
© 2025 Tinashe Crispen Garidzira, William Tichaona Vambe and Courage Matobobo. This open-access article is distributed under a
Creative Commons Attribution (CC-BY) 4.0 license.

Research Article

Assessing Bi-LSTM Model’s Performance in Identifying AI-
Generated Text in Digital Media

1Tinashe Crispen Garidzira, 2,3William Tichaona Vambe and 4Courage Matobobo

1Department of Computer Science, University of Fort Hare, Alice, South Africa
2Department of Mathematical Science and Computing, Walter Sisulu University, East London, South Africa
3National Institute for Theoretical and Computational Sciences, Mthatha, South Africa
4Department of Business and Application Development, Walter Sisulu University, East London, South Africa

Article history
Received: 25-11-2024
Revised: 09-05-2025
Accepted: 20-05-2025

Corresponding Author:
William Tichaona Vambe
Department of Mathematical
Science and Computing, Walter
Sisulu University, East London,
South Africa;
National Institute for Theoretical
and Computational Sciences,
Mthatha, South Africa
Email: vambewilliam@gmail.com

Abstract: The rapid growth of AI-generated content from ChatGPT,
Gemini, and many others poses significant challenges in digital media.
There are increasing instances of text generated by machine learning models
being indistinguishable from human-written text. This calls for an effective
way of detecting and distinguishing text generated by AI from human text.
Using a Cross-Industry Standard Process for Data Mining (CRISP-DM)
methodology, a Bidirectional Long Short-Term Memory (Bi-LSTM) model
for classifying AI-generated text in a digital media context was developed. A
carefully curated dataset of human and AI-generated text samples was used.
The Bi-LSTM model without an embedding layer was implemented,
optimizing the model to capture complex linguistic patterns apparent in each
text type. An experimental setup was used to evaluate the effectiveness of
the model. It was noted that the model achieved a remarkable test accuracy
of 99.79%, with a loss of 0.009. To facilitate practical implementation, we
developed a web application using Next.js with our model served from a
Flask server that enables real-time AI text detection. Our results highlight
the model’s ability to accurately identify AI-generated text, providing
valuable insights into deploying such models to verify content on media
platforms. This study highlights the potential of neural network-based
classifiers to address the pressing need for automated AI text detection in an
increasingly AI-influenced digital ecosystem.

Keywords: AI-Generated Text Detection (ATD), Bi-LSTM Model, Digital
Media Classification (DM), Natural Language Processing (NLP)

Introduction
A rapid advancement in Machine Learning (ML),

particularly Natural Language Processing (NLP), has led
to a proliferation of AI-generated text content across
various digital media platforms (Cheng et al., 2024). The
content generated by models such as OpenAI’s GPT
family and Google’s BERT has become increasingly
complex, making it nearly indistinguishable from
human-written text (Kalyan, 2024). As a result, digital
media platforms face significant challenges in
distinguishing between AI-generated and human-written
content, which has implications for content authenticity,
reader trust, and the spread of misinformation (Jawahar
et al., 2020; Ott et al., 2011). This predicament has
affected many application areas, for example, higher
education, as most students are now believed to use AI to
write assignments and research. It has become difficult
for Turnitin and other AI-detecting software to detect
such.

Detecting AI-generated text poses challenges due to
the complex linguistic patterns and syntax that advanced
language models can mimic (Zellers et al., 2019).
Conventional text classification methods struggle to
handle this level of nuance because they may not capture
the subtle differences in linguistic features between AI
and human-generated text (Zheng, 2023).

Several approaches have been used to address the
above-mentioned problem.

Zellers et al. (2019) relied on data quality to train
Grover to detect AI-generated information. However,
their approach struggled to generalize across different
contexts.

Research by Brown et al. (2020) explored the
capabilities of the GPT-3 model and addressed issues
related to text generation and detection. Although GPT-3
enables high-quality text generation, they point out that
AI text detection remains challenging due to subtle

Journal of Computer Science



Tinashe Crispen Garidzira et al. / Journal of Computer Science 2025, 21 (8): 1897.1907
DOI: 10.3844/jcssp.2025.1897.1907

1898

overlaps in syntactic patterns between human and AI
text.

Solaiman et al. (2019) studied AI-generated texts'
ethical implications and detection strategies. Their study
involved testing various classifiers and found that
although the detection models were promising, their
performance dropped significantly in various real-world
scenarios.

Recent studies have introduced the application of
Deep Learning (DL) techniques, such as Bidirectional
Long Short-Term Memory (Bi-LSTM) networks for
emotion detection, and software requirements,
respectively (Abbas et al., 2024; Amadi et al., 2023;
Vambe & Garidzira, 2024). Their works proved that Bi-
LSTM can effectively capture sequential dependencies in
textual data, which is essential for identifying the
nuanced linguistic structures characteristic of AI-
generated text. However, these studies also inadequately
address the risks of overfitting and do not provide a
general framework applicable to different domains, thus
limiting the broader applicability of their results in real-
world situations.

Evidently, a lot has been done in trying to address the
challenge. However, open research gaps remain, as
articulated above, based on the weaknesses of the
proposed solutions.

Therefore, the aim of this study is to:

a) Explore the use of the Bi-LSTM approach in
correctly classifying (detecting) and distinguishing AI-
generated text from human-generated text.

b) Assess the model’s accuracy, effectiveness, and
efficiency in identifying AI-generated text in digital
media when compared with other existing models.

Furthermore, a web application was developed using
Next.js, with the model deployed on the Flask server,
facilitating real-time AI text detection to enable real-
world applicability. The application provides media
platforms with a content verification tool, ensuring
greater transparency and control over published material.

The paper starts with a discussion of related work,
followed by an explanation of the methodology and its
stages as adopted in this work. Next, the design and
implementation are detailed, and the results are
presented. A discussion of the results follows. Lastly, a
conclusion with future work is provided.

