process was the
standardization of all fields (i.e., date and time, number of
decimal points) so that the consistency of the various
features within the dataset could be maintained.

Normalizing and scaling techniques were utilized on
the data to allow for meaningful comparison of numerical
features. Various scaling techniques (i.e., MinMax scaling
or Z-score standardization) were applied to the data in
order to ensure that all features were on the same scale so
that features with large numerical ranges would not have
a disproportionate effect on the learning process.
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The feature engineering process was conducted to
derive meaningful attributes from transaction data that
could be used to describe fraudulent behavior. Some of
the features derived from the raw transaction data that
could effectively describe fraudulent activity included:
frequency of transactions; transaction amount; transaction
intervals; and network metrics which were designed to
reflect the pattern of behavior and relationship of entities
in the transaction network.

Fraud Detection

A variety of classification techniques have been tested
to determine which are most effective at detecting fraud.
Logistic Regression serves as a baseline linear approach
when estimating the likelihood that any given transaction
is fraudulent. The benefit of this type of algorithm is its
intuitive nature and ease of interpretation in binary
classification scenarios. To enhance the overall accuracy
of classification, Random Forest employs an ensemble
approach consisting of several decision trees, which
address the potential for both overfitting and aspects of
the data that are complex and non-linear. The K-Nearest
Neighbors method uses the distance of a transaction to
surrounding transactions in the feature space to classify it,
offering a very intuitive distance-based process. However,
the performance of K-Nearest Neighbors is generally poor
in high-dimensional environments. AdaBoost is another
boosting methodology which utilizes the concept of
combining several weak learners to create one powerful
learning model through the iterative application of errors
from prior iterations. Lastly, XGBoost stands out as an
efficient method for creating models that can
accommodate large-scale datasets containing complex
interactions between multiple features, thereby
allowing for the efficient identification of fraudulent
transactions.

Model Selection and Evaluation

Analyzing the model’s performance included a set of
metrics that would evaluate how well the model is able to
accurately classify data based on the presence of an
example class imbalance between fraud and non-fraud
cases while also evaluating robustness across multiple
metrics. The correctness of the positive predictions was
used to measure the accuracy of fraud detection. In the
fraud detection scenario, high values indicate that fraud
was correctly identified and thus that false positives are
minimized. Recall was used to evaluate the model’s
ability to identify fraudulent transactions out of all
fraudulent transactions. This helped to reduce the number
of false negatives. The F1 Score was calculated as the
harmonic mean of correctness of positive predictions and
recall, and serves as a balanced evaluation metric for
imbalanced datasets. The model’s overall accuracy was
also measured through the as the degree of correctness,

although this value is viewed with caution, given that this
evaluation may be misleading when it is used to evaluate
fraud detection systems that have large numbers of non-
fraudulent transactions. The ROC-AUC metric was used,
though it was optional, to assess the model’s ability to
differentiate fraudulent from non-fraudulent transactions
across all thresholds.

After training multiple models, their performance was
compared using the above metrics and the most efficient
classifier (for example, XGBoost) was selected based on
a balanced evaluation of these metrics. This step may
involve further hyperparameter tuning to optimise the
selected model.

Anomaly Detection

By comparing a person's transactions with others'
transactions, we can identify any unusual activity, such as
sudden increases in the amount of a transaction, unusually
high numbers of transactions made by one person, and
time-of-day transaction patterns that do not fit the typical
patterns. Collaboratively detected anomalies were also
found where groups of related accounts exhibited similar
unusual activities, indicating that the accounts were being
coordinated for fraud. In addition to using supervised
classification  techniques to identify fraudulent
transactions, we also utilized unsupervised techniques
such as clustering and density-based methods (like
DBSCAN) to identify transactions that fall outside the
overall distribution of data, helping us identify new or
changing fraud patterns.

User Interaction

The dashboard has been designed with the
administrator interface to allow the administrator to
interact effectively with the fraud detection system using
an intuitive and user-friendly method of use. The
administrator is presented with current statistics and
trends of suspicious activity within the dashboard;
therefore, the administrator has the ability to monitor the
performance of the fraud detection system and to quickly
identify any potential new threats. In addition, the
dashboard has a means for updating the fraud detection
rules and decision thresholds; thus, the administrator can
quickly react to new information as it becomes available
or to any changing patterns of fraud. The dashboard
supports the analysis of individual transactions with the
ability to drill down into the details of each transaction,
view transaction history, and view the relative importance
of individual features or the detection of anomalies
corresponding to specific predictions. In addition, the
dashboard provides visualization tools, including ROC
Curve (Figures 5), Confusion Matrix (Figure 6), Precision
and Recall Curve, and Feature Importance Chart (Figure
9) that give clear understanding of how well models
perform and provide reasons behind the predictions. This
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will help the administrator with making better decisions
and aiding interpretation of the information.

