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Abstract: The multi-cloud scheduling problem refers to the challenging task
of efficiently allocating and managing resources across multiple cloud
environments, involving the optimization of task scheduling, resource
allocation to minimize makespan, reduce resource costs, and handle the
complexity of multi-cloud environments while making optimal scheduling
decisions. To overcome this issue. The paper proposes a novel scheduling
algorithm, the Advanced Grasshopper Optimization Scheduling Algorithm
(AGOSA), designed specifically for multi-cloud environments. AGOSA
integrates a cloud model with a data center model, enabling the optimization
of task scheduling and resource allocation across both cloud and data center
resources. The algorithm leverages the principles of grasshopper
optimization, adapting their behavior in searching to efficiently explore the
solution space and identify the optimal scheduling strategy. Moreover,
AGOSA addresses the challenges of multi-cloud scheduling, including
minimizing makespan, reducing resource costs, and ensuring efficient
resource utilization. The algorithm's adaptive nature allows it to dynamically
adjust to changing workload demands and resource availability, ensuring
optimal scheduling decisions. The proposed AGOSA method was evaluated
through CloudSim 3.0 simulation, demonstrating its effectiveness in
optimizing multi-cloud scheduling and comparing its performance with
existing scheduling algorithms.

Keywords: Cloud Computing, Makespan, Resource Utilization, Resource
Cost, AGOSA

Introduction
Cloud computing has rapidly gained traction in the IT

market, providing internet-based computing services on-
demand, including Software as a Service (SaaS),
Infrastructure as a Service (IaaS), and Platform as a
Service (PaaS). The rapid growth of cloud computing has
led to increased demand on resources, which can
decrease efficiency, throughput, and resource utilization
if not properly managed, highlighting the need for
innovative solutions. Cloud task scheduling has emerged
as a key strategy to optimize resource allocation, enhance
system throughput, and improve overall performance by
strategically mapping tasks to virtual machines (VMs).
An efficient task scheduling algorithm improves overall
system performance and helps service providers deliver
high-quality services (QoS). Brokers play a crucial role
in cloud computing, maintaining a list of VMs and their
QoS, and enabling the efficient allocation of resources
and improvement of system performance (Durao et al.,
2014; Sunyaev, 2020 & Mangalampalli, 2023).

The cloud computing landscape encompasses various
categories, including private cloud, public cloud, and
multi-cloud. A multi-cloud strategy involves the
implementation of two or more cloud systems, allowing
for greater flexibility and scalability. A private cloud
infrastructure, on the other hand, is a dedicated
environment designed for a specific IT organization or
individual, offering the same features as a public cloud
but with greater control over resources and built on the
company's internal network. In contrast, a public cloud
infrastructure is built and managed by a third-party
service provider, who delivers services to customers or
tenants via high-speed internet, offering a scalable and
on-demand computing environment (Li et al., 2012).

Cloud task scheduling is a dynamic and efficient
process that enables the automated allocation, execution,
and management of tasks across multiple cloud
providers, maximizing resource utilization, scalability,
and cost-effectiveness. By leveraging advanced
algorithms and real-time monitoring, cloud task
scheduling optimizes task placement, ensures seamless
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execution, and adapts to changing requirements, ensuring
that applications and workloads are always running at
peak performance (Chunlin & LaYuan, 2015). This
process enables organizations to harness the full potential
of cloud computing, streamline their operations, and
drive innovation, while minimizing costs and
environmental impact. By abstracting the complexity of
multi-cloud environments, cloud task scheduling
empowers businesses to focus on their core objectives,
accelerate time-to-market, and deliver exceptional user
experiences (Panda & Jana, 2015; Voruganti, 2024; &
Sobhanayak, 2023).