Related Works

The rapid growth of AI-generated content has
prompted researchers to explore reliable methods for
distinguishing it from human-authored text (Chakraborty
et al., 2023). This area has gained particular importance
in recent years, and in application areas like education, it
is paramount to check for plagiarism and the use of AI in
writing, be it assignments, projects, or research. Software
like Turnitin cannot detect most AI-written text, which

calls for a reliable solution in this application area and
other application areas.

Early work in detecting AI-written text relied on rule-
based approaches and keyword analysis (Cheng et al.,
2024). Still, these methods have become inadequate as
Large Language Models (LLMs) such as GPT-3, BERT,
and others generate text with increasingly complex
linguistic structures that are now existing (Cheng et al.,
2024).These models can mimic human-like writing
patterns, which pose significant challenges to traditional
text verification techniques (Zellers et al., 2019).

Recent advances in ML, especially DL, have
significantly improved the ability to classify text.
Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs) were initially popular choices
for text classification, but they suffer from limitations in
capturing long-term dependencies (Devlin et al., 2019).

Bi-LSTM models have emerged as an effective
solution, especially in natural language processing tasks
that require preserving contextual information in both
directions of a text sequence (Amadi et al., 2023).
Studies by Graves and Graves (2012) and Devlin et al.
(2019) have demonstrated that Bi-LSTM models
improve classification accuracy by effectively capturing
context in text data, which is essential for distinguishing
subtle linguistic cues in AI-generated content.

In the study by Petropoulos and Petropoulos (2024),
the authors sought to address the challenge of detecting
AI-generated text to prevent the misuse of advanced Text
Generation Models (TGMs), such as those used in
automated content generation and disinformation
campaigns. They developed a ML classifier to
distinguish between AI-generated and human-written
texts. Although the specific tools and algorithms used
were not detailed, it can be inferred that they likely used
supervised learning techniques, possibly using DL
models such as Bi-LSTM or Transformer-based
architecture. The classifier demonstrated its effectiveness
in distinguishing between the two types of text,
achieving notable results, although exact performance
metrics were not provided. The strength of their work
lies in its practical applicability, offering a solution to a
pressing problem directly related to combating the
growing influence of AI in digital media and online
content creation. However, one of the weaknesses of
their approach was its lack of adaptability to rapidly
evolving AI text generation models.

As AI-generated content advances and evolves,
especially with new models that can better mimic human
language features, classifiers trained on previous models
may struggle to maintain high accuracy. This poses a
challenge to ensure that the classifier remains robust over
time as the TGM improves. Additionally, if the classifier
is trained using a limited dataset, it may not generalize
well to different linguistic or linguistic contexts,
reducing its applicability across global digital platforms.



Tinashe Crispen Garidzira et al. / Journal of Computer Science 2025, 21 (8): 1897.1907
DOI: 10.3844/jcssp.2025.1897.1907

1899

Addressing these limitations would improve the
scalability and robustness of search, ensuring that
detection methods remain relevant as AI technology
advances.

Prova (2024) conducted a study to address the
increasing challenge of distinguishing AI-generated text
from human-written content. His study used multiple ML
models, including XGB Classifier, SVM, and BERT. In
their findings, BERT achieved the highest accuracy of
93%. The strength of this work lies in the extensive
comparison of different algorithms, which shows that
BERT is particularly effective at handling the complex
linguistic structures inherent in AI-generated content.
However, a notable weakness is the reliance on
traditional models such as XGB and SVM, which may
not fully capture the complex contextual dependencies in
AI-generated text. Additionally, the study did not
consider real-time detection, an important aspect of
practical implementation in dynamic media
environments.

In another study by Fraser et al. (2025), the
researchers focused on the factors influencing the ability
to detect AI-generated text, specifically with models such
as GPT-3.5 and BERT. Their analysis highlighted the
role of complexity and entropy as features that
distinguish machine-generated text from human-
generated text. The strength of their study lies in the
innovative approach to using these features, which
provides a unique perspective on AI detection beyond
standard classification techniques. However, their work
was limited by its focus on static text features, ignoring
dynamic models that are capable of real-time detection.
Their research did not explore real-time AI text
detection, which may be necessary for practical
implementation on media platforms.

Alkhairy (2024) proposed using Convolutional
Neural Networks (CNNs) to detect AI-generated text.
The model was able to capture subtle hierarchical
patterns in text. Their results demonstrated that CNNs
outperform traditional ML classifiers in some cases. The
strength of their approach lies in the ability of CNNs to
identify deep features in text data, which can lead to
better performance in classifying complex AI-generated
content. However, their study was limited by the inability
of CNNs to capture long-term dependencies in text, a
task better suited to sequential models such as Bi-LSTM
or transformer-based architectures. Additionally, the
study did not consider real-time detection capabilities,
which are critical for effectively deploying these models
in an ever-changing digital ecosystem.

Petropoulos and Petropoulos (2024) highlighted the
pressing challenge posed by the misuse of Text
Generation Models (TGMs) in the rapidly evolving era
of artificial intelligence. They highlight how these
models, while advancing industries and education, are
also being exploited to generate fake news or evade
intellectual effort.

Mitrović et al. (2023) focused on training a ML
model to differentiate human-generated text and
ChatGPT-generated text, using explainable AI to
discover linguistic style patterns of ChatGPT, especially
in short online reviews. They achieved 79% accuracy.

Ghosal et al. (2023) examined the advances and
challenges in detecting AI-generated text, addressing the
need for robust detection frameworks to combat the
misuse of LLMs in fake news and other harmful
applications.

Qasim et al. (2022) used Transfer Learning (TL)
approaches to perform text classification, where pre-
trained LLMs models, such as BERT or GPT, were fine-
tuned on specific text datasets for classification. While
these models perform well, they often demand high
computational resources and large datasets, which may
not be feasible for real-time applications. On the other
hand, Bi-LSTM models offer a balance between
efficiency and performance, making them suitable for
applications that require both practical implementation
and accuracy (Abbas et al., 2024).

In addition, Wani et al. (2024) presented a robust AI-
based framework that used the integration of Bi-LSTM
and Word2Vec to identify and reduce AI-generated spam
effectively. Their work highlighted advanced NLP
techniques and the performance of DL models to
improve the authenticity of online content.

