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Abstract: Optical Character Recognition (OCR) is crucial for identifying 

and extracting information from scientific documents. However, recognizing 

online handwritten physics expressions remains a relatively unexplored area 

of research. In the existing literature, most of the researchers worked on CNN 

classification to identify mathematical expressions. The traditional 

Convolution Neural Network (CNN) has limitations for extracting sequential 

data. This study proposes a CRNN (Convolution Recurrent Neural 

Network)-LSTM (Long Short-Term Memory) model that uses sequence a to-

sequence approach for recognition of online handwritten physics expressions 

to enhance the feature extraction process for the sequential data which 

overcomes the limitations of CNN. A dataset was constructed from 100 users 

using a Java-based interface, covering five commonly used types of physics 

expressions: (1) Electric flux; (2) Maxwell’s equations; (3) Inductance; (4) 

Pointing vector, and (5) Moment of inertia. This dataset identifies 25 unique 

Physics symbols. The Online Handwritten Physics Expression (OHPE) 

dataset comprises a total of 500 physics expressions, including operators, 

special symbols, alphabets, and numbers. The proposed architecture of 

CRNN-LSTM architecture consists of convolution layers followed by LSTM 

layers for sequence processing. CTC (Connectionist Temporal 

Classification) loss function is used to train the model, which is particularly 

used to predict the sequence of symbols within the physics expressions. The 

performance evaluation has been carried out and the accuracy of symbol 

level and expression level prediction is reported. In the final stage the trained 

model is evaluated to make the predictions on the unseen test set images with 

the recognition accuracy of 96.36% at the expression level and 98.10% at the 

symbol level. 
 
Keywords: Physics Expression Recognition, Segmentation, 

Convolutional Neural Network, Recurrent Neural Network, Long Short-

Term Memory Networks 

 

Introduction 

Several handwriting tools are available nowadays, but 
still, end-to-end recognition of physics or mathematical 
expressions is an area that needs exploration. Smartphones 
and tablets are now used on a day-to-day basis, especially in 
the teaching-learning environment, in which handwritten 
notes especially in context with mathematical symbols 
challenge many issues to the users. Students or users expect 
the hand-written tool to write and store the physics or 
mathematical expressions into their devices as handwritten 
notes which makes them convenient instead of using 'insert-
expression' operations given in many document editing 
software. Specially handwritten mathematical expression 

recognition is difficult due to variations in human 
handwriting, ambiguous set of symbols exists within the 
dataset, which leads to less accuracy of prediction of 
correct symbols. 

However, there are many challenges in handwriting 

which include skewness of data, connected symbols, 

operators and alphabets, and distorted symbols. 

Segmentation of connected symbols and characters is a 

challenging task due to connected, overlapped symbols or 

operators. This study proposes a CRNN-LSTM approach for 

the recognition of Online Handwritten Physics Expressions 

(OHPE) at the expression level and symbol level. In this 

study, a dataset was collected from 100 different users. There 
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are 5 different types of most commonly used physics 

expressions namely: 
 
1) Electric flux 
2) Maxwell’s equations 

3) Inductance 
4) Pointing vector 
5) Moment of inertia 
 

The dataset consists of 500 unconstrained online 
handwritten physics expressions which are used for training 
validation and testing purposes to achieve better accuracy. 
This study uses the CRNN-LSTM classification technique to 
recognize the OHPEs. Only using CNN has the limitations 
of requiring more extensive data, whereas RNN can handle 
more extensive input. This study proposes an adaptive 
approach by integrating CNN and RNN, in which the dataset 
is sequentially trained with CNN and RNN, and further 
enhanced features are given as input to LSTM to obtain 
better accuracy for the sequential input. In this study, the 
CTC (Connectionist Temporal Classification) network is 
used along with RNN to predict the probability. The 
proposed model consists of various steps which include data 
loading, pre-processing, labeling, CRNN layers, Bi-LSTM 
layer sequence modeling, model training, model validation, 
model testing, and inference and recognition. The 
segmentation process involves two steps, expression 
segmentation and text recognition. The overall model 
consists of CNN, RNN and CTC layers, which automatically 
extract features at the expression level. The CNN feature 
sequence consists of 256 features, further RNN extracts the 
relevant information feature sequence. RNN output has been 
provided to the CTC layer to decode the output text. This 
study introduces innovative methods in two significant areas: 
(1) The integration of a CRNN-LSTM classification 
approach and (2) A segmentation-free method for 
recognizing online handwritten physics expressions. 