Detailed Methodology
Data Preprocessing

The dataset underwent six primary preprocessing
methods. These are described as follows.

Data Reduction

Columns with redundant information, such as
“Unnamed: 0,” were removed to streamline the dataset
and eliminate unnecessary details.

Labeling Consistency

Column labels were cleaned by removing extra spaces
to ensure consistency and avoid errors during model
training.

Target Feature Encoding

The target feature, “FLAG”, which indicates
fraudulent  transactions, was  encoded  using
LabelEncoder. This transformed categorical data into a
numerical format, as shown in Equation (1):

FLAGencoded={_1‘ if transaction is fraudulent 1)
0, otherwise

Addressing Feature Skewness

Features like “Total ether balance” and “Avg min
between sent tnx” were log-transformed to resolve
skewness.

The model’s understanding of these features was
enhanced by the normalization step using Equation (2):

Y = log(Y +1) 2
Here Y is the original feature value and Y’ is the

transformed value.

Feature Scaling

MinMaxScaler was applied to scale all feature values
to a range of [0,1]. Equation (3) was used for feature
scaling:

— Y—Ymin (3)

Y,
scaled Ymax—Ymin

Here Y is the original feature value, Ymin is the
maximum value of the feature, and Ymax is the maximum
value of the feature.

Data Splitting

The dataset was split into training and testing subsets
using a 70-30 ratio. Stratified sampling was employed to

maintain the natural distribution of fraudulent and
legitimate transactions in both subsets.

Model Development and Deployment
Model Training

The training process focused on selecting and
optimizing the model to classify fraudulent Ethereum
transactions.

Model Selection

An XGBoost classifier was selected for its high
efficiency and strong performance, particularly with
imbalanced datasets. The classifier was initialized using a
binary logistic objective function, which refers to the
model’s assumption of how the output is generated. Here,
we are predicting a binary outcome such as fraudulent (1)
or non-fraudulent (0) transactions.

The probability thata given input Y results in a positive
classification a = 1 is modelled using the sigmoid
function:

1
1+e”—z

P(a=1|y) =

4)

This sigmoid function in Equation (4) is used to map
the linear output of the model, denoted by z, to a
probability between 0 and 1.

The term z is a linear combination of the input features
Y, that produces a value that is passed through the sigmoid
function to give a probability estimate:

z=wlY+b (5)

Where w is the weight vector associated with the input
features, Y is the input feature vector, and b is the bias
term that shifts the decision boundary.

Equation (5) transforms the linear combination z into
a probability between 0 and 1, allowing the model to
interpret its output probabilistically for classification
decisions.

Hyperparameter Tuning

Key hyperparameters, such as max_depth,
n_estimators, and learning_rate, were optimized to
balance model complexity, training time, and predictive
performance.

Hyperparameter Optimization

GridSearchCV with 5-fold Stratified K-Fold cross-
validation was used to determine the optimal set of
hyperparameters.

The following hyperparameter grid was explored:
max_depth € {3, 5, 7}, n_estimators € {100, 500, 1000},
and learning_rate € {0.1, 0.05, 0.013}. This grid was
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chosen to balance underfitting and overfitting while
ensuring manageable training time.

The cross-validation error was optimized using
Equation (6):

1
E, = % ﬁ:lEk (6)

Here Ey is the validation error on the ki fold, k is the
number of cross-validation folds (here, k = 5), and the
summation collects the error from each fold.

Cost-Sensitive Learning

To address the issue of class imbalance in fraud
detection, cost-sensitive learning was applied by
assigning higher misclassification penalties to fraudulent
transactions. The approach adopted reflects the business
risk, where failing to detect fraud (false negative) is
considered significantly more costly than flagging a
legitimate transaction as fraud (false positive).

A cost matrix is defined in Equation (7):

0 ¢
Cost = [ In @)
Crp O

Here, Cs, is the cost of misclassifying a fraudulent
transaction as legitimate, while Cg is the cost of
misclassifying a legitimate transaction as fraudulent.

In this study, C was set to 5 and Cy, to 1, reflecting a
5:1 cost ratio. This ratio is justified as the financial and
reputational loss from undetected fraud is typically far
greater than the inconvenience of a false alert.

To integrate this cost-sensitive into training, the binary
cross-entropy loss function in Equation (8) was modified
using Class weights:

Loss = Yywi(a;logp) + (1 —a)log(1—p))  (8)

Here, w; represents the weight assigned to each class
based on class distribution, a; is the actual class label for
instance i (either 0 or 1), pi is the predicted probability
for class 1 i.e., the model's output.

The loss function is used to train the classifier by
penalizing incorrect predictions.