The above literature shows that studies have been
done to address the integration of AI text detection
models into web applications for immediate deployment.
However, to the best of our knowledge, all the reviewed
works in this study do not provide a practical tool or
solution for real-time AI text verification. This can also
be confirmed as a research gap in the current existing
studies (Ghosal et al., 2023; Mitrović et al., 2023;
Petropoulos & Petropoulos, 2024). Therefore, this calls
for a practical tool or solution for real-time AI text
verification, which this work seeks to provide by
implementing a Bi-LSTM model on the Flask server in a
Next.js web application. If successful, the innovation
should highlight the potential of neural network-based
classifiers in real-world applications, laying a foundation
for future advances in automated AI content detection
systems. Thus, the work will give a theoretical and
practical foundation for further research.

Methodology
The research used the Cross-Industry Standard

Process for Data Mining (CRISP-DM) methodology.
Adopting the six stages, namely: business (problem)
understanding, data understanding, data preparation,
modeling, evaluation, and deployment (Ayele, 2020) for
building an ATD system that used AI vs a human public
dataset from Kaggle by Gerami (2023) to build a Bi-
LSTM model.



Tinashe Crispen Garidzira et al. / Journal of Computer Science 2025, 21 (8): 1897.1907
DOI: 10.3844/jcssp.2025.1897.1907

1900

Problem Identification

Literature review (Chigbu et al., 2023; Kunisch et al.,
2023) and document inspection (van Beusekom et al.,
2010) methods were used. These two methods helped the
researchers identify the existing research gaps of not
having a practical tool or solution for real-time AI text
verification. It was from the problem that the research
objectives were formed, which indicated that there was a
need to design the model and have data to train it.

Data Collection and Processing

To design the model, the researchers used a public
dataset from Kaggle (Gerami, 2023), which contains
unbalanced classes between AI-generated and human-
generated text. Since our study was focused on a single
language, English, the dataset contains only English text.
The dataset was unbalanced in favour of human-
generated text.

Fig. 1: Dataset distribution

The labels had to be balanced so that human and AI-
generated labels would have a fraction of 0.5 each,
because imbalanced classes in the dataset can ruin
classification performance, particularly accuracy for
minority classes, as articulated by Li et al. (2022). To
achieve better precision, the dataset was balanced. Fig. 1
shows the distribution of labels in the original dataset
and after balancing. After balancing, the dataset was split
into three subsets: training, testing, and validation sets,
as shown in Table 1.
Table 1: Dataset Distribution

Set Examples Fraction (%)
Training 232 240 64
Testing 72 576 20
Validation 58 060 16
Total 362 876 100%

Of the 362 876 sizes, 64% were allocated for
training, 20% were reserved for testing, and 20% of the
training data (58,060) were used for validation,
representing 16% of the entire dataset. This dataset
shows that a robust model can be built to ensure a
reliable evaluation, as supported by Joseph and Vakayil
(2022).

In the preprocessing stage, several steps were
implemented to ensure data consistency and improve
model performance. Tokenization was applied to convert
text samples into individual tokens, preparing them for
processing by the Bi-LSTM model. Text normalization,
as defined by Joseph and Vakayil (2022) was followed. It
includes lowercasing, punctuation removal, and space
standardization to reduce input variability. Fig. 2 shows
the visualization of word cloud plots for the text that was
found in each set.

Fig. 2: Word clouds for text in sets

It can be noted from Fig. 2 that the most common
words in this dataset were stop words. This brought our
attention to removing stop words while preprocessing to
improve model performance. This normalization step had
an impact of reducing the training vocabulary to our
model, as a result, reducing model parameters, which
reduced the model training time.

Since ML models do not understand words but
numbers, a vocabulary was created based on the training
text after the text had been normalized. A vocabulary is
essentially a word-to-index mapping, like a Python
dictionary, used as a reference during text processing and
model inference (Eichstaedt et al., 2021). We used the
training text to create this vocabulary to avoid
information leakage. During vocabulary creation, we set
the minimum frequency to 5, meaning that words that do
not appear more than 5 times in our text were
automatically converted to unknown words. This had a
significant impact on reducing the vocabulary size to 47
619.

Larger vocabulary sizes increase the model’s
trainable parameters, which impact the training time,
especially on CPU computers. During text tokenization,
which is a process of converting a list of words into a list

http://192.168.1.15/data/13374/fig1.png
http://192.168.1.15/data/13374/fig1.png
http://192.168.1.15/data/13374/fig2.png
http://192.168.1.15/data/13374/fig2.png
http://192.168.1.15/data/13374/fig3.png
http://192.168.1.15/data/13374/fig3.png
http://192.168.1.15/data/13374/fig4.png
http://192.168.1.15/data/13374/fig4.png


Tinashe Crispen Garidzira et al. / Journal of Computer Science 2025, 21 (8): 1897.1907
DOI: 10.3844/jcssp.2025.1897.1907

1901

of numbers (Vaswani et al., 2017), we set the maximum
length to 300 so that tokens of sentences that are less
than 300 will be padded with a padding index. The ones
that were larger than 300 words were truncated. This was
done because LSTM or Recurrent Neural Networks
generally require all sentences in a batch to have the
same length, as supported by Oruh et al. (2022).

Word embeddings, specifically GloVe, were
downloaded to be applied in the embedding layer of a
Bi-LSTM model. A study by Krouska et al. (2020)
shows that pre-trained word embeddings like Twitter
GloVe and FastText improve tweet classification.
FastText demonstrates consistency, and Twitter GloVe
achieves high accuracy (Krouska et al., 2020). We used
the Glove vectors 300 dim, which were trained with
about 840 billion words on our Bi-LSTM model, to get
good accuracy.

