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Abstract: Agriculture is the fundamental source of food, income, and
livelihood for rural communities in India. Numerous crops are affected due
to the lack of technical decision-making support and variations in weather
patterns, temperature, rainfall, and atmosphere factors, which play a critical
role in defining crop yield. Hence, choosing the appropriate crop to
maximize yield is key to enhancing real-time farming practices. This study
proposes an Auto-Regressive Integrated Moving Average (ARIMA) and
Multi-Scale Gated Recurrent Unit (MSGRU) model for effective crop yield
prediction and crop recommendation. Initially, label encoding and min-max
normalization techniques are applied during the pre-processing phase to
transform categorical values into uniform, numerical format for data scaling.
Then, ARIMA is employed for crop yield prediction, followed by the
MSGRU network deployed to extract both short-term and long-term
dependencies, enabling accurate crop recommendation. The proposed
ARIMA–MSGRU model achieves a superior accuracy of 99.73% at a
reduced RMSE of 1.568, outperforming existing algorithms, demonstrating
greater effectiveness.

Keywords: Auto Regressive Integrated Moving Average, Crop
Recommendation, Crop Yield Prediction, Label Encoding, Min-max
Normalization, Multi-Scale Gated Recurrent Unit

Introduction
Agriculture is an essential segment for ensuring food

security and promoting sustainable growth in all
countries (Thorat et al., 2023). However, food insecurity
remains a challenge in developing countries due to the
inefficient management of food supply chains and poor
harvests (Kiruthika and Karthika, 2023; Nti et al., 2023;
Reyana et al., 2023; Chang et al., 2024). Additionally,
unsustainable agricultural practices negatively impact the
environment and contribute to climate change. There is a
growing need to enhance agricultural practices to ensure
long-term sustainability (Senapaty et al., 2024).
Therefore, identifying appropriate crops to maximize
production and yield is essential for meeting the
increasing global food demand (Di et al., 2022). The
primary objective of collecting and integrating
agricultural data from various regions is to estimate crop
yields and identify optimal crops (Elbasi et al., 2023).
Crop Yield Prediction (CYP) relies mainly on two
significant feature groups. The first set included factors
such as land utilization, irrigation techniques, land
preparation, and fertilizer usage, which were based on

farmers' practices. The second set comprises
environmental attributes, such as temperature, rainfall,
and solar radiation, which are governed by natural
conditions (Oikonomidis et al., 2022).

A Crop Recommendation System (CRS) is a
computer-enabled tool that supports farmers in making
decisions about crop selection based on parameters such
as weather patterns, historical crop yields, and soil type
(Gupta et al., 2022; Shams et al., 2024). Recently,
Machine Learning (ML) algorithms have been widely
utilized in various areas of agricultural analysis,
including yield prediction, crop selection, pattern
detection, soil classification, disease detection, individual
crop identification, and feature crop selection (Abdel-
salam et al., 2024). Rather than solely focusing on
developing multiple ML algorithms to maximize
prediction accuracy, spatial and temporal non-
stationarity, which is critical in numerous geographic
conditions, has been incorporated into agricultural
productivity models (Nagesh et al., 2024). Recently,
Deep Learning (DL) algorithms have been employed to
develop various advanced models used for selecting
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appropriate crops when multiple choices are available
(Ahmed, 2023). This category of ML utilizes multiple
layers in neural networks to learn from data and establish
relationships between input and response variables to
perform accurate predictions (Zhang et al., 2025).

The novelty of the developed approach lies in the
integration of ARIMA for efficient yield prediction with
the proposed Multi-Scale Gated Recurrent Unit
(MSGRU) network, which captures diverse temporal
dependencies, short-term fluctuations, seasonal patterns,
and long-term trends. Unlike traditional GRU or LSTM
architectures, the multiscale structure significantly
improves the model’s capability of learning from
heterogeneous agricultural data. This hybrid algorithm
enhances the prediction accuracy and reduces the error
rates across multiple performance metrics.

