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Abstract: The rapid growth of technology has brought about many
advantages, but has also made networks more susceptible to security threats.
Intrusion Detection Systems (IDS) play a vital role in protecting computer
networks against malicious activities. Given the dynamic and constantly
evolving nature of cyber threats, these systems must continuously adapt to
maintain their effectiveness. Machine Learning (ML) methods have gained
prominence as effective tools for constructing IDS that offer both high
accuracy and efficiency. This study conducts a performance assessment of
several machine learning classifiers, including Random Forests (RF),
Decision Trees (DT), and Support Vector Machines (SVM), in addressing
multiclass intrusion detection as a means to counter cybersecurity threats.
The NSL-KDD dataset, which includes various network attacks, served as
the basis for our experimental evaluation. The research explores two
classification scenarios: a five-class and a three-class model, analyzing their
impact on detection performance. The results demonstrate that RF
consistently achieves the highest accuracy (85.42%) on the three-class
scenario testing set, highlighting its effectiveness in handling patterns and
non-linear relationships within the intrusion data. Furthermore, reducing the
classification complexity (three classes vs. five classes) significantly
improves model generalization, as evidenced by the reduced performance
gap between training and testing data. Friedman's rank test and Holm's post-
hoc analysis were applied to ensure statistical rigor, confirming that RF
outperforms DT and SVM in all evaluation metrics. These findings establish
RF as the most robust classifier for intrusion detection and underscore the
importance of simplifying classification tasks for improved IDS
performance.

Keywords: Intrusion Detection System, Random Forest Classifier, Multi-
Class Classifications

Introduction

The proliferation of interconnected digital systems
has significantly enhanced the efficiency and
accessibility =~ of  information. @ However, this
interconnectedness has also made networks vulnerable to
various malicious activities. Intrusion Detection Systems
(IDS) have emerged as a critical component of network
security, designed to identify and mitigate unauthorized
access attempts (Hossain and Islam, 2023). Intrusion
detection systems can be categorized into Misuse
Detection Systems (MID) and Anomaly Detection
Systems (AID) based on their analytical approaches
(Axelsson, 2000; Alkasassbeh and Al-Haj Baddar, 2023).
MID, or signature-based detection, identifies threats by

/Z SCIENCE
%

Publications

matching predefined patterns of potentially harmful
activities or operations stored in a database. However,
AID monitors the behavior of the network and triggers
alerts when deviations from predefined norms occur.
(Gong et al., 2009). Furthermore, they can be classified
as network-based (NIDS) or host-based (HIDS)
depending on their data source (Mishra et al, 2019).
HIDS mostly examines system calls and process IDs of
the operating system data.

In contrast, NIDS investigates network-related
events, such as traffic volume, IP addresses, service
ports, and the protocols used (Jyothsna and Prasad,
2019). The most effective intrusion detection systems
can detect new attacks quickly and take the necessary
actions. Although perfect accuracy is difficult to achieve,
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researchers continue to work to improve the accuracy of
IDS.

In addition, IDS is a significant factor in the market’s
dramatic rise. Effective IDs are in high demand due to
the growing importance of data protection and
compliance among enterprises. The global distribution of
the Intrusion Detection And Prevention System (IDPS)
industry (Business Research Insights, 2024) is shown in
Figure 1. The market size is projected to grow
significantly and is predicted to be USD 6.96 billion in
2024 to USD 11.99 billion by 2029, exhibiting a
cumulative annual growth rate (CAGR) of 11.5%.

Systems Market
Market Size Overview USD 11.99

IGIobaI Intrusion Detection and Prevention
Billion < J'

UsD 6.96

5% .

Global market CAGR,
2024 - 2029

2019 2020 2021 202 2028 2024 2025 2026 2027 2028 2029

Fig. 1: Market Size Overview of Global IDPS (2024-2029)
(Business Research Insights, 2024)

The growing demand for IDS is driven by factors
such as the increased cyber threats associated with
remote work and cloud adoption, and the advancements
in Artificial Intelligence (AI) and Machine Learning
(ML), as a result of which better IDS solutions have been
developed.