Literature Review 

Lecun et al. (2015; 1998) in their research stated that 
many classifiers like SVM, K-NN, CNN, Random Forest, 
HMM, and Naïve Bayes are used by researchers in the field 
of mathematical symbol recognitions. CNN shows 
promising results due to its ability to generate automated 
hierarchical features directly from images. SVMs have been 
widely used for handwritten symbol recognition tasks, 
particularly when combined with suitable feature 
representations such as HOG or Scale-Invariant Feature 
Transform (SIFT) descriptors shown in Cortes and Vapnik, 
(1995); Karatzas et al. (2013); Rabiner (1989); Bunke et al. 
(2004) used HMMs for recognizing temporal sequences of 
handwritten symbols, especially for cursive handwriting 
recognition where the order of strokes may convey important 
information. Graves et al. (2009); Hochreiter and 
Schmidhuber, (1997) demonstrated RNNs, especially 
variants like LSTM networks, have been utilized for 
recognizing sequential patterns in handwritten mathematical 
expressions. Dietterich (2000); and Diem et al. (2013) use 

ensemble methods such as random forests or AdaBoost can 
be effective in combining multiple weak classifiers to 
improve overall recognition performance. Geetha et al. 
(2021) proposed recognition of words and characters of 
different lengths to create sentences. The training utilizes the 
IAM and RIMES datasets, with CNN employed for feature 
extraction, encompassing visual attributes such as horizontal 
gradients and orientation features. The model is structured 
with a CNN phase followed by an RNN phase, where 
extracted features are input to an LSTM-RNN sequential 
learner to generate the final digital output. The paper 
compares the word accuracy and letter accuracy of CNN, 
RNN, and the proposed H2TR (CNN-RNN) model, 
achieving respective accuracies of 96.31; 87.10, and 98.14% 
for words, and 98.31; 95.70 and 99.35% for letters. 
Safarzadeh and Jafarzadeh (2020) proposed a Persian 
handwritten word recognizer is presented, incorporating 
CNN and RNN based on a sequence labeling method. To 
eliminate the segmentation step, a CTC loss function is 
utilized. The proposed method is tested on the IFN/ENIT 
datasets, which include Persian and Arabic samples. 
This model evaluates the recognition of words and 
numbers in Persian and Arabic languages, achieving a 
99.43% recognition rate for digits and 91.15% for 
words. Bastas et al. (2020) proposed the air writing 
recognizer to recognize digits from 0-9 using LSTM 
methods. Three architectures CNN, LSTM, and TCN used 
to compute the performance of the model. Jain et al. (2021) 
used the CNN-LSTM approach integrated with CTC to 
recognize medical prescriptions, in this the CTC converts a 
sequence of characters using the LSTM layer to characters 
including the use of the Bi-LSTM layer to compute 
probability. This approach uses a manually created dataset. 
Sanap et al. (2023) utilized deep neural networks and 
recurrent neural networks to efficiently manage the 
complexities of handwritten text. After the application of 
preprocessing techniques like noise removal, normalization, 
and resizing, relevant features are extracted using CNN. 
Extracted features are then passed to a Recurrent Neural 
Network (RNN) with Long Short-Term Memory (LSTM) 
units to capture temporal dependencies and context. The 
proposed model is trained using the IAM dataset which 
contains handwritten English sentences. Ma (2023) 
presented a solution for handwritten text recognition on 
the IAM dataset using a hybrid CNN-RNN model. To 
evaluate the impact of different models, a single-method 
CNN model is also employed for comparison. Visualization 
techniques are utilized to illustrate the processing of the input 
image at each stage, enhancing the understanding of the 
model's structure and component operations. The results 
show a significant improvement with the CNN-RNN fusion 
model, reducing the Word Error Rate (WER) to -12.04% and 
the Character Error Rate (CER) to -5.13%, compared to 
the CNN model. 