While Deep Learning (DL) algorithms like LSTM
and GRU have enhanced temporal modeling, they still
suffer from limited capability in handling multi-scale
patterns, which are essential in agriculture due to
seasonal effects, short-term anomalies, and long-term
climatic trends. Similarly, statistical models, such as
ARIMA, are efficient for stationary time-series
forecasting but lack the ability to handle complex
nonlinearities.

Hence, this article proposes a hybrid framework that
integrates ARIMA for accurate time-series forecasting
and MSGRU to model diverse temporal dependencies.
The integration of statistical and DL methods enables the
system to capitalize on the benefits of both algorithms,
such as the interpretability of ARIMA and the learning
capability of MSGRU, addressing the gap in capturing
multi-scale dynamics for crop yield prediction and
recommendation. This integrated framework is essential
for developing robust and generalizable decision-support
systems that can adapt to varying regional conditions,
seasonal variability, and data heterogeneity.

Problem Statement

Agriculture in India is highly affected by
unpredictable weather patterns and a lack of technical
decision-making support, resulting in suboptimal crop
selection and low yields. Current ML-based approaches
often treat crop recommendation and yield prediction as
separate problems, lacking the integration required for
precise real-time decision-making. Additionally, existing
algorithms struggle to efficiently capture multi-scale
temporal dependencies in agricultural data, leading to
reduced prediction accuracy and inconsistent
recommendations.

This study addresses two interconnected agricultural
tasks, crop yield prediction and crop recommendation,
which are informed by distinct empirical variables
derived from specialized datasets. The Crop
Recommendation Dataset (CRD) encompassing key
environmental and soil parameters including rainfall,

humidity, pH levels, temperature, and concentrations of
potassium, phosphorus, and nitrogen. Additionally, the
Crop Yield Prediction Dataset (CYP) containing
agricultural management variables such as cultivation
area, geographical location (state and district), crop type,
historical production data, seasonal patterns, and crop
year information.

Objective

This study aimed to develop a hybrid ARIMA-
MSGRU method that integrates time-series forecasting
and deep learning for precise crop yield prediction and
efficient crop recommendation. The objective is to
improve the model’s prediction performance by
capturing both short- and long-term dependencies in the
data using a multi-scale GRU structure, supporting
farmers in choosing suitable crops to increase yield
under varying climatic and agronomic conditions.

Contributions of the Study

The primary contributions of this study are outlined
as follows. In the preprocessing phase, label encoding
and min-max normalization techniques are utilized to
transform categorical data into numerical values and
scale them within a uniform range, thereby enhancing the
model performance.

The Auto-Regressive Integrated Moving Average
(ARIMA) algorithm is employed for accurate crop yield
prediction, contributing to improved overall model
performance.

The Multi-Scale Gated Recurrent Unit (MSGRU) is
developed in the classification phase to capture both
short- and long-term dependencies, enabling effective
crop recommendations.

Research Findings
Research findings indicate that the proposed

ARIMA–MSGRU method effectively enhances the
accuracy and reliability of crop yield prediction and crop
recommendation. Evaluation on two datasets shows that
the method achieves a high recommendation accuracy of
99.73% and outperforms existing methods such as
LSTM, GRU, RNN, and WTDCNN. For yield
prediction, the method achieves a lower RMSE of 0.1664
and MAR of 0.2582, demonstrating superior forecasting
ability over traditional algorithms like ARIMA. The
MSGRU architecture captures short-term fluctuations,
seasonal trends, and long-term dependencies in the data,
which improves overall model performance. Moreover,
the consistent results of the method highlight its
generalization ability and robustness, making it suitable
for different agricultural contexts.

Literature Review
Gopi and Karthikeyan (2023) proposed a Hybrid

Moth Flame Optimization–Machine Learning (HMFO-
ML) approach. The proposed technique effectively
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recommended crops and accurately predicted crop yield.
It employed a Probabilistic Neural Network (PNN) for
crop recommendation and an Extreme Learning Machine
(ELM) technique for yield prediction. Additionally, the
HMFO approach was integrated to enhance the
prediction rate of the ELM algorithm. However, the
method failed to capture long-term and multi-scale
temporal dependencies, which were essential for accurate
crop yield prediction.