Model Creation

The model for this study was created using three
layers: Embedding, LSTM (bidirectional), and Linear.
The embedding layer was initialized with pre-trained
word embedding vectors that suit our data. A dropout of
50% was applied to the LSTM layer to prevent the model
from over-fitting and to improve model accuracy, as
supported by Lee and Lee (2020). A final dense layer
with an output of one was then added as the last layer of
the model. The model parameters were counted. Table 2
shows the model parameters.
Table 2: Model Parameters

Model Total Trainable Non-Trainable
Bi-LSTM 17 005 957 17 005 957 0

From Table 2, it was observed that our model has
more trainable parameters of about 17 million.
Additionally, our dataset was also huge. Moreover, we
utilized a free GPU from Google colab to reduce the
model training time. Furthermore, we set our batch size
to 128. Setting a huge batch size significantly reduces
total training time in a single epoch, even though it
reduces model generalization, as articulated by Smith et
al. (2018). The model was trained using a supervised
approach using Binary Cross-Entropy with Logits Loss
(BCEWithLogitsLoss) as a function that computes the
model’s loss between predicted and real labels. The
Adam optimizer was used to adjust the learning rate for
each parameter because of its stability during the
learning process, as supported by Kingma and Ba (2014).

Model Evaluation

The trained model was experimentally tested and
evaluated. The model was trained for 6 epochs, and the
training history was saved after each epoch for the model
evaluation phase. The model was saved when the
validation loss from the previous epoch was greater than

the current loss. For model inference, the model was
saved as a static file, and the vocabulary was saved
together with the static Bi-LSTM model so that it could
be used to create a GraphQL API using Graphene and
Flask. Several metrics were used to evaluate the best-
saved model before deploying it.

Model Deployment

As a final stage, the model and a Flask Server with
Graphene were created to serve a serialized and saved .pt
model as a GraphQL API, where the model server can
receive text or text files and do the classification in real
time of AGT model into a web application for real-time
text classification. The same GraphQL API was
configured to send requests to the Flask Server using a
frontend web framework that was built using Next.js, a
React-based framework (Svedas, 2024).

Design and Implementation

A robust framework for AI-generated text detection
that integrates the Bi-LSTM model into a web
application built with Next.js was implemented. Fig. 3
shows the architecture, which consists of several key
components, namely: Next.js web application (client), a
Flask server for model inference (backend), a static
PyTorch-based Bi-LSTM model, which is served by the
server, and a GraphQL-based data flow using Graphene
and urql for the backend and client, respectively.

The goal of the system was to perform real-time
discrimination between human and AI-generated text
inputs, addressing the growing need for practical AI text
detection solutions in digital media. As shown in Fig. 3,
the framework has a front-end and back-end.

Fig. 3: Framework Architecture

Front-End

The application user interface is built using Next.js, a
React-based web development framework that provides
efficient server-side rendering and simplified deployment
for scalable web applications (Svedas, 2024). Human or
AI-generated text or text files are entered or uploaded
through the Next.js interface. This text data is then
passed to the backend for processing and inference.

http://192.168.1.15/data/13374/fig5.png
http://192.168.1.15/data/13374/fig5.png


Tinashe Crispen Garidzira et al. / Journal of Computer Science 2025, 21 (8): 1897.1907
DOI: 10.3844/jcssp.2025.1897.1907

1902

Back-End

The back-end consists of a Flask server that serves
the trained Bi-LSTM model for real-time inference
through a GraphQL API. Flask was chosen for its
lightweight structure and ease of integration with
machine-learning models developed in Python (Fergus &
Chalmers, 2022). The PyTorch-trained model is deployed
as a static .pt file, which allows the model to be served
based on the weights, and the model was served during
training. The Bi-LSTM has been optimized to capture
complex linguistic patterns in the input text,
distinguishing between human-generated and AI-
generated content with high accuracy.

Dataflow

To facilitate efficient data management and flow
between the front-end and back-end, the application used
a GraphQL API. This approach uses Graphene as the
GraphQL server framework, with urql as the client,
ensuring optimized data retrieval with minimal server
load. GraphQL enables flexible queries, allowing the
front-end to request only the specific data it needs,
improving performance and scalability (Brito & Valente,
2020).

Model Architecture

The model architecture combines a Bi-LSTM
network with pre-trained GloVe (glove.840B.300d)
integration to classify text as AI-generated or human-
written, which suits our Human vs. AI data (Gerami,
2023). The embedding layer captures semantic and
syntactic nuances, improving the model’s ability to
understand the context of words, as supported by
Krouska et al. (2020). Using bidirectional processing, the
Bi-LSTM layer captures the context of past and future
tokens, which is important for distinguishing text
sources. We adopted the notion from previous studies by
Chatelain et al. (2022) and Patil et al. (2023) which have
shown that embedding methods such as Word2Vec and
bidirectional models are effective in improving the task
of text classification by increasing accuracy and
confidence. Fig. 3 shows the model architecture of this
study.

Fig. 4: Model Architecture

Fig. 4 shows the model architecture used for training
and evaluation, it shows that after passing a 300-dim
vector input to the embedding layer, the output is then
passed to the Bi-LSTM, and the Bi-LSTM output is fed
into a linear layer with a sigmoid activation function that
provides a probability score, classifying the text based on
a set threshold (Pratiwi et al., 2020).

Framework Output

The model sends real-time classification results to a
Next.js app, offering users an immediate, user-friendly
experience for verifying text authenticity. This setup is
efficient for web-based applications that need rapid and
accurate AI-content detection.

Results
During Bi-LSTM model training, the metrics were

observed per each iteration, including epoch training
losses and accuracies for both the training and validation
sets. Total training time, last saved epoch, and epoch
training time were other metrics that were monitored
during model training.

Training Time

Table 3 shows the total training time the model took
to train after training for 6 iterations/epochs. The last
epoch number of the best model was saved.
Table 3: Model training time and last saved epoch

Training Summary Value
Total Epochs 6
Last Saved Epoch 6
Total Training Time 1hrs 56min 47.23sec

From Table 3 above, the model took 1 hour, 56
minutes, and 47 seconds to train, and the best model was
saved on epoch 6 out of the total of 6. Fig. 6 shows how
long the model took to train each single epoch in seconds
(s).