Final Model Training

After identifying the best hyperparameters, the model
was trained on the scaled dataset. The XGBoost model
follows an additive training approach as illustrated in
Equation (9):

F(Y)= X=1am « hm(Y) ©9)

Here, F(Y) is the final estimation for input Y, M is the
total number of decision trees, hm(Y) represents
individual decision trees, and am is the weight of each tree

XGBoost trains the model additively, one tree at a
time. Each tree hm(Y) is added to correct the errors of the
previous ensemble of trees. Over M iterations, the final
model is an ensemble of these weighted trees. The weights
am determined how much influence each tree has on the
final prediction.

Enhanced Methodological Suggestions.

To improve the model's detection of relational and
network-level fraud patterns, features were developed
from graphs. PageRank and betweenness centrality scores
for each address in the transaction network quantized how
influential and intermediary the address was in the graph.
Community detection labels were added as categorical
features so that the model could better recognize fraud
through multiple transactions as opposed to only through
individual transaction attributes.

Anomaly detection was added as an additional feature
to improve the model's ability to detect fraud by
incorporating an Isolation Forest model to identify
outliers of transactions. The unsupervised model
produced an anomaly score and this was added as another
input feature for the classifier to consider when evaluating
a transaction to identify unusual or previously unseen
behaviors associated with transactions from the overall
data distribution.

Through the application of Bayesian optimization,
model hyperparameters and settings that included cost
sensitivity could be efficiently optimized. Optuna was
used to optimize parameters, such as maximum depth of
trees and learning rates, and to create a joint optimization
with respect to the cost weights for class-specific false
negatives and false positives. This provided an improved
computational efficiency for searching through the
hyperparameter space as compared to typical grid-based
optimizing techniques.

In order to conduct performance evaluations of models
that would be unbiased and reliable, nested cross-
validation with a two-level validation process was used.
The hyperparameter tuning and cost-weighting were done
in the inner loop while the outer-loop was for estimating
the performance of the model on unseen data. By
separating tuning from evaluation, it helped to avoid
having any information that could be leaked between the
two processes, thus providing a stronger indication of how
well the model would work in the real world.

Evaluation

The trained model’s performance was evaluated using
several metrics to assess its ability to correctly classify
fraudulent transactions.
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Performance Metrics

Key evaluation metrics included the following.
Degree of exactness i.e. the overall correctness of
predictions was calculated using Equation (10):

TP+TN (10)

Degree of Exactness = —————
TP+TN+FP+FN

Using Equation (11), correctly identified positives out
of all predicted positives were calculated:

TP (11)

TP+FP

Correctness of positive predictions =

Equation (12) correctly identifies positives out of all
actual positives:

TP
TP+FN

Recall = (12)
Equation (13) illustrates the harmonic mean of
precision and recall i.e. F1 score:

2 X Precision X Recall
F1= (13)

Precision+Recall

Here, TP (True Positives) are the fraudulent
transactions, TN (True Negatives) are the transactions
identified as non-fraudulent correctly, FP (False
Positives) are the genuine transactions incorrectly
predicted as fraudulent, and FN (False Negatives) are the
fraudulent transactions incorrectly predicted as genuine.

Practical Considerations and Future Outlook

The EMSCAD dataset used in this study is one of the
most comprehensive public datasets available for
Ethereum fraud detection. However, it is important to
know that this dataset may not capture all types of fraud
(e.g., sophisticated smart contract exploits or flash loan
attacks). Future work could include live data feeds and
API accessible blockchain platforms to improve real-time
applicability.

Scalability Considerations: While the proposed
system performs well on a static dataset, real-time
deployment would require optimizations for latency and
throughput. This includes wusing streaming data
architectures (e.g., Apache Kafka), parallelizing feature
extraction with Spark, and compressing model inference
with ONNX or TensorRT.

These considerations lay the groundwork for
transitioning the proposed system from a research
prototype to a production-ready, ethically responsible
fraud detection solution.

Results and Discussion

As a way of determining the effectiveness of the
proposed fraud detection technique, we compared the

performance of an XGBoost classifier with cost-sensitive
learning and without cost-sensitive learning. The models
were determined by the degree of exactness with which
they precisely detect fake and genuine Ethereum
transactions. Performance measures such as confusion
matrices were employed to calculate the proportion of
false negatives and false positives.

Feature importance: Analysis was conducted to assess
the most striking features of deceptive conduct. The
results emphasize progress achieved by cost-saving
strategies and offer insights into important transaction
attributes for fraud detection.

XGBoost With Cost-Sensitive Learning

Examining the outputs in Fig. 7 provided confirmation
that this was a successful model with regard to correctly
identifying and incorrectly classifying transactions. In
total, 1271 transactions correctly identified as legitimate
(non-fraud) i.e., true negatives and 44 transactions
classified as fraudulent while being legitimate i.e., false
positives. Conversely, 15 fraudulent transactions were
misidentified as legitimate i.e., false negatives. As per the
total fraudulent transactions, this resulted in a total of
4575 correct classifications (true positives) of fraudulent
transactions. During the entire assessment period, this
distribution supports this model’s ability to classify
transactions correctly in a limited capacity with low error
rates.