Conventional intrusion detection systems frequently
employ predefined patterns or anomaly detection
methods. Although effective against recognized threats,
these approaches may face challenges in identifying
innovative and complex attacks (Dini ef al., 2023).

In addition, conventional methods have problems
with  computational inefficiencies in large-scale
networks, high false positive rates, and missing new
threats. Prior studies also have focused on binary
classification (attack vs. normal traffic) or individual
classifiers, neglecting a thorough comparative analysis of
multi-class intrusion detection models.

To address these challenges, ML techniques have
gained prominence in recent years in various domains
(Sheta et al., 2024; Elashmawi et al., 2024a). ML
algorithms can analyze vast network data to learn
patterns and anomalies indicative of malicious behavior,
enabling IDS to adapt to evolving threats. In the study by
Tait et al. (2021), the effectiveness of current machine
learning algorithms was analyzed, as their potential use
in enhancing the present IDS against emerging intrusion
attacks.  Furthermore, ML  models, especially
classification algorithms, can be trained to classify
attacks into different types. This classification helps

security analysts quickly understand the nature of the
attack and respond accordingly (Elashmawi et al.,
2024b), especially for novel or zero-day attacks that do
not have known signatures. Also, there is limited
research on how simplifying classification tasks (e.g.,
reducing the number of classes) affects model
performance and generalization capabilities.

This study addresses existing gaps by evaluating the
impact of class reduction on detection performance,
applying statistical validation techniques (Friedman’s
and Holm’s tests), and identifying the most effective ML
classifier for intrusion detection using the NSL-KDD
dataset. To achieve this, we utilize machine learning-
based intrusion detection systems to identify attacks,
focusing on the AID. Among the most effective ML
techniques, Random Forest (RF), Decision Tree (DT),
and Support Vector Machine (SVM) are applied to the
NSL-KDD dataset, a commonly used standard for
assessing IDS. We determine the most effective approach
for enhancing intrusion detection accuracy and
generalization through rigorous testing and comparative
analysis. While the primary focus of IDS lies in
monitoring network traffic and identifying malicious
activities, related applications in cybersecurity, such as
phishing detection (Ishtaiwi et al, 2024), have
demonstrated the efficacy of machine learning
techniques in identifying threats.

Continuing with the paper’s framework, a concise
review of relevant literature on intrusion detection
systems is presented. The subsequent section examines
the ML classifiers employed in the investigation and
offers a thorough examination of the NSL-KDD dataset
that was employed. Then, it presents the developed
model and the evaluation metrics employed to assess its
performance. Following this, the empirical findings from
evaluating various ML-based intrusion detection
approaches for multiclass classification are discussed.
Finally, the paper discusses key considerations and
insights from the study.

Related Works

Intrusion detection is a critical pillar in the
architecture of network security. Nevertheless, the
heterogeneous landscape of intrusion detection and
prevention systems frequently grapples with limitations
in operational performance and overall efficiency. An
IDS’s success relies on accurately detecting network
anomalies without generating excessive false alarms.
Researchers have suggested employing ML classification
algorithms to overcome the challenges faced by intrusion
detection systems in terms of accuracy and performance.

Data mining has emerged as a standard to evaluate
network intrusion detection technologies alongside
popular machine learning techniques such as Extreme
Learning Machines (ELM) (Ahmad et al, 2018).

Almseidin et al. (2017) conducted and analyzed many
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experiments to evaluate different machine learning
classifiers using the KDD intrusion dataset through the
WEKA toolbox. Gao et al. (2019) proposed an adaptive
ensemble learning model utilizing the NSL-KDD dataset
and incorporating RF, DT, and Deep Neural Network
(DNN) algorithms with an accuracy of 85.2%. In the
study by Alaketu et al. (2024), identifying intrusions on
the complete and reduced CIC-IDS2017 datasets was
accomplished with the help of SVM, DNN, and RF. The
RF has achieved superior results in both cases, reaching
up to 90.6% (whole dataset) and 90.9% (reduced
dataset).

Sheta and Alamleh (2015) employed three machine
learning algorithms — DT, SVM, and Multi-Layer
Perceptron (MLP) to tackle intrusion detection tasks. The
models were evaluated using the DARPA training