Fig. 5: Epoch training time

From Fig. 5, it can be noted that the model took more
time to train in the first 2 epochs. The model quickly

http://192.168.1.15/data/13374/fig6.png
http://192.168.1.15/data/13374/fig6.png
http://192.168.1.15/data/13374/fig7.png
http://192.168.1.15/data/13374/fig7.png


Tinashe Crispen Garidzira et al. / Journal of Computer Science 2025, 21 (8): 1897.1907
DOI: 10.3844/jcssp.2025.1897.1907

1903

completed its training on iteration 3 in 1 162 seconds.

Training and Validation Metrics

Fig. 6 shows the training and validation loss observed
during the model training for 6 epochs.

Fig. 6: Training and validation losses

From Fig. 6, the model started with a low validation
loss below 0.02, while the training loss started above
0.07. It gradually decreased as the model trained for the
second epoch. Although the training loss was lower than
the validation loss after epoch 2, the validation loss
remained relatively low, indicating that the model was
neither overfitting nor underfitting.

Fig. 7: Training and validation accuracies

Fig. 7 shows the training and validation accuracy of
the Bi-LSTM model observed during model training for
6 epochs. The training accuracy was slightly below
97.5% on epoch 1, while the validation accuracy
remained slightly above 99% from epoch 1 to epoch 6.

Best Model Accuracy and Loss

During model training, the best model was saved.
Table 4 shows the loss and accuracy of the best-saved
model after it has been evaluated on the test dataset.
Table 4: Best saved model test loss and accuracy

Metric Value
Loss 0.009
Accuracy 99.79%

Table 4 above shows the best model’s results
regarding classification loss and accuracy on the test
dataset. The model performed perfectly, with an accuracy
of 99.79% and a loss of 0.009.

Best Model Confusion Matrix

Fig. 8 shows the classification confusion matrix of
the best-saved model based on the test dataset.

Fig. 8: Model classification report

Fig. 8 shows that the model achieved high accuracy,
correctly classifying 99.7% of human-generated text and
99.9% of AI-generated text, with minimal classification
error. A fraction of 0.1% (54 examples) of AI-generated
text was misclassified as human text, and 0.3% (102
examples) of human text was misclassified as AI-
generated.

Best Model Classification Report

Fig. 9 shows the classification report for the best
model based on the testing dataset.

Fig. 9: Model classification report

Fig. 9 shows the Bi-LSTM model classification
performance, with precision, recall, and F1 scores
ranging from 99.7% to 99.9% for AI-generated and
human-generated text, indicating highly accurate
predictions.

http://192.168.1.15/data/13374/fig8.png
http://192.168.1.15/data/13374/fig8.png
http://192.168.1.15/data/13374/fig9.png
http://192.168.1.15/data/13374/fig9.png
http://192.168.1.15/data/13374/fig10.png
http://192.168.1.15/data/13374/fig10.png
http://192.168.1.15/data/13374/fig11.png
http://192.168.1.15/data/13374/fig11.png


Tinashe Crispen Garidzira et al. / Journal of Computer Science 2025, 21 (8): 1897.1907
DOI: 10.3844/jcssp.2025.1897.1907

1904

Discussion
The findings of this study demonstrate that the Bi-

LSTM model effectively distinguishes between AI-
generated text and human-generated text in digital
media. The model achieves high accuracy, precision,
recall, and F1 scores, highlighting its robustness and
reliability. As shown in the confusion matrix, Fig 7, the
model’s classification performance has a minimal
classification error rate, supporting its suitability for this
task.

The model took 1 hour 56 mininutes 47.23 seconds to
train for only 6 epochs due to the total number of
parameters the model has. The model had total trainable
parameters of about 17 million. The dataset was large,
with 232 240 pairs of 300-dimensional vectors of text
with their paired labels in the training set and about 58
thousand 300-dimensional vectors of text with their
paired labels. The model took about 1 176 seconds to
complete the first epoch, while subsequent epochs took
less time. This occurred because the data was not cached
during the first iteration, a phenomenon also noted by
Svogor et al. (2022).

The Bi-LSTM model quickly learns to reduce the
loss while maximizing the accuracy during model
training. The train and validation datasets had an
accuracy of above 99% on the second epoch for both sets
and a loss below 0.02, indicating that the model could
learn the mathematical relationship between text features
and their label. This is due to the effectiveness of RNNs,
particularly the LSTM layer, in processing sequential
data, as supported by Amadi et al. (2023) and Yu et al.
(2019). Additionally, the data normalization that was
done to the generated text had an impact in reducing the
noise from text, resulting in the model having fewer
things to focus on during learning.

The success of the Bi-LSTM model can be attributed
to effective pre-processing techniques and careful feature
selection, consistent with previous research, for example,
Jang et al. (2020), highlighted the importance of feature
engineering in improving model performance for text
classification tasks. The Bi-LSTM architecture also
allows the model to capture past and future contextual
information in the text sequence, making it particularly
well-suited to the nuanced differences between Human
and AI text generation. These findings are consistent
with the benefits of bidirectional networks highlighted in
a study by Huang et al. (2015), which demonstrates how
Bi-LSTM models excel at capturing long-term
dependencies in sequential data.

However, computational requirements and model
training time are limitations, suggesting that real-time
applications may be difficult without optimization.
Future work could explore techniques such as model
pruning or quantization to reduce these requirements
while maintaining accuracy. In a nutshell, this study
provides evidence that the Bi-LSTM model is a

promising approach for identifying AI-generated text in
digital media because of the accuracy of the obtained
data, which was above 95%.

Conclusion
This study shows the effectiveness of the Bi-LSTM

model in classifying AI and human-generated text in
digital contexts. The model’s robust performance metrics
reflect its reliability and accuracy, making it a valuable
tool for content verification in an era where AI-generated
content is increasingly important. This study contributes
to ongoing efforts to develop robust detection algorithms
capable of matching the sophistication of modern AI text
generators.

This study has significance in many application
areas, such as industries, including communications,
education, and social media, where information
authenticity is paramount. This study also demonstrates
static model deployment and serving from web
applications using GraphQL and Next.js integration
using a Flask server. The finally deployed frontend web
application allows users to verify the authenticity of
textual content using text files or plain text.