Nurseitov et al. (2020) investigated two handwriting 
recognition models for Kazakh and Russian. The first uses 
CNNs for feature extraction and an MLP for word 
classification, while the second, SimpleHTR, combines 
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CNN and RNN layers. They also introduce a new model, 
the Bluechet and Puchserver model, for comparison. 
Their dataset includes handwritten names of countries and 
cities from 42 Cyrillic words, written over 500 times in 
various styles, and the Handwritten Kazakh and Russian 
(HKR) database. The recognition accuracy is 55.3% for the 
CNN model and 57.1% for SimpleHTR. Albahli et al. (2021) 
use a Faster-RCNN for Handwritten Digit Recognition 
(HDR), comprising three steps. First, regions of interest are 
obtained by developing annotations. Next, deep features are 
computed using DenseNet-41. Finally, the digits are 
classified into ten classes using a regression and 
classification layer. The performance of the proposed 
method is evaluated on the standard MNIST database. The 
authors compare their method with recent HDR methods, 
achieving a 99.78% accuracy, the highest among all 
compared methods. Saini et al. (2023) proposed a 
CRNN and LSTM approach to recognize Gurmukhi 
characters and performance evaluation is carried out at 
word level. The dataset includes 175 writers with Dell 
Latitude XT-3 tablet PC, with a stroke accuracy of 98.67%. 
Hemanth et al. (2021) have proposed the handwritten text 
recognition model combining CNN, RNN, and CTC layers 
in which CNN extracts 256 features per time-step, the RNN 
processes sequence information, and the CTC layer decodes 
the text. Trained on the IAM word image dataset, the model 
achieved 98% accuracy on both the IAM database and 
custom handwritten samples. Zhan et al. (2021) introduced 
an RNN-free architecture for recognizing digit strings, 
leveraging a CNN and CTC. This architecture includes a 
feature extractor and a Softmax output layer with a decoder. 
They evaluated this approach on three established 
benchmarks for handwritten digit sequence recognition: 
ORAND-CAR-A, ORAND-CAR-B, and CVL HDS. The 
authors assert that their model offers advantages in terms of 
speed and reduces the overall model size. Chammas and 
Mokbel (2021) proposed an innovative method for fine-
tuning HR systems using Temporal Dropout (TD), which 
randomly drops information at various positions within 
sequences. The approach is tailored for handling long 
sequences typically encountered in RNNs and LSTM 
networks. The effectiveness of this method is evaluated on 
the Rodrigo and READ16 datasets. 

In a summary of the literature, the major research 

challenges in recognition of online handwritten 

mathematical or physics expressions are the complexity 

of expressions, data variation, and size, the segmentation-

free handwriting recognition to avoid the low recognition 

rates due to variability and ambiguity within the 

mathematical symbols used in the expressions. The 

traditional models require the segmentation approach to 

input the mathematical symbols. 

Materials and Methods 

To conduct this study, dataset preparation is a major 
challenge. The online handwritten physics expression has 

been taken as input through a java-based user interface 
Kolte et al. (2024). The most commonly used five 
categories of expressions are electric flux, Maxwell's 
equation, inductance, pointing vector, and moment of 
inertia. The data has been collected from the different 100 
writers of age group 16-24 particularly students, where each 
writer has written 5 categories of Physics expressions, a total 
of 500 different physics expressions of 5 categories each, 
have been taken as the input for the training, testing, and 
validation purpose. The dataset has been prepared using five 
categories of expression. Table (1) shows five different types 
of physics expressions used in experimentation. 

The proposed method consists of several steps given in 

Fig. (1). The proposed methodology provides the solution to 

segmentation-free recognition of handwritten physics 

expressions, operators, and alphabets. The CRNN-LSTM 

network has the advantage of processing sequential input 

which is necessary with respect to physics expressions as it 

has dependency among the sequence of variables, operators, 

and characters used in physics expressions. 