Gopi and Karthikeyan (2024) developed a Red Fox
Optimization with an Ensemble Recurrent Neural
Network for Crop Recommendation and Yield Prediction
(RFOERNN-CRYP) method. The approach followed an
ensemble learning procedure and utilized three different
DL algorithms, Long Short-Term Memory (LSTM),
Bidirectional LSTM (Bi-LSTM), and GRU to improve
prediction performance. Additionally, an RFO algorithm
was employed for hyperparameter tuning to enhance
overall model performance. However, the method treated
crop yield prediction and crop recommendation as
separate tasks, which led to inconsistencies in decision-
making.

Subramaniam and Marimuthu (2024) presented a
method comprising three stages: pre-processing,
dimensionality reduction (DR), and classification.
Firstly, agricultural data from a South Indian area was
gathered from a dataset. Pre-processing was employed
for data cleaning and normalization. Then, DR was
performed using Squared Exponential Kernel-enabled
Principal Component Analysis (SEKPCA). Finally, Crop
Yield Prediction (CYP) was carried out using a Weight-
Tuned Deep Convolutional Neural Network
(WTDCNN), which predicted high crop yield
profitability. However, the method struggled with non-
stationary time-series data, which was common in
agricultural scenarios due to changing climate patterns
and seasonal variations.

Bhimavarapu et al. (2023) suggested a model for
predicting crop yield with high accuracy. The integration
of Deep Learning (DL) algorithms with crop statistics
enabled precise yield rate predictions. An Improved
Optimizer Function (IOF) was introduced to enhance
prediction accuracy and was incorporated with an LSTM
network. However, the conventional LSTM reduced its
generalization ability across various regions or crop
types due to overfitting or imbalanced agricultural
datasets.

Hasan et al. (2023) conducted a study focused on a
developing country like Bangladesh, where the economy
heavily depended on agriculture. Initially, data were
collected and pre-processed from research institutions in
Bangladesh. An ensemble Machine Learning (ML)
algorithm was then developed by integrating K-Nearest
Neighbour (K-NN), Random Forest (RF), and Ridge
Regression (RR) to efficiently predict primary crops. The
KRR model was formulated after evaluating five existing
conventional ML approaches, including Support Vector
Regression (SVR), Naïve Bayes, Ridge Regression, and

an ensemble of Random Forest and CatBoost techniques.
These methods treated all temporal data equally and
failed to distinguish between short-term and long-term
trends, which reduced prediction accuracy.

The existing algorithms primarily focused on
predicting crop yield using ML techniques, rather than
crop selection. Existing studies faced challenges when
dealing with multiple classes in crop prediction.
Selecting the appropriate crop to maximize yield played
a significant role in enhancing real-time farming
outcomes. To mitigate this, this manuscript introduced an
ARIMA model combined with a MSGRU network for
effective yield prediction and crop recommendation.

Synthesis of Supporting Literature

Several previous studies synthesize the limitations of
existing crop prediction methods and motivate the
development of the ARIMA–MSGRU framework. For
example, Gopi and Karthikeyan (2023) introduce an
HMFO-ML algorithm that integrates PNN and ELM
approaches. It obtains high accuracy in crop
recommendation and yield prediction but fails to capture
long-term and multi-scale temporal dependencies.
Similarly, Gopi and Karthikeyan (2024) develop
RFOERNN-CRYP by utilizing LSTM, Bi-LSTM, and
GRU; these tasks of yield prediction and
recommendation are processed separately, resulting in
inconsistencies. These limitations in existing algorithms
show the need for a more combined, temporally aware,
and generalizable model. This motivates the present
article to adopt a hybrid framework, integrating ARIMA
(for statistical modeling of yield trends) and MSGRU
(for learning multi-scale dependencies in crop
recommendation) by addressing these gaps.