Future Work

Several future research directions emerge from this
study based on advances in AI text generation detection.
Firstly, optimizing the Bi-LSTM model for real-time
deployment could increase its applicability in rapidly
changing digital environments. Model compression
techniques such as pruning, quantization, or distillation
could help reduce computational costs without
significantly reducing performance, as supported by
Dantas et al. (2024). Additionally, expanding the dataset
to include more AI-generated content would likely
improve the model’s ability to generalize different text
types.

Future research could also investigate the inclusion of
additional linguistic features, such as sentiment or
stylistic cues, to further improve classification accuracy.
Hybrid models that combine CNNs with Bi-LSTMs can
provide richer feature representations and produce even
better results, as Sahoo and Chakraborty (2024)
suggested. Another potential research direction is to
examine the model’s adaptability to different languages
and dialects, reflecting the global reach of AI-generated
content. This could facilitate cross-cultural applications
of AI text detection and provide organizations worldwide
with effective tools to verify the authenticity of content.

Another potential direction is creating mobile and
desktop applications that verify text authenticity. We
have already developed a web server that is serving a
GraphQL endpoint, which can be used to make requests
to the same server using mobile and desktop
applications. Lastly, the model should be tested in
application areas like education, where the need to detect
plagiarism and AI-related text is paramount.



Tinashe Crispen Garidzira et al. / Journal of Computer Science 2025, 21 (8): 1897.1907
DOI: 10.3844/jcssp.2025.1897.1907

1905

A potential improvement may be the development of
a model that can distinguish between AI and a human in
a variety of languages. Expanding the ability of the
model to detect the difference in the style of writing in
some languages will improve its flexibility and accuracy
in determining the origin of the text. This approach can
lead to better content classification, providing valuable
information for tasks such as content censorship,
religious detection, and automatic material analysis
compared to human product materials.

Lastly, future work should incorporate adversarial
testing to ensure the model’s resilience, aligning with the
goal of robust real-world applicability.

Acknowledgment
Special thanks go to Gerami for providing the dataset

(“AI vs. Human Text” dataset), used in this research,
found on Kaggle. The dataset played a crucial role in
training and evaluating the model. Secondly, we thank
Walter Sisulu University and the National Institute for
Theoretical and Computational Sciences (NITheCS) for
supporting the research.

Funding Information
The authors have not received any financial support

or funding to report.

Author’s Contributions
Tinashe Crispen Garidzira: Developed the model

and web application, and authored the methodology,
discussion, and results sections.

William Tichaona Vambe: Conceptualized the
research topic, authored the introduction and literature
review, and refined the methodology, results, and
discussion sections.

Courage Matobobo: Crafted the abstract and wrote
the remaining sections, including editing the discussion
and results sections.

All authors read and approved the final manuscript.

Ethics
This work is original and has not been published

anywhere. The authors declare that no ethical concerns
are associated with this submission.

Conflict of Interest
The authors do not have any conflicts of interest to

declare.

References
Abbas, J., Hu, Z., Kanwal, S., Ahmad, A., Almogren, A.,

& Altameem, A. (2024). Bi-LSTM-Based Model
for Classifying Software Requirements. Artificial
Intelligence and Machine Learning.
https://doi.org/10.20944/preprints202410.2129.v1

Alkhairy, S. A. (2024). Rational-Exponent Filters with
Applications to Generalized Exponent Filters.
IEEE Transactions on Circuits and Systems, 72(5),
2139–2152.
https://doi.org/10.1109/TCSI.2025.3545459

Amadi, C., Odii, J., Okpalla, C., & La, O. C. I. (2023).
Emotion Detection Using a Bidirectional Long-
Short Term Memory (BiLSTM) Neural Network.
International Journal of Research Publication and
Reviews, 4(11), 1718–1732.

Ayele, W. Y. (2020). Adapting CRISP-DM for Idea
Mining. International Journal of Advanced
Computer Science and Applications, 11(6), 20–32.
https://doi.org/10.14569/ijacsa.2020.0110603

Brito, G., & Valente, M. T. (2020). REST vs GraphQL: A
Controlled Experiment. 2020 IEEE International
Conference on Software Architecture (ICSA), 81–
91. https://doi.org/10.1109/icsa47634.2020.00016

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J. D., Dhariwal, P., Neelakantan, A., Shyam, P.,
Sastry, G., Askell, A., Agarwal, S., Herbert-Voss,
A., Krueger, G., Henighan, T., Child, R., Ramesh,
A., Ziegler, D., Wu, J., Winter, C., & Amodei, D.
(2020). Language Models are Few-Shot Learners.
Advances in Neural Information Processing
Systems, 1877–1901.

Chakraborty, S., Bedi, A. S., Zhu, S., An, B., Manocha,
D., & Huang, F. (2023). On the Possibilities of AI-
Generated Text Detection. Computation and
Language.
https://doi.org/10.48550/arXiv.2304.04736

Chatelain, Amélie., Djeghri, A., Hesslow, D., & Launay,
J. (2022). Is the Number of Trainable Parameters
All That Actually Matters? Can’t Believe It’s Not
Better! Workshop at NeurIPS 2021, 27–32.