The preprocessing step involves converting an image 

to grayscale and reshaping the HPE image to 300 widths and 

70 heights. The reshaped dimensions are computed using the 

average size of every sample collected. The image 

normalization has been carried out to the range 0 to 1. The 

processed grayscale image is then converted into the binary 

image, where the contours of the binary image are detected 

and applied with bounding boxes as shown in Fig. (2). 

For the data processing, the following steps are 

applied: 

 

1. Converting an image into a grayscale image 

2. Converting a grayscale image into a binary image 

using the Otsu method 

3. Removing noise from the image by using a median 

filter 

4. Selecting ROI by cropping the image 

 
Table 1: Physics expression types 

Expression name Online handwritten expression 

Electric flux  

Maxwell’s equations  

Inductance  

The pointing vector  

Moment of inertia  
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Fig. 1: Overall CRNN-LSTM recognition model architecture 

 

 

 

Fig. 2: Bounding box over physics expression 

 
Table 2: OHPE labels 

Expression category Class label No. of OHPE 

expressions 

Electric flux EF 100 

Maxwell’s equations ME 100 

Inductance IDC 100 

The pointing vector PV 100 

Moment of inertia MI 100 

Total 500 

 

The bounding box is applied to the expression level. 

The subsequent step involves labeling the physics 

expressions according to the various categories outlined 

in Table (2). 

The limitation of convolution neural network works at 

the character or symbol level as to one recognition system. 

In physics expression symbols are varied based on the 

category of expressions. The correct segmentation of the 

symbols and operators used in the physics expressions is 

challenging due to connected symbols, skewness in the 

expressions, and also due to overall structural representation. 

There is a need to concentrate on the recognition of complete 

expression which consists of a group of characters. To 

address the challenge of one input as a complete expression 

and many outputs in terms of a varied number of symbols 

within the physics expressions. So, the classical CNN is not 

fit for the recognition of handwritten text. In this scenario, 

Recurrent Neural Networks (RNNs) are the most 

appropriate choice because they possess a single input and 

generate multiple outputs (Graves, 2012b). RNNs handle 

sequences of vectors by iteratively applying a recurrent 

formula at each step. In Fig. (3), p is the input sequence 

and q is the output sequence. 

The overall CRNN-LSTM model is built as per Fig. 

(4). The proposed architecture for the recognition of 

OHPEs consists of CNN, features which are reshaped to 

32*8, i.e. 256 features that are further processed by the 

RNN+LSTM classification method. CNN networks are 

used for handwritten image classification. The input 

expression image is resized to a height of 80 pixels and a 

height of 256 pixels. The image array is provided to the 

CNN classification which produces 256 features. CNN is 

used to extract more hidden patterns by using convolution 

and pooling layers and produces more useful features by 

using down down-sampling method. The input 

handwritten physics expression image is provided as an 

input to CNN. 

Equation (2) shows the convolution operation for the 

input OHPE image. 
 

 
 
Fig. 3: Inner process in RNN for processing OHPE 

symbols in sequence 
 

 
 
Fig. 4: Proposed CRNN-LSTM model 
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ℎ𝑖,𝑗 = 𝜎(∑ 𝑤𝑚𝑥𝑖,𝑗+𝑚 + 𝑏
𝑘−1
𝑚=0 ) (2) 

 

In Eq. (2) hi, j is the output of the convolution operation, 

Wm is the weights, xi, j+m is the input, b is the bias and σ is the 

activation function. To process the handwritten OHPE 

image, CNN with three convolution layers is used which is 

followed by a max-pooling layer for downs-sampling. 

The output is flattened and provided to a fully connected 

layer with 256 neurons which in turn produces 256 features. 

The first convolution layer uses 32 filters with kernel size 

3×3 and the Rectified Linear Unit (ReLU) activation 

function operating on grayscale images of size 80256. 