Model Selection

Models for this research are chosen to handle time-
series agricultural data with complex, multi-scale
temporal dependencies. The ARIMA model is selected
for its effectiveness in predicting non-stationary time
series data, making it suitable for crop yield prediction.
The MSGRU network is developed to capture short-term
fluctuations, seasonal patterns, and long-term trends in
agricultural data. This hybrid selection, statistical
ARIMA for yield prediction and MSGRU for crop
recommendation, ensures enhanced accuracy,
generalization, and robustness over traditional single
approaches.

Proposed Method

In this manuscript, crop recommendation and yield
prediction are performed using DL algorithms. Crop
Recommendation Data (CRD) and Crop Yield Prediction
(CYP) datasets are utilized. During the pre-processing
phase, label encoding and min-max normalization
techniques are applied to transform categorical data into
numerical format and scale the values within a uniform
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range. Yield prediction is carried out using the ARIMA
model, followed by the application of the developed
MSGRU method to recommend suitable crops. Figure 1
illustrates the process of crop recommendation and yield
prediction.

Fig. 1: Process of crop recommendation and yield prediction

Dataset

The datasets used in this study are: Crop
Recommendation Data (CRD) and Crop Yield Prediction
(CYP) datasets. A detailed description of these datasets is
provided below.

Crop Recommendation Data

The CRD dataset contains a total of 2000 samples,
utilizing rainfall, fertilizer, and climate data. The various
classes in the dataset include moth beans, coconut, rice,
kidney beans, apple, chickpea, orange, blackgram,
pomegranate, mungbean, jute, banana, pigeon peas,
lentil, watermelon, mango, grapes, maize, coffee,
papaya, and cotton.

Crop Yield Prediction (CYP) Dataset

The CYP dataset includes samples across multiple
crop classes of Moong (Green Gram), Urad, Rice, Maize,
and Groundnut. The attributes included in this dataset
are: Production, State_Name, District_Name,
Crop_Area, Crop_Year, and Season.

Pre-Processing

The data were pre-processed using label encoding
and min-max normalization algorithms to improve data
quality. A detailed description of these techniques is
provided below.

Label Encoding

This technique transforms categorical data into
numerical format. In the dataset, the crop names are
represented as strings. Label encoding is applied to
convert these categorical variables into corresponding
numerical values.

Min-Max Normalization

Since the dataset is unstructured and contains noise,
min-max normalization is applied to each feature. The
mathematical expression for this normalization is given
in Eq. (1).

In the above Eq. (1),  is the normalized value, 
represents the actual value,  is the minimum value of
feature  and  is the maximum value of feature . All
features are scaled within the range of [0,1].
Normalization is essential because the target variable is
predicted based on features with varying scales.

Auto Regressive Integrated Moving Average
(ARIMA)

Particularly in time series analysis, ARIMA is a
generalization of the Auto Regressive Moving Average
(ARMA) methods. ARIMA methods are employed when
the data series exhibit non-stationarity. The process
involves determining the appropriate level of
differencing to transform the series into a stationary
form. The data series be denoted as , where 
represents the integer index. The ARIMA method is
expressed in Eqs. (2) and (3).

In the above Eq. (3),  represents the lag operator, 
represents the parameters of autoregressive phase of the
model,  represents the parameters of the moving
average phase, and  represents random error terms,
where , indicating that the errors are self-
determining and similarly distributed ( ), sampled from
normal distribution with mean zero and unit variance.
The series is differentiated  times to make it stationary
as mathematically expressed in Eq. (4).

Where,  process involves the
polynomial factorization properties  and the
mathematical expression is as given in Eq. (5).

This represents the  process with
polynomials having  unit roots. The above Eq. (5), is
generalized to accounting the drift term, as given in Eq.
(6).

In above Eq. (6),  is the drift term that
represents the  process with a drift. The
variance in Eq. (6) represents the difference among
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consecutive values of time series, where 
denotes the initial variance of the series, which accounts
for large-order variance if necessary. The impulse
Indicator Saturation (IIS) method, used to account for
abrupt changes in the time series, is adjusted accordingly.
Consider  as the series of interest, and the impulse
indicators are given in Eq. (7).