Cheng, H., Sheng, B., Lee, A., Chaudary, V., Atanasov,
A. G., Liu, N., Qiu, Y., Wong, T. Y., Tham, Y.-C., &
Zheng, Y. (2024). Have AI-Generated Texts from
LLM Infiltrated the Realm of Scientific Writing? A
Large-Scale Analysis of Preprint Platforms.
BioRxiv.
https://doi.org/10.1101/2024.03.25.586710

Chigbu, U. E., Atiku, S. O., & Du Plessis, C. C. (2023).
The Science of Literature Reviews: Searching,
Identifying, Selecting, and Synthesising.
Publications, 11(1), 2.
https://doi.org/10.3390/publications11010002

Dantas, P. V., Sabino da Silva, W., Cordeiro, L. C., &
Carvalho, C. B. (2024). A comprehensive review of
model compression techniques in machine
learning. Applied Intelligence, 54(22), 11804–
11844.
https://doi.org/10.1007/s10489-024-05747-w

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K.
(2019). BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding.
Proceedings of NAACL-HLT, 4171–4186.
https://doi.org/10.18653/v1/N19-1423

https://doi.org/10.20944/preprints202410.2129.v1
https://doi.org/10.1109/TCSI.2025.3545459
https://doi.org/10.14569/ijacsa.2020.0110603
https://doi.org/10.1109/icsa47634.2020.00016
https://doi.org/10.48550/arXiv.2304.04736
https://doi.org/10.1101/2024.03.25.586710
https://doi.org/10.3390/publications11010002
https://doi.org/10.1007/s10489-024-05747-w
https://doi.org/10.18653/v1/N19-1423


Tinashe Crispen Garidzira et al. / Journal of Computer Science 2025, 21 (8): 1897.1907
DOI: 10.3844/jcssp.2025.1897.1907

1906

Eichstaedt, J. C., Kern, M. L., Yaden, D. B., Schwartz,
H. A., Giorgi, S., Park, G., Hagan, C. A., Tobolsky,
V. A., Smith, L. K., Buffone, A., Iwry, J., Seligman,
M. E. P., & Ungar, L. H. (2021). Closed- and open-
vocabulary approaches to text analysis: A review,
quantitative comparison, and recommendations.
Psychological Methods, 26(4), 398–427.
https://doi.org/10.1037/met0000349

Fergus, P., & Chalmers, C. (2022). Deploying and
Hosting Machine Learning Models. Computational
Intelligence Methods and Applications, 299–317.
https://doi.org/10.1007/978-3-031-04420-5_13

Fraser, K. C., Dawkins, H., & Kiritchenko, S. (2025).
Detecting AI-Generated Text: Factors Influencing
Detectability with Current Methods. Journal of
Artificial Intelligence Research, 82, 2233–2278.
https://doi.org/10.1613/jair.1.16665

Gerami, S. (2023). AI Vs Human Text. Kaggle. Kaggle.
Ghosal, S. S., Chakraborty, S., Geiping, J., Huang, F.,

Manocha, D., & Bedi, A. S. (2023). Towards
Possibilities & Impossibilities of AI-generated Text
Detection: A Survey. Computation and Language.
https://doi.org/10.48550/arXiv.2310.15264

Graves, A. (2012). Long Short-Term Memory.
Supervised Sequence Labelling with Recurrent
Neural Networks, 385, 37–45.
https://doi.org/10.1007/978-3-642-24797-2_4

Huang, Z., Xu, W., & Yu, K. (2015). Bidirectional
LSTM-CRF Models for Sequence Tagging.
Computation and Language.
https://doi.org/10.48550/arXiv.1508.01991

Jang, B., Kim, M., Harerimana, G., Kang, S., & Kim, J.
W. (2020). Bi-LSTM Model to Increase Accuracy
in Text Classification: Combining Word2vec CNN
and Attention Mechanism. Applied Sciences,
10(17), 5841.
https://doi.org/10.3390/app10175841

Jawahar, G., Abdul-Mageed, M., & Lakshmanan, V.S., L.
(2020). Automatic Detection of Machine Generated
Text: A Critical Survey. Proceedings of the 28th
International Conference on Computational
Linguistics, 2296–2309.
https://doi.org/10.18653/v1/2020.coling-main.208

Joseph, V. R., & Vakayil, A. (2022). SPlit: An Optimal
Method for Data Splitting. Technometrics, 64(2),
166–176.
https://doi.org/10.1080/00401706.2021.1921037

Kalyan, K. S. (2024). A survey of GPT-3 family large
language models including ChatGPT and GPT-4.
Natural Language Processing Journal, 6, 100048.
https://doi.org/10.1016/j.nlp.2023.100048

Kingma, D. P., & Ba, J. (2014). Adam: A Method for
Stochastic Optimization. Machine Learning.
https://doi.org/10.48550/arXiv.1412.6980

Krouska, A., Troussas, C., & Virvou, M. (2020). Deep
Learning for Twitter Sentiment Analysis: The
Effect of Pre-trained Word Embedding. Machine
Learning Paradigms, 18, 111–124.
https://doi.org/10.1007/978-3-030-49724-8_5

Kunisch, S., Denyer, D., Bartunek, J. M., Menz, M., &
Cardinal, L. B. (2023). Review Research as
Scientific Inquiry. Organizational Research
Methods, 26(1), 3–45.
https://doi.org/10.1177/10944281221127292

Lee, S., & Lee, C. (2020). Revisiting spatial dropout for
regularizing convolutional neural networks.
Multimedia Tools and Applications, 79(45–46),
34195–34207.
https://doi.org/10.1007/s11042-020-09054-7

Li, Q., Zhao, C., He, X., Chen, K., & Wang, R. (2022).
The Impact of Partial Balance of Imbalanced
Dataset on Classification Performance. Electronics,
11(9), 1322.
https://doi.org/10.3390/electronics11091322

Mitrović, S., Andreoletti, D., & Ayoub, O. (2023).
ChatGPT or Human? Detect and Explain.
Computation and Language.
https://doi.org/10.48550/arXiv.2301.13852

Oruh, J., Viriri, S., & Adegun, A. (2022). Long Short-
Term Memory Recurrent Neural Network for
Automatic Speech Recognition. IEEE Access, 10,
30069–30079.
https://doi.org/10.1109/access.2022.3159339

Ott, M., Choi, Y., Cardie, C., & Hancock, J. T. (2011).
Finding Deceptive Opinion Spam by Any Stretch
of the Imagination. Computation and Language.
https://doi.org/10.48550/arXiv.1107.4557

Patil, R., Boit, S., Gudivada, V., & Nandigam, J. (2023).
A Survey of Text Representation and Embedding
Techniques in NLP. IEEE Access, 11, 36120–
36146.
https://doi.org/10.1109/access.2023.3266377

Petropoulos, P., & Petropoulos, V. (2024). RoBERTa and
Bi-LSTM for Human vs AI Generated Text
Detection. CLEF 2024: Conference and Labs of the
Evaluation Forum, 9–12.