Subsequently, spatial dimensions are halved by max-pooling 

layers, this process is repeated by applying 64 and 128 filters, 

which enhance the feature extraction process to retrieve 

intrinsic patterns. The ReLU activation function condenses 

the extracted features into a compact representation. The 

CRNN-LSTM (Convolution Recurrent Neural Network 

with Long Sort long-term memory) is an influential 

architecture to recognize the handwritten text in which the 

CNN extracts the special features of the symbols used in 

OHPE whereas RNN spatially LSTM preserves the temporal 

dependencies in the sequence. Each of the LSTM cells 

consists of a cell state Ct, which serves as the memory of the 

unit and three gates: The input gate, the forget gate ft, and the 

output gate Ot. At the time stamp t, the LSTM gate receives 

an input xt and the previous hidden state ht-1. These inputs are 

used to compute the activations of the gates and update the 

cell state and hidden state for the current time step. 

Graves (2012a) proposed equations for Long Short-

Term Memory (LSTM) networks that describe the 

operations of the gates and memory cell updates that 

define LSTMs as follows: 

 

𝑓𝑡 = 𝜎 (𝑤𝑓. [ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑓 (3) 

 

𝑖𝑡 = 𝜎 (𝑤𝑖 . [ℎ𝑡−1, 𝑥𝑡) + 𝑏𝑖 (4) 

 

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐 . [ℎ𝑡−1, 𝑥𝑡]) + 𝑏𝑐 (5) 

 

𝑐𝑡 = 𝑓𝑡⊙ 𝑐𝑡 + 𝑖𝑡⊙ 𝑐𝑡 (6) 

 

𝑜𝑡 = 𝜎 (𝑤𝑜 . [ℎ𝑡−1, 𝑥𝑡) + 𝑏𝑜 (7) 

 

ℎ𝑡 = 𝑜𝑡⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡) (8) 

 

Equation (3) represents the forget gate vector at the time 

stamp t, 𝜎 is the activation function, 𝑤𝑓 is the weight matrix, 

ℎ𝑡−1, 𝑥𝑡, 𝑏𝑓 are the hidden state for the previous time stamp, 

input for the current time stamp and bias for the forget gate 

respectively. Eq. (4) represents the input vector, it is the input 

vector, and bi is the input bias. Equation (5) represents the 

candidate cell state, ~Ct is the cell state vector at the time 

stamp t, and Wc is the weight matrix for the candidate cell 

state. Equations (6-8) represent the cell state update, output 

gate, and hidden state respectively. 

Results and Discussion 

Due to the unavailability of a standard dataset for the five 

categories of OHPE, the dataset has been manually prepared. 

The model evaluation is conducted at both the expression 

level and symbol level. For the expression level recognition 

process, the expressions are encoded with the ground truth 

values specified in Table (2). The expression level confusion 

matrix using the ground truths is shown in Table (3). The 

classification report is shown in Table (4), which includes 

precision, recall, and F1-score. The lambda layer is applied 

to the CTC loss function to align the predictions with the 

actual class labels. 

The recognized output y, consists of the concatenation of 

five sequences, each sequence comprising 100 OHPE 

expressions. Each expression is treated as an element, with 

the sequence increment by 1 for every step. Ytrue is modeled 

as in Eq. (8): 

 

𝑌_𝑡𝑟𝑢𝑒 [𝑖] = [𝑖/100] (8) 

 

Table (4) represents the precision, recall, f1-score, 

and support. 
 
Table 3: Expression level confusion matrix 

 
Table 4: Performance evaluation at expression level 

Expression 

categories 

Precision Recall F-score Support 

EF 0.95 0.96 0.95 100 

ME 0.94 0.95 0.95 100 

IDC 0.95 0.94 0.95 100 

PV 0.95 0.94 0.95 100 

MI 0.96 0.96 0.96 100 

Accuracy 0.96 0.96 96.0 500 

Macro Avg 0.95 0.96 0.95 500 

Weighted 

Avg 

0.95 0.96 0.95 500 

Labels EF ME IDC PV MI 

EF 96 2 1 1 0 

ME 2 95 1 1 1 

IDC 1 2 94 2 1 

PV 1 1 1 96 1 

MI 0 1 1 2 96 
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The Ypred has been computed as below in Eq. (9): 