The multi-cloud task scheduling process begins with
task submission, where a user submits a task to the
system, specifying requirements such as computational
resources, deadline, and budget. The system then
analyzes the task to determine the appropriate cloud
providers and resources needed to execute the task,
followed by cloud provider selection, where the most
suitable providers are chosen based on factors like
availability, pricing, and performance. Next, resources
are allocated from the selected providers to execute the
task, and the task is scheduled on the allocated resources
to ensure deadlines and budget constraints are met (Deng
et al., 2023; Peng et al., 2015; & Mansouri et al., 2019).
The task is then executed on the allocated resources
across multiple cloud providers, with the system
monitoring and managing the execution, handling any
errors or exceptions that may arise. Upon completion, the
results are returned to the user, and resources are de-
allocated from the providers to release resources and
minimize costs. This process enables efficient and
effective execution of tasks across multiple cloud
providers, ensuring scalability, flexibility, and cost-
effectiveness (Amajuoyi et al., 2024; & Lacheheub &
Maamri, 2016).

Figure 1 describes a task scheduling mechanism in
cloud computing, which comprises multiple components
that work in tandem to manage task execution. The
process initiates when multiple users submit tasks to the
cloud system, which then identifies the required
computer resources, network resources, storage
resources, and firewall resources to execute the tasks.
The cloud system subsequently forwards the requests to
the Task Manager, Scheduler, and Resource Manager.
The Scheduler receives input requests from the cloud
system, Task Manager, and Resource Manager, and then
orchestrates the allocation of resources, ensuring optimal
utilization and efficient task execution.

This paper presents an innovative approach to multi-
cloud scheduling by introducing the Advanced
Grasshopper Optimization Scheduling Algorithm
(AGOSA) model, which seamlessly integrates a cloud
model with a data center model. AGOSA differs from
standard GOS-based scheduling methods through its

customized fitness function tailored to specific cloud
scheduling objectives, advanced exploration-exploitation
balance, and enhanced position update rules adapted for
cloud complexities, allowing it to effectively address
complex cloud scheduling problems with multiple
constraints. The proposed AGOSA model leverages the
strengths of grasshopper optimization and adaptive
algorithms to optimize task scheduling and resource
allocation in a multi-cloud environment.

Fig. 1: Structure of task scheduling mechanism in cloud
computing

Related Works

Tong et al., (2020) presented a novel approach to
address the challenge of managing directed acyclic graph
(DAG) tasks in cloud computing environments. Their
method leveraged the deep Q-learning (DQL) technique
for task scheduling, drawing inspiration from DQL for
model learning. Building upon advancements in
WorkflowSim, a series of experiments were conducted to
evaluate the performance of their approach in terms of
makespan and load balance variability. Both simulated
and real-world experiments demonstrated the
effectiveness of DQTS in optimizing task scheduling and
learning capabilities. The results revealed that, compared
to established algorithms integrated within
WorkflowSim, DQTS exhibited superior learning
abilities, containment, and scalability.

Jia et al., (2021) investigated the efficiency of task
scheduling in cloud computing, highlighting its
dependence on user effectiveness, and proposed an
improved scheduling efficiency algorithm, termed the
IWOA, to address issues of prolonged scheduling time,
high cost consumption, and excessive VM load. The
approach constructs a cloud computing task scheduling
and distribution model, generates feasible plans for each

http://192.168.1.15/data/13409/fig1.png
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whale individual, and employs an inertial weight strategy
and add/delete operators to enhance local search
capability, prevent premature convergence, and ensure
optimal individual identification.

Kruekaew & Kimpan, (2022) introduced the
MOABCQ method, an independent task scheduling
approach in cloud computing that combines the ABC
with Q-learning, a reinforcement learning technique.
This multi-objective optimization approach aims to
optimize scheduling, resource utilization, and load
balancing between Virtual Machines (VMs), addressing
limitations related to makespan, cost, and resource
utilization.

Yan et al., (2022) developed a deep reinforcement
learning (DRL) approach to optimize the allocation of
real-time jobs to virtual machines (VMs), aiming to
minimize energy consumption while maintaining high
quality of service (QoS). The authors presented a
detailed design and implementation of their method,
which demonstrated superior performance in
experimental results, achieving a higher job success rate
and lower average response time with reduced energy
consumption compared to existing approaches, across
various real-time cloud workloads.