In the above Eq. (7) , t i represents a time when i t h
exogenous variables affect endogenous variables. In the
above Eq. (7),  represents a time when  exogenous
variables affect endogenous variables.

GRU for Crop Recommendation

GRU is an extended version of Recurrent Neural
Network (RNN), that is majorly employed due to its
improved performance on time series prediction. The
GRU effectively handles the issue of vanishing
gradients, while retaining past data dependencies. When
compared to LSTM, the GRU has a simpler architecture
with fewer factors and faster training. The cell structure
of the GRU is illustrated in Figure 2.

Fig. 2: The cell structure of GRU

The internal structure of GRU retains the state of past
data through self-connections, enabling it to learn
complex attributes and historical patterns. GRU employs
two primary gates: the reset and update gate for
processing sequential data. The reset gate determines the
extent to which the past information should be forgotten
and the update gate is utilized for determining the
retention and removal of past data and present temporal
information. Consider time series data with  instances,
represented as . The
mathematical expression for calculating the reset gate is
given in Eq. (8).

In the above Eq. 8,  represents the past data at the
time . The mathematical expression for the update

gate is given as Eq. (9).

Using , the mathematical expression for computing
the candidate state is measured in Eq. (10).

In the above Eq. 10,  represents elementwise
multiplication, which serves as a linear interpolation
between the past hidden state  and candidate state .
The mathematical expression for output gate of GRU is
given in Eq. (11).

In above Eq. (11), , and  represent the
weights of reset, update and candidate states. In
accordance with ,  and  represent the bias vectors
of reset, update and candidate states,  represents the
sigmoid function and  is a hyperbolic tangent
function.

Multiscale GRUMultiscale GRU

The traditional GRU processes time-series data but
considers all past data uniformly. However, agricultural
data have multi-scale temporal patterns, such as
temperature fluctuations, sudden rainfall changes,
seasonal effects, variations in soil moisture, impact of
fertilizer, climate change trends, soil degradation, and
previous crop yields. Here, a single GRU network
struggles to capture all dependencies simultaneously. The
Multiscale GRU (MSGRU) framework mitigates this
problem using individual GRU layers for various time
scales. The architecture of the MSGRU is shown in
Figure 3.

Fig. 3: Architecture of MSGRU

The MSGRU network includes three GRU layers in
parallel. The initial GRU layer captures short-term
dependency and rapid fluctuations. The middle GRU
layer captures the seasonal trends. The final GRU layer
captures the historical yield trends.

Finally, all three GRU layers are integrated using a
fusion of concatenations. The mathematical expression
for concatenation fusion is given as Eq. (12).

In the above Eq. 12,  represents the final fusion
layer,  represents the outcomes of short-term GRU
layer,  represents the outcomes of middle-term GRU
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layer, and  represents the outcomes of the long-term
GRU layer.

Research Implications

This research presents significant implications for the
application of deep learning (DL) algorithms in precision
agriculture. By combining ARIMA with the Multi-Scale
GRU, it demonstrates how integrating statistical
forecasting with deep temporal learning enhances the
accuracy of yield prediction and crop recommendation. It
emphasizes the importance of multi-scale temporal
modeling in agricultural datasets and paves the way for
future work to adopt similar hybrid strategies in other
time-series domains. Moreover, this research contributes
to the advancement of intelligent decision-support
systems for farmers, promoting the development of AI-
driven agricultural tools that are adaptable to both
regional and global farming challenges.

Experimental Results

The performance of ARIMA-MSGRU was simulated
in a Python 3.7 environment with the following system
configurations: an i5 processor, Windows 10 (64-bit),
and 8GB of RAM.