 

𝑦𝑝𝑟𝑒𝑑[𝑖] =

{
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

0 𝑖𝑓 0 ≤ 𝑖 < 96
 1 𝑖𝑓 96 ≤ 𝑖 < 98
 2 𝑖𝑓 98 ≤ 𝑖 < 99
 3 𝑖𝑓 99 ≤ 𝑖 < 100
 0 𝑖𝑓 100 ≤ 𝑖 < 102
 1 𝑖𝑓 102 ≤ 𝑖 < 197 
 2 𝑖𝑓 197 ≤ 𝑖 < 198
 3 𝑖𝑓 198 ≤ 𝑖 < 199
 4 𝑖𝑓 199 ≤ 𝑖 < 200
 0 𝑖𝑓 200 ≤ 𝑖 < 201
 1 𝑖𝑓 201 ≤ 𝑖 < 203
 2 𝑖𝑓 203 ≤ 𝑖 < 297 
 3 𝑖𝑓 297 ≤ 𝑖 < 299
 4 𝑖𝑓 299 ≤ 𝑖 < 300
 0 𝑖𝑓 300 ≤ 𝑖 < 301
 1 𝑖𝑓 301 ≤ 𝑖 < 302
 2 𝑖𝑓 302 ≤ 𝑖 < 303
 3 𝑖𝑓 303 ≤ 𝑖 < 399
 4 𝑖𝑓 399 ≤ 𝑖 < 400
 1 𝑖𝑓 400 ≤ 𝑖 < 401
 2 𝑖𝑓 401 ≤ 𝑖 < 402
 3 𝑖𝑓 402 ≤ 𝑖 < 304
 4 𝑖𝑓 404 ≤ 𝑖 < 500

 (9) 

 
The recognition process has been conducted at the 

symbol level, identifying 25 unique symbols and their total 

occurrences across 500 OHPEs. Table (5) details the 25 

symbols used in physics expressions, along with their class 

labels and frequencies. The total count of 3900 symbols used 

for experimentation is presented in Table (5). 
 
Table 5: Symbol class labels and frequency 

Class label Symbol Frequency Total symbols 

1 Φ 1 100 

2 𝐸 2 200 

3 = 4 400 

4 ∫ 1 100 

5 → 5 500 

6  1 100 

7 d 1 100 

8 A 1 100 

9 𝜆 1 100 

10 m 2 200 

11 2 2 200 

12 L 2 200 

13 ÷ 2 200 

14 I 1 100 

15 𝜇 2 200 

16 0 2 200 

17 𝑙 1 100 

18 N 1 100 

19 𝑟 1 100 

20 X 1 100 

21 ( 1 100 

22 ) 1 100 

23 B 1 100 

24 s 1 100 

25 1 1 100 

Total 3900 

Figure (5) illustrates the classification accuracy 

achieved. The performance measure of CRNN-LSTM at 

the symbol level is carried out by computing precision, 

recall, F1 score, and the confusion matrix. The confusion 

matrix provides the counts for TP, FP, FN, and TN. 

Precision is calculated as the ratio of true positive 

predictions to the total predicted positives for each of the 

25 class labels. Support indicates the actual frequency of 

each of the 25 symbols, operators, and alphabets used in 

OHPE across five categories. 

 

 

 