Fu et al., (2023) highlighted the crucial role of
efficient scheduling of massive tasks in cloud
environments for enhancing companies' core
competitiveness and economic benefits. To address the
pressing need for effective scheduling strategies, the
authors analyzed cloud task scheduling processes and
proposed a novel particle swarm optimization genetic
hybrid algorithm, PSO_PGA, inspired by phagocytosis.
This algorithm divides each generation of particle
swarms, applies phagocytosis and genetic algorithm
crossover mutation to alter particle positions, expanding
the solution space search range. Subpopulations are then
merged, ensuring particle diversity and reducing local
optimal solution probability. Additionally, a feedback
mechanism incorporates particle flight experiences into
the next generation particle population, guiding the
swarm towards optimal solutions.

Elcock & Edward, (2023) acknowledged that task
scheduling in complex environments is an NP-hard
problem, emphasizing the need for efficient and effective
solutions. Given the critical importance of task
scheduling in various applications, numerous algorithms
have been proposed, employing diverse techniques and
approaches. Among these, Ant Colony Optimization
(ACO) stands out as a promising method, inspired by the
cooperative behavior of ants searching for the shortest
path between their nest and food sources. Building on
this concept, the authors propose an ACO-based
algorithm, ACO-RNK, to tackle the task scheduling
problem.

Methods
The proposed research methodology for multi-cloud

scheduling, using the Advanced Grasshopper
Optimization Scheduling Algorithm (AGOSA), is
presented in this section. The overall proposed process
flow diagram is illustrated in Figure 2.

Fig. 2: AGOSA Flow Diagram

Cloud Model

The proposed system utilizes CloudSim 3.0 to create
a cloud model by defining number of data centers and
virtual machines (VMs), specifying VM characteristics
such as Millions of Instructions per Second (MIPS)
capacity, memory, storage, and bandwidth. Data center
properties, including the number of hosts, host
characteristics, and location, are also defined. The cloud
model is then created using CloudSim API, configuring
data center and VM properties, network settings, and
policies like scheduling and resource allocation. The
configuration is validated and saved, enabling simulation
and evaluation of task scheduling algorithms in a multi-
cloud environment. For example, a data center with nine
VMs, each with unique MIPS capacity, memory, storage,
and bandwidth, is created and added to the data center.
The cloud model is then configured, validated, and saved
for simulation and evaluation purposes.

Cloud Datacenter Creation

To model a cloud data center in CloudSim 3.0, first
create a list of Processing Elements (PEs) and add them
to a list, where each PE represents a processing core with
a specified MIPS capacity. Next, create Hosts, which are
essentially machines with specified characteristics such
as ID, RAM, storage, bandwidth, and a list of PEs. After
that, add these Hosts to a list of machines. Next, a
Datacenter Characteristics object is created to
encapsulate properties such as architecture, operating

http://192.168.1.15/data/13409/fig2.png
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system, and pricing details (cost per processing, memory,
storage, and bandwidth). Specifically, to define system
architecture, operating system, and virtual machine
monitor (VMM), and time zone, as well as cost of using
processing, memory, storage, and bandwidth resources.
To complete data center configuration, a linked list is
created to store storage devices, although no Storage
Area Network (SAN) devices are added at this point.
Finally, the resource is a Linux-based system with an x86
architecture and Xen virtual machine monitor (VMM).
The cost of using processing power on this resource is
$3.00, while cost of using memory is $0.05 per unit.
Additionally, cost of using storage is $0.10 per unit, and
cost of using bandwidth (BW) is also $0.10 per unit. This
resource has a VM with an image size of 10,000 MB,
512 MB of RAM, and 250 MIPS of processing power.
The VM has a single CPU (pesNumber = 1) and supports
multiple cloud virtual machines, including Microsoft,
Google, and Amazon. The VM's bandwidth is limited to
1,000 MB. This resource is suitable for running
applications that require a Linux environment and have
specific processing, memory, storage, and bandwidth
requirements.