Pratiwi, H., Windarto, A. P., Susliansyah, S., Aria, R. R.,
Susilowati, S., Rahayu, L. K., Fitriani, Y.,
Merdekawati, A., & Rahadjeng, I. R. (2020).
Sigmoid Activation Function in Selecting the Best
Model of Artificial Neural Networks. Journal of
Physics: Conference Series, 1471(1), 012010.
https://doi.org/10.1088/1742-6596/1471/1/012010

Prova, N. (2024). Detecting AI Generated Text Based on
NLP and Machine Learning Approaches. Machine
Learning.
https://doi.org/10.48550/arXiv.2404.10032

Qasim, R., Bangyal, W. H., Alqarni, M. A., & Ali
Almazroi, A. (2022). A Fine-Tuned BERT-Based
Transfer Learning Approach for Text
Classification. Journal of Healthcare Engineering,
2022, 1–17.
https://doi.org/10.1155/2022/3498123

Sahoo, A. R., & Chakraborty, Pavan. (2024). Hybrid
CNN Bi-LSTM neural network for Hyperspectral
image classification. In Electrical Engineering and
Systems Science.
https://doi.org/10.48550/arXiv.2402.10026

https://doi.org/10.1037/met0000349
https://doi.org/10.1007/978-3-031-04420-5_13
https://doi.org/10.1613/jair.1.16665
https://doi.org/10.48550/arXiv.2310.15264
https://doi.org/10.1007/978-3-642-24797-2_4
https://doi.org/10.48550/arXiv.1508.01991
https://doi.org/10.3390/app10175841
https://doi.org/10.18653/v1/2020.coling-main.208
https://doi.org/10.1080/00401706.2021.1921037
https://doi.org/10.1016/j.nlp.2023.100048
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1007/978-3-030-49724-8_5
https://doi.org/10.1177/10944281221127292
https://doi.org/10.1007/s11042-020-09054-7
https://doi.org/10.3390/electronics11091322
https://doi.org/10.48550/arXiv.2301.13852
https://doi.org/10.1109/access.2022.3159339
https://doi.org/10.48550/arXiv.1107.4557
https://doi.org/10.1109/access.2023.3266377
https://doi.org/10.1088/1742-6596/1471/1/012010
https://doi.org/10.48550/arXiv.2404.10032
https://doi.org/10.1155/2022/3498123
https://doi.org/10.48550/arXiv.2402.10026


Tinashe Crispen Garidzira et al. / Journal of Computer Science 2025, 21 (8): 1897.1907
DOI: 10.3844/jcssp.2025.1897.1907

1907

Smith, S. L., Kindermans, P.-J., Ying, C., & Le, Q. V.
(2018). Don’t Decay the Learning Rate, Increase
the Batch Size. In Machine Learning.
https://doi.org/10.48550/arXiv.1711.00489

Solaiman, I., Brundage, M., Jack, C., Openai, A. A.,
Herbert-Voss, A. A., Openai, A. R., Openai, G. K.,
Wook, J., Openai, K., Kreps, S., Politiwatch, M.
M., Newhouse, Alex., Blazakis, J., Mcguffie, K., &
Wang, J. (2019). OpenAI Report Release Strategies
and the Social Impacts of Language Models.
Amanda Askell.
https://doi.org/10.48550/arXiv.1908.09203

Svedas, E. (2024). Building an application using Next.
js. Metropolia University of Applied Sciences.

Svogor, I., Eichenberger, C., Spanring, M., Neun, M., &
Kopp, M. (2022). Profiling and Improving the
PyTorch Dataloader for high-latency Storage: A
Technical Report. In Machine Learning.
https://doi.org/10.48550/arXiv.2211.04908

Vambe, W. T., & Garidzira, T. C. (2024). A Comparative
Analysis of Convolutional Neural Networks, Bi-
Directional Gated Recurrent Units, and Bi-
Directional Long Short-Term Memory for
Sequential Data Processing Using Human
Emotions Dataset. 2024 4th International
Multidisciplinary Information Technology and
Engineering Conference (IMITEC), 1–8.
https://doi.org/10.1109/imitec60221.2024.1085118
8

van Beusekom, J., Shafait, F., & Breuel, T. M. (2010).
Document inspection using text-line alignment.
Proceedings of the 9th IAPR International
Workshop on Document Analysis Systems, 263–
270.
https://doi.org/10.1145/1815330.1815364

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin,
I. (2017). Attention Is All You Need. 31st
Conference on Neural Information Processing
Systems (NIPS 2017, 1–11.

Wani, M. A., ElAffendi, M., & Shakil, K. A. (2024). AI-
Generated Spam Review Detection Framework
with Deep Learning Algorithms and Natural
Language Processing. Computers, 13(10), 264.
https://doi.org/10.3390/computers13100264

Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A Review of
Recurrent Neural Networks: LSTM Cells and
Network Architectures. Neural Computation, 31(7),
1235–1270.
https://doi.org/10.1162/neco_a_01199

Zellers, R., Holtzman, A., Rashkin, H., Bisk, Y., Farhadi,
A., Roesner, F., & Choi, Y. (2019). Defending
Against Neural Fake News. Advances in Neural
Information Processing Systems, 1–12.

Zheng, W. (2023). AI vs. Human: A Comparative Study
of Cohesion and Coherence in Academic Texts
between Human-Written and ChatGPT-Generated
Texts.

https://doi.org/10.48550/arXiv.1711.00489
https://doi.org/10.48550/arXiv.1908.09203
https://doi.org/10.48550/arXiv.2211.04908
https://doi.org/10.1109/imitec60221.2024.10851188
https://doi.org/10.1109/imitec60221.2024.10851188
https://doi.org/10.1145/1815330.1815364
https://doi.org/10.3390/computers13100264
https://doi.org/10.1162/neco_a_01199