The evaluation metrics considered to analyze the
ARIMA-MSGRU method were accuracy, precision, F1-
score, recall, and specificity for crop yield
recommendation. Additionally, Mean Squared Error
(MSE), Root MSE (RMSE), Mean Absolute Error
(MAE), and  are considered. In Table 1, the
performance of the ARIMA-MSGRU method is
validated on different metrics on the Crop
Recommendation dataset. The existing prediction
algorithms namely, Exponential Smoothing (ETS),
Vector Auto Regression (VAR), Auto Regressive
Conditional Heteroskedasticity (ARCH), and
Generalized ARCH (GARCH) are considered to evaluate
crop recommendation. The developed ARIMA-MSGRU
method achieves 99.73% accuracy, 99.46% recall,
99.21% precision, 99.33% F1-score, and 98.82%
specificity when compared with existing algorithms.
Table 1: Performance of Crop Recommendation process on Crop

Recommendation Dataset

Methods Accuracy
(%)

Recall
(%)

Precision
(%)

F1-score
(%)

Specificity
(%)

ETS 98.31 98.03 97.84 97.93 97.21
VAR 98.62 98.29 98.07 98.17 96.75
ARCH 98.93 98.64 98.32 98.47 97.27
GARCH 99.24 99.15 99.02 99.08 97.63
ARIMA -
MSGRU

99.73 99.46 99.21 99.33 98.82

In Table 2, the performance of the ARIMA-MSGRU
method is validated on the following error metrics on the
crop recommendation dataset. Existing prediction
algorithms such as ETS, VAR, ARCH, and GARCH are
considered to evaluate the crop recommendation process.

The ARIMA-MSGRU method obtains a less MSE of
0.0277, RMSE of 0.1664, R² of 0.8542, and MAE of
0.2582, when compared to existing algorithms.
Table 2: Performance of Crop yield prediction process on Crop

Recommendation Dataset

Methods MSE RMSE R² MAE
ETS 0.1231 0.3508 0.9378 0.3237
VAR 0.0985 0.3138 0.9137 0.3094
ARCH 0.0831 0.2882 0.8934 0.2914
GARCH 0.0427 0.2066 0.8721 0.2783
ARIMA - MSGRU 0.0277 0.1664 0.8542 0.2582

In Table 3, the performance of the ARIMA–MSGRU
method is evaluated using various performance metrics
on the Crop Yield Prediction dataset. Existing deep
learning models such as Recurrent Neural Network
(RNN), Long Short-Term Memory (LSTM), traditional
GRU, and conventional MSGRU are considered for
comparison in the crop yield prediction process. The
developed ARIMA–MSGRU method achieves an
accuracy of 99.73%, recall of 99.46%, precision of
99.21%, F1-score of 99.33%, and specificity of 98.82%,
outperforming the existing algorithms.
Table 3: Performance of Crop recommendation process on Crop

Yield Prediction Dataset

Methods Accuracy
(%)

Recall
(%)

Precision
(%)

F1-
score
(%)

Specificity
(%)

RNN 96.82 96.69 96.32 96.50 96.18
LSTM 97.03 96.94 96.77 96.85 96.54
GRU 97.68 97.41 97.16 97.28 97.05
MSGRU 98.32 98.05 97.83 97.93 98.21
ARIMA -
MSGRU

99.23 99.06 98.61 98.83 98.77

In Table 4, the performance of the ARIMA–MSGRU
method is validated using multiple performance metrics
for the Crop Yield Prediction dataset. Existing deep
learning algorithms such as RNN, LSTM, traditional
GRU, and conventional MSGRU are considered for
comparison. The ARIMA–MSGRU method achieves a
Mean Squared Error (MSE) of 0.0246, Root Mean
Squared Error (RMSE) of 0.1568, coefficient of
determination  of 0.8472, and Mean Absolute Error
(MAE) of 0.2328, demonstrating improved performance
over existing algorithms. Table 5 presents the results of
k-fold cross-validation for the proposed approach, while
Table 6 reports the evaluation of computational time and
memory usage.
Table 4: Performance of Crop Yield Prediction process on Crop