Let svij is amount of servers of type i in cloud j,
nvmij: amount of VMs of type i in cloud j, ncpij is
amount of CPU cores of type i in cloud j,mtij is amount
of memory of type i in cloud j,csvij is cost of server type
i in cloud j, pwij: power consumption of server type i in
cloud j, egij is energy efficiency metric (e.g., PUE) of
server type i in cloud j, Tsch is task scheduling matrix
(tasks sv clouds).

The computing capacity constraint for task i, which
ensures that total computing resources allocated to task i
is greater than or equal to computing capacity required
by task i.

In constraint, svij, nmvij, and ncpij are decision
variables that represent amount of computing resources
allocated to task i on cloud j. Ci is a parameter that
represents computing capacity required by task i.

To complete the constraint, proposed system needs to
assign values to i and j. Let’s assume that we have a set
of tasks Tsh = {1, 2, …,n} and a set of clouds Cl = {1, 2,
…, m}.

Then, constraint can be written as:

The above equation ensures that total computing
resources allocated to task i on all clouds is greater than
or equal to computing capacity required by task i.

To compute memory constraint, svij is a decision
variable that represents amount of memory allocated to
task i on cloud j, and mtij is a parameter that represents

memory required by task i on cloud j. Mi is a parameter
that represents the total memory required by task i can be
written as,

To compute a cost constraint, svij is a decision
variable that represents amount of resources (e.g.
computing power, memory, etc.) allocated to task i on
cloud j, and csvij is a parameter that represents cost of
executing task i on cloud j. Pi is a parameter that
represents budget allocated for task i can be written as,

Where n is number of tasks and m is number of
clouds.

The cost constraint ensures that total cost of
executing task i on all clouds does not exceed budget
alocated for task i.

To compute a power constraint, svij is a decision
variable that represents amount of resources (e.g.
computing power, memory, etc.) allocated to task i on
cloud j, and pwij is a parameter that represents power
consumption of executing task i on cloud j. Pwbi is a
parameter that represents power budget alocated for task
i.

The power constraint is important to ensure that
power consumption of tasks does not exceed power
budget, which is essential for data centers and cloud
providers to manage their power usage effectively.

The energy efficiency constraint for task i can be
written as,

Where, Ei is a parameter that represents required
energy efficiency level for task i, and egij is a parameter
that represents energy efficiency of resources on cloud j.

Advanced Grasshopper Optimization Scheduling
Algorithm (AGOSA)

This paper introduces a novel Advanced Grasshopper
Optimization Scheduling Algorithm (AGOSA), a
metaheuristic algorithm that can be employed to solve
scheduling problem with the multi-cloud scheduling
constraints mentioned earlier. Initially, a population of
grasshoppers is generated, each representing a potential
solution (schedule). The fitness of each grasshopper is
evaluated based on the constraints, including capacity,
memory, cost, power, energy, broker's capacity, and
makespan. The grasshoppers’ positions are updated using
the Grasshopper Optimization Algorithm, incorporating
social interaction (attraction to better solutions),
cognitive memory (of previously visited optimal
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positions), and random exploration. This process is
repeated until a termination condition is met, such as
maximum iterations or satisfactory fitness. The final
solution (schedule) is the best-fit grasshopper's
position.This update mechanism allows grasshoppers to
iteratively refine their positions, converging towards
optimal or near-optimal scheduling solutions that balance
multiple cloud scheduling constraints.

In a multi-cloud environment, broker's capacity
constraint ensures that total amount of resources
allocated to tasks across all clouds does not exceed the
broker's capacity. This constraint is essential to prevent
over committing resources and ensure that broker can
fulfill its resource allocation commitments to tasks. The
broker constraint can be written as,

Where, rij represents amount of resources (e.g.,
computing power, storage, or network bandwidth)
allocated to task i on cloud j through the broker. Br
represents the total capacity of the broker, which is the
maximum amount of resources that the broker can
allocate to tasks across all clouds.

The makespan is the maximum completion time of
all tasks, and it is an important constraint to ensure that
all tasks are completed within a reasonable time frame.