Fig. 5: F-score, recall, and precision for 5 categories of OHPE 

at expression level 

 
Table 6: Performance evaluation for recognition of symbols 

Symbol Support Precision Recall F1 score 

Φ 100 0.90 0.88 0.89 

𝐸 200 0.99 0.99 0.99 

= 400 0.99 0.99 0.99 

∫ 100 0.9 0.88 0.89 

→ 500 0.99 0.99 0.99 

 100 0.98 0.98 0.98 

d 100 0.98 0.98 0.98 

A 100 0.98 0.98 0.98 

𝜆 100 0.98 0.98 0.98 

m 200 0.99 0.99 0.99 

2 200 0.99 0.99 0.99 

L 200 0.99 0.99 0.99 

÷ 200 0.99 0.99 0.99 

I 100 0.9 0.88 0.89 

𝜇 200 0.99 0.99 0.99 

0 200 0.99 0.99 0.99 

𝑙 100 0.9 0.88 0.89 

N 100 0.98 0.98 0.98 

r 100 0.9 0.88 0.89 

X 100 0.9 0.88 0.89 

( 100 0.98 0.98 0.98 

) 100 0.98 0.98 0.98 

B 100 0.98 0.98 0.98 

s 100 0.98 0.98 0.98 

1 100 0.98 0.98 0.98 
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The performance metrics presented in Table (6) highlight 
the high strength and accuracy of the recognition model 
across various symbols identified from five categories of 
physics expressions. The symbol "E" achieved the highest 
performance, with precision, recall, and F1 scores of 0.99 
over 200 samples. The most ambiguous symbols "=", "→", 
"m," "2", "L" and "÷" are correctly classified, showcasing 
0.99 precision. In contrast, symbols with lower support, such 
as "Φ" and "∫," recorded precision and recall scores of 0.9, 
leading to F1 scores of 0.89. Overall, most symbols achieved 
scores of 0.98 or higher, indicating robust performance. 
Symbols like "d," "A" and "𝜇" consistently scored 0.98 
across 100-200 samples. While symbols like "I," "r," "X," 
and "𝑙" showed slightly lower performance with precision 

and recall of 0.9, they still managed F1 scores of 0.89. 
Parentheses "("and")" performed well, achieving scores of 
0.98. This overall strong performance underscores the 
model's effectiveness in recognizing symbols, particularly 
for frequently occurring characters in physics expressions. 

Table (7) represents the confusion matrix to 

demonstrate the ambiguity of the symbols with OHPEs. 

Ambiguous symbols are "Phi," "integration," "I," "small 

L," "r," "X," and "o", giving them lower scores. The 

overall accuracy is the weighted average of the precision 

and recall across all the classes, weighted by the support 

which is nothing but the number of instances for each 

class with an overall recognition accuracy of 98.10%. 
 
Table 7: Confusion matrix-symbol level 
 Φ 𝐸 = ∫ →  𝑑 𝐴 𝜆 𝑚 2 𝐿 ÷ 𝐼 𝜇 0 𝑙 𝑁 𝑟 𝑋 ( ) 𝐵 𝑠 1 

Φ 98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 

𝐸 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 

= 

0 0 19

8 

0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 

∫ 

0 0 0 39

6 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  4  

→ 0 0 2 0 88 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0  0  

 

1 0 0 0 0 49

5 

0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0  0  

𝑑 0 0 0 0 0 0 98 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0  

𝐴 0 0 0 0 0 0 0 98 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0  

𝜆 0 0 0 0 0 0 0 0 98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0  

𝑚 0 0 0 0 0 0 0 0 0 98 0 0 0 0 2 0 0 0 0 0 0 0 0 0  0  

2 

0 0 0 0 0 0 0 0 0 0 19

8 

0 0 0 0 0 0 0 0 0 0 0 0 2  0  

𝐿 

0 0 0 0 0 0 0 0 0 0 0 19

8 

0 0 0 0 0 2 0 0 0 0 0 0  0  

÷ 

0 0 0 2 0 0 0 0 0 0 0 0 19

8 

0 0 0 0 0 0 0 0 0 0 0  0  

𝐼 
0 0 0 0 0 0 0 0 0 0 0 2 0 19

8 

0 0 0 0 0 0 0 0 0 0  0  

𝜇 0 0 0 0 0 0 0 0 0 12 0 0 0 0 88 0 0 0 0 0 0 0 0 0  0  

0 

0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1

9

8 

0 0 0 0 0 0 0 0  0  

𝑙 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 198 0 0 0 0 0 0 0  0  

𝑁 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 88 0 0 0 0 0 0  0  

𝑟 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 98 0 0 0 0 0  0  

𝑋 0 0 0 0 0 0 0 0 10 0 0 0 0 0 2 0 0 0 0 88 0 0 0 0  0  

( 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 88 0 0 0 5  

) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 98 0 0 1  

𝐵 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98 0 0  

𝑠 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98 0  

1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98  

 
Table 8: Comparative study of our proposed method 

Author Model Dataset Expression level accuracy Symbol level accuracy 

Zhang et al. (2020) LSTM-CNN MEs 92% 95% 

Graves and Schmidhuber 

(2009) 