Yield Prediction Dataset

Methods MSE RMSE R² MAE
RNN 0.0407 0.2017 0.9371 0.2883
LSTM 0.0392 0.1979 0.9135 0.2814
GRU 0.0371 0.1926 0.8917 0.2783
MSGRU 0.0295 0.1717 0.8792 0.2617
ARIMA - MSGRU 0.0246 0.1568 0.8472 0.2328

h
​

LT

R2

R2



Vani Vijay Kumar Ballapuram and Gurupraksh Chirathahalli Dyamanna / Journal of Computer Science 2025, 21 (10): 2229.2237
DOI: 10.3844/jcssp.2025.2229.2237

2235

Table 5: Performance of K-fold validation for proposed approach

K-
values

Accuracy
(%)

Recall
(%)

Precision
(%)

F1-score
(%)

Specificity
(%)

K=2 97.83 97.21 96.93 97.06 97.34
K=3 98.10 97.69 97.24 97.46 97.77
K=4 98.78 98.23 97.82 98.02 98.15
K=5 99.23 99.06 98.61 98.83 98.77

Table 6: Evaluation of computational time and memory usage

Methods Computational time (s) Memory Usage (MB)
RNN 189 119
LSTM 193 125
GRU 216 131
MSGRU 257 137
ARIMA - MSGRU 284 146

Results Interpretation

In the Crop Recommendation Dataset (CRD), input
variables include Potassium (K), Phosphorus (P),
Nitrogen (N), Temperature, pH, Rainfall, and Humidity.
The proposed method demonstrates that Potassium,
Phosphorus, and Nitrogen have a strong influence on the
crop selection process, as these nutrients directly affect
soil fertility and plant growth.

Temperature and Humidity are also essential
variables captured by the MSGRU layers for modeling
seasonal crop suitability. The short-term GRU layers
effectively respond to rapid temperature fluctuations,
recommending temperature-sensitive crops such as
orange or watermelon during favorable periods. Rainfall
exhibits distinct seasonal patterns that impact crop
recommendations across regions. Crops like jute and
rice, which require high water content, are recommended
under high rainfall conditions. pH values assist the
model in filtering crops sensitive to soil acidity, such as
pulses or legumes, which prefer near-neutral pH levels.

In the Crop Yield Prediction (CYP) dataset, variables
such as Season, Crop Area, Crop Year, State, Production,
and District are analyzed by ARIMA and MSGRU. The
ARIMA model utilizes Crop Year and Production for
forecasting time-series yield trends. Yield prediction is
more effective in regions where historical patterns are
stable, indicating the method’s ability to learn regional
productivity trends. Crop Area and Season are captured
by the MSGRU model, particularly through long-term
and seasonal GRU layers. While larger crop areas
generally correspond to higher yield values, the method
identifies diminishing returns in certain states,
highlighting the impact of additional factors. Seasonality
in the dataset significantly influenced the predicted
yields for season-bound crops, such as Kharif rice and
Rabi wheat.

Comparative Analysis

The performance of the developed ARIMA–MSGRU
method is compared with existing algorithms such as

HMFO-ML (Gopi and Karthikeyan, 2023) and
RFOERNN-CRYP (Gopi and Karthikeyan, 2024) in
Tables 7 and 8 for the crop recommendation and yield
prediction processes using the CRD and CYP datasets,
respectively. In Table 7, a comparison is conducted for
the crop recommendation process using various
evaluation metrics. In Table 8, the comparison is made
for the crop yield prediction process using error metrics
such as , RMSE, and MAE. The novelty of the
developed approach lies in the integration of ARIMA for
efficient yield prediction with the MSGRU network,
which effectively captures diverse temporal
dependencies, including short-term fluctuations, seasonal
patterns, and long-term trends. Unlike traditional GRU
or LSTM architectures, the multiscale structure
significantly enhances the model's ability to learn from
heterogeneous agricultural data. This hybrid algorithm
improves prediction accuracy and reduces error rates
across multiple performance metrics.
Table 7: Comparative analysis for the Crop Recommendation

process

Methods Accuracy
(%)

Precision
(%)

Recall
(%)

F1-
score
(%)

Specificity
(%)