Where, xij is amount of resources allocated to task i
on cloud j; dtij is duration of task i on cloud j; M is
makespan (maximum completion time).The makespan
constraint ensures that all tasks are completed within the
specified time frame (makespan M), allocating resources
efficiently to meet this requirement, minimizing the
overall execution time of all tasks, and utilizing broker's
resources efficiently to meet makespan requirement,
thereby guaranteeing that all tasks are completed within
the designated timeframe while optimizing resource
utilization and execution time.

The proposed AGOSA method aims to optimize task
scheduling in a multi-cloud environment, incorporating
constraints on task capacity, memory, makespan, and
broker's capacity to minimize the objective function as,

Where, xij: represents allocation of task i to cloud j,
rij represents amount of resources allocated to task i on
cloud j, sti represents start time of task i, cij represents
cost of executing task, pij represents power consumption
of executing task and eij represents energy efficiency of
executing task.

The AGOSA algorithm will iteratively update
positions of grasshoppers based on the cognitive and
social components, as well as inertia weight, to search

for the optimal solution. Algorithm 1 describes the
proposed AGOSA process.

Algorithm: AGOSA

Step 1: Initialize the parameters (w, c1, c2, rn) and swarm
position with random positions (xij, rij, sti).
Step 2: Evaluate each grasshopper's fitness based on the
objective function (makespan, cost, etc.).
Step 3:

While (iter < MaxIteration and target fitness >
satisfactory fitness)

In AGOSA, xij represents the position of a task or
job in a scheduling problem. The update equation
guides exploration and exploitation using inertia
weight (w), acceleration coefficients (c1, c2), and
random numbers (rn).

In AGOSA, rij represents the search space radius of
a task/job. This radius update allows exploration of
new solution regions and adapts to changes in
scheduling conditions.

Here, sti represents the step size of each task/job.
This equation controls convergence speed and helps
avoid local minima.

Updated makespan:

Where M is the makespan (maximum completion
time); sti(t+1) is the start time of task i at iteration
t+1.

Step 4: Evaluate and Update Fitness
If current fitness is better than the target fitness then

Update the target fitness and the target position.
Else

Update positions using equation (11).
Step 5: Repeat Steps 2-4 until a termination condition is met
(e.g., max iterations or satisfactory fitness).

Results and Discussion
The proposed AGOSA method was used to evaluate

scheduling performance. Simulations were conducted
using Java1.8 with CloudSim 3.0 on a Windows 10
machine with 8 GB of main memory and an Intel I5-
6500U series 3.28 GHz x64-based CPU. To compare
proposed AGOSA method with existing MOABCQ
(Kruekaew & Kimpan, 2022), A2C (Li et al., 2024) and
MOPTSA3C (Mangalampalli et al., 2024) algorithms.
Evaluating makespan is crucial in the cloud paradigm as
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it directly impacts scheduling the process. An inefficient
task scheduler can lead to increased makespan, which in
turn affects the Quality of Service (QoS) provided by
cloud service provider. Consequently, optimizing
makespan is essential to ensure efficient task scheduling
and maintain high QoS standards in cloud computing
environments. AGOSA improves over standalone GOS
or PSO-based models by potentially offering enhanced
exploration-exploitation balance, faster convergence, and
better handling of complex cloud scheduling constraints.
Its customized fitness function and adaptive position
update rules may allow AGOSA to more effectively
optimize multi-objective scheduling problems, leading to
improved makespan, resource utilization, and cost
efficiency in cloud environments compared to traditional
GOS approaches. The comparisons of makespan using
uniform distribution described in Table 1 and Figure 3.
Table 1: Comparison of Makespan using uniform distribution

Tasks MOABCQ A2C MOPTSA3C AGOSA
100 802.66 712.08 688.18 600.21
500 836.75 809.26 709.27 618.22
1000 926.77 887.12 723.38 700.15

Fig. 3: Evaluation of Makespan

Table 2: Evaluation of resource cost using uniform distribution

Tasks MOABCQ A2C MOPTSA3C AGOSA
100 6.12 4.98 4.41 4.32
500 7.26 5.87 5.25 4.86
1000 8.28 6.22 6.72 6.21

Table 2 and Figure 4 presents evaluation of resource
cost using the proposed AGOSA algorithm in a multi-
cloud environment, demonstrating its effectiveness in
scheduling and resource allocation. An effective
scheduler, such as AGOSA, selects appropriate Virtual
Machine (VM) to generate optimized schedules,
minimizing resource costs. In contrast, inefficient
scheduling leads to increased resource costs, imposing a
burden on both Cloud Service Providers (CSPs) and
cloud users. This highlights the importance of evaluating
resource cost using AGOSA in multi-cloud
environments, motivating our research to develop
efficient scheduling strategies that optimize resource
utilization and reduce costs.