Multidimensional 

RNN 

IAM database N/A 95% 

Álvaro et al. (2014) HMM-based CROHME 2014 90% 90% 

MacLean and Labahn 

(2013) 

Relational 

grammars 

Custom HME 85% 85% 

Geetha et al. (2021) H2TR model IAM, RIMES 98.14% 99.35% 

Safarzadeh and Jafarzadeh 

(2020) 

Persian words 

CNN and RNN 

Persian and Arabic datasets 

including IFN/ENIT 

99% Char accuracy: 

99.35% digit 99.68% 

Bastas et al. (2020) DCNN and RNN Manual 97.50% NA 

Nurseitov et al. (2020) CNN and MLP, 

SimpleHTR model 

42 types of Cyrillic words 

contain country names 

55.3% for CNN, 57.1% for 

SimpleHTR 

80% 

Albahli et al. (2021) Faster-RCNN Standard MNIST 

database 

99.78%  
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Table 8: Continue     

Saini et al. (2023) RNN and  

multidimensional 

LSTM  

Words written by 175  

writers 

98.67% 90.90% 

Hemanth et al. (2021) CNN, RNN and 

CTC based model 

IAM word image dataset  98% 89.38% 

Zhan et al. (2021) RNN-CTC ORAND-CAR-A, 

ORAND-CAR-B and 

CVL HDS 

Accu. PhPAIS  

dataset 94.26% 

99.43% 

Our proposed approach CRNN-LSTM 500 OHPEs (3900  

symbols) 

96.10% 98.10% 

 

Recognition of OHPEs is a less explored area, due 

to limitations of the existing literature, the comparative 

study has been conducted including other handwriting 

as well in Table (8) which shows our proposed CRNN-

LSTM model has acceptable performance as compared 

to other proposed methods in the existing literature. 

The proposed CRNN-LSTM model outperforms the 

existing established models with the custom dataset of 

500 OHPEs and with 3900 symbols which showcases 

the robustness and versatility of the proposed model. 

The proposed CRNN-LSTM model in this study is a 

combination of high accuracy and adaptability to 

diverse datasets which includes different categories of 

physics expressions. 

Conclusion 

The recognition of OHPE using CRNN-LSTM is 

conducted at both expression level and symbol level using a 

dataset of 500 expressions under 5 categories consisting of a 

total of 3900 mathematical Physics symbols, operators, and 

alphabets. Overall results demonstrate the high-level 

accuracy and performance of the proposed CRNN-LSTM 

models in recognition of OHPE. Recognition accuracy at the 

expression level is 96.10% across 5 categories and each 

category of OHPE shows high precision, recall, and F1 Score 

values of 0.95, which is a balanced performance across 

different OHPE categories. There is minor misclassification, 

with each expression category, these errors are minimal and 

distributed uniformly indicating no significant bias towards 

any particular category. At the symbol level, the model 

performance is evaluated on 25 unique symbols that are 

frequently used in the physics expressions. The proposed 

model demonstrates consistently high precision, recall, and 

f1 score across all 25 symbols, with most values are in 

between 0.97 to 0.99. This indicates the model's robustness 

in accurately identifying individual symbols. In this, the 

evaluation of the CRNN-LSTM model shows effectiveness 

and robustness in the recognition of OHPE at the expression 

level and symbol level which makes it valuable for both 

education and scientific purposes. This study demonstrates 

recognition accuracy at the symbol level is 98.10% and at the 

expression level is 96.36%. Future work may focus on 

extending the dataset to consist of more physics expression 

categories. Future work may also focus on providing 

solutions to the recognition of ambiguous symbols. 
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