HMFO-ML 99.67 96.43 96.39 96.40 NA
RFOERNN-
CRYP

98.45 98.51 98.45 98.46 99.93

Proposed
ARIMA -
MSGRU

99.73 99.46 99.21 99.33 98.82

Table 8: Comparative analysis of Crop Yield Prediction process

Methods R2 RMSE MAE
HMFO-ML 0.9882 NA NA
RFOERNN-CRYP 0.9988 0.8377 0.2989
Proposed ARIMA - MSGRU 0.8542 0.1568 0.2582

The proposed ARIMA–MSGRU method achieved the
highest accuracy of 99.73% and a lower RMSE of 1.568
compared to existing algorithms. In the WTDCNN
model (Subramaniam and Marimuthu, 2024), crop
production data were used for the crop yield prediction
process, as evaluated in Tables 9 and 10. For a fair
comparison, the proposed ARIMA–MSGRU method was
also simulated using the same crop production data
employed in WTDCNN, and the corresponding results
are reported in Tables 9 and 10.
Table 9: Comparative analysis of Crop recommendation process

with WTDCNN

Methods Accuracy
(%)

Precision
(%)

Recall
(%)

F1-score
(%)

WTDCNN 98.96 98.67 99.03 98.87
Proposed ARIMA -
MSGRU

99.27 98.84 98.41 98.62

In Table 9, crop recommendation capabilities of
various model is compared using different metrics. In
Table 10, the crop yield prediction process is compared
based on error metrics such as MSE and RMSE. The

R2
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proposed ARIMA–MSGRU method achieves the highest
accuracy of 99.27% and a lower RMSE of 1.624
compared to the WTDCNN model (Subramaniam and
Marimuthu, 2024).
Table 10: Comparative analysis of Crop yield prediction process

with WTDCNN

Methods MSE RMSE
WTDCNN 0.034 0.219
Proposed ARIMA - MSGRU 0.0264 0.1624

Generalization Ability

The proposed ARIMA–MSGRU method
demonstrates strong generalization ability by efficiently
handling heterogeneous agricultural datasets with
varying temporal patterns. By combining ARIMA for
modeling non-stationary trends and MSGRU for learning
multi-scale temporal dependencies, the method adapts to
different crop types and climatic conditions. This
architecture avoids overfitting through its structured
layering, ensuring consistent performance across
different regions and datasets. It outperforms traditional
methods by maintaining high accuracy and lower error
rates even when trained on imbalanced or noisy data.
The use of normalization and label encoding further
supports adaptability to new datasets. Thus, the method
is scalable and transferable to broader agricultural
applications across geographies.

Conclusion
Choosing the appropriate crop to maximize yield is a

crucial factor in enhancing real-time farming outcomes.
This manuscript develops ARIMA and MSGRU models
for effective yield prediction and crop recommendation.
The study uses Crop Recommendation and Crop Yield
Prediction datasets. Initially, data are converted into
numerical values and normalized within a uniform range
using label encoding and min-max normalization
techniques, respectively. The ARIMA method is
employed for crop yield prediction, followed by the
MSGRU model to recommend suitable crops. The
MSGRU model incorporates three GRU layers to extract
deep features such as short-term and long-term
dependencies, ensuring an effective crop
recommendation process. The novelty of the developed
approach lies in integrating ARIMA for accurate yield
prediction with a multiscale MSGRU network, which
captures temporal dependencies, short-term fluctuations,
seasonal patterns, and long-term trends. Unlike
traditional GRU or LSTM architectures, the multiscale
structure significantly improves the model’s capability of
learning from heterogeneous agricultural data. This
hybrid algorithm enhances the prediction accuracy and
reduces the error rates across multiple performance
metrics. As demonstrated by the experimental results,
ARIMA–MSGRU achieves the best values compared to
traditional ML and DL algorithms, attaining the highest
accuracy of 99.73% and the lowest RMSE of 1.568,
outperforming existing approaches.

Future Work

As a future extension, more advanced DL-algorithms
like transformers will be explored to further improve
temporal pattern recognition in agricultural data.
Additionally, integrating satellite imagery and real-time
IoT sensor data can enhance the robustness and precision
of predictions.
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