Fig. 4: Evaluation of resource cost

The proposed method is designed to execute multiple
cloud virtual machines from various providers, including
Microsoft, Google, and Amazon. The method is
evaluated based on its performance in executing tasks of
varying sizes, specifically 100, 500, and 1000 tasks,
using two key measures: makespan and cost. The results
of this evaluation are presented in Tables 3 and 4 and
Figures 5 and 6, which illustrate the method's
effectiveness in managing cloud resources and
optimizing task execution.
Table 3: Evaluation of resource makespan using different platform

Tasks Microsoft Google Amazon
100 600.12 612.25 592
500 630.12 601 625
1000 721 685 711

Fig. 5: Makespan evaluation of Microsoft, Google, and
Amazon cloud platforms for different task sizes

Table 3 and Figure 5 evaluate resource makespan
(total time required to complete all tasks) using different
cloud platforms (Microsoft, Google, and Amazon) for
varying task sizes (100, 500, and 1000 tasks). The results
show that for 100 tasks, Microsoft has highest makespan
(600.12), followed by Google (612.25) and Amazon
(592). For 500 tasks, Google has the lowest makespan
(601), followed by Amazon (625) and Microsoft
(630.12). For 1000 tasks, Amazon has the lowest
makespan (685), followed by Google (711) and
Microsoft (721). This table helps compare the efficiency
of different cloud platforms in managing resources and
completing tasks.

http://192.168.1.15/data/13409/fig3.png
http://192.168.1.15/data/13409/fig3.png
http://192.168.1.15/data/13409/fig4.png
http://192.168.1.15/data/13409/fig4.png
http://192.168.1.15/data/13409/fig5.png
http://192.168.1.15/data/13409/fig5.png
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Table 4 and Figure 6 evaluate resource cost (total cost
of using cloud resources) using different cloud platforms
(Microsoft, Google, and Amazon) for varying task sizes
(100, 500, and 1000 tasks). The results show that for 100
tasks, Microsoft has the lowest cost (4.12), followed by
Google (5.11) and Amazon (5.63). For 500 tasks, Google
has the lowest cost (4.02), followed by Microsoft (4.92)
and Amazon (6.01). For 1000 tasks, Amazon has the
lowest cost (6.12), followed by Google (7.25) and
Microsoft (7.01). This table helps compare the cost-
effectiveness of different cloud platforms in managing
resources and completing tasks.
Table 4: Evaluation of resource cost using uniform distribution

Tasks Microsoft Google Amazon
100 4.12 5.11 5.63
500 4.92 4.02 6.01
1000 7.01 7.25 6.12

Fig. 6: Cost evaluation of Microsoft, Google, and Amazon
cloud platforms for different task sizes

Conclusion
The paper proposed an Advanced Grasshopper

Optimization Algorithm (AGOSA) for scheduling in
multi-cloud environments. AGOSA demonstrates
exceptional performance in optimizing resource
allocation and minimizing makespan, leading to
improved Quality of Service (QoS) for cloud users. Our
evaluation showed that AGOSA outperforms existing
scheduling algorithms in multi-cloud environments,
achieving enhanced resource utilization, reduced
resource costs, improved scheduling efficiency,
minimized makespan and optimized task allocation. The
proposed AGOSA algorithm is a robust and efficient
scheduling solution for multi-cloud environments,
capable of adapting to dynamic workload changes and
optimizing resource allocation. By leveraging the
strengths of grasshopper optimization and adaptive
algorithms, AGOSA provides a reliable and effective
scheduling strategy for cloud service providers and users
alike.
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