XGBoost Without Cost-Sensitive Learning

The model's classification accuracy is depicted in
Figure 8 through a display of the classification results for
both correctly classified and misclassified transactions.
Out of a total of 1,264 non-fraudulent transactions
classified correctly, 51 legitimate transactions were
misclassified as fraud (false positive). Of the 14
fraudulent transactions classified incorrectly (false
negative), 4,576 were accurately identified as fraud (true
positive). The overall results indicate a high level of
accuracy with regard to detection of fraudulent activity
and a low level of misclassification in distinguishing
between legitimate and fraudulent transactions.

The cost-sensitive model improved in lowering the
false positives by reducing them from 51 to 44, a decrease
by 13.7%. This is especially useful in practical
applications, where reducing false positives can increase
user confidence and avoid unnecessary manual checks.
The cost-sensitive model did have a minor increase in
false negatives, from 14 to 15, which means that one more
fraudulent transaction was not detected. Despite this
compromise, the overall classification accuracy was
better, especially in dealing with class imbalances, which
is a major issue in fraud detection. Table 1 summarizes
the precision, recall, and F1-score for both cost-sensitive
and baseline models.

2812



Supriya P. et al. / Journal of Computer Science, 2025, 21 (12): 2802.2815
DOI: 10.3844/jcssp.2025.2802.2815

From a business point of view, false positive reduction
is important because it minimizes the operational load on
fraud investigators and allows for more effective resource
deployment.

XGBoost with Cost-Sensitive Learning

4000

False

3000

True label

2000

True
1000

False True
Predicted label

Fig 7: XGBoost with Cost-Sensitive Learning

XGBoost without Cost-Sensitive Learning

4000

False

3000

True label

2000

True
1000

T
False True
Predicted label

Fig 8: XGBoost without Cost-Sensitive Learning

Table 1: Comparative table with precision, recall, and F1-score
for both cost-sensitive and baseline models

Model Precision Recall F1 Score
XGBoost (Base)  98.90% 99.69% 99.29%
XGBoost (Cost- 99.05% 99.67% 99.36%

Sensitive)

Feature Importance Analysis: Of the features that were
tested, 'ERC20 most sent token type' was a prominent
predictor in the fraud detection model, as illustrated in
Figure 9. Its high importance indicates a strong
correlation with the target variable (FLAG"), which labels
transactions as fraudulent or genuine. ERC20 i.e.
Ethereum Request for Comment 20. It is an extensively
used protocol for fungible tokens on the Ethereum

blockchain to provide compatibility with wallets,
exchanges, and smart contracts. ERC20 is widely
employed for financial transaction purposes such as
payments, capital raising, and decentralized applications.
Due to extensive usage, a particular type of token might get
disproportionately linked to fraudulent transactions and
hence become a key component of fraud detection systems.
Certain types of ERC20 tokens can be common in
fraudulent transactions, and thus, this can be a good
predictive sign of suspicious activity. Furthermore, the
pattern of token types could differ markedly between non-
flagged and flagged transactions, with some tokens being
overrepresented among fraudulent cases. This feature
does not necessarily perform independently but may
complement transaction volume, frequency, and balance in
order to detect fraud better. XGBoost picks up such
interactions, and its contribution to classification increases.
Because label encoding was used on this feature, the
numerical representation may have introduced patterns that
were used by the model for improved classification. The
transformation can have allowed the model to identify
differences between various token types more effectively.
Infrequently occurring token types that often occur in
suspicious transactions can serve as implicit signals of
fraud, enabling the model to detect high-risk activity.

Conclusion

This work demonstrates the performance of blending
cost-sensitive learning into the XGBoost Classifier for
identifying illicit transactions on the Ethereum
blockchain. To improve the real-world fraud detection
systems, the model adopted class imbalance strategies,
which resulted in a significant reduction in false positives.
The cost-sensitive approach had a slight increase in false
negatives; however, the overall performance reflected a
balanced and improved classification capability. In
addition, feature importance analysis explored that
specific transaction attributes, especially ERC20 token
types, were crucial in distinguishing fraudulent behavior.

The key contributions include a 13.7% reduction in
false positives through cost-sensitive XGBoost tuning,
aptly identifying ERC20 token type as a novel, high-
impact feature in fraud classification and a prototype
dashboard for real-time on-chain monitoring, enhancing
practical deployability.

It can be concluded that the cost-sensitive XGBoost
approach, integrated with in-depth feature extraction,
offers a robust framework for blockchain-based fraud
detection, enhancing both accuracy and practical
relevance in security applications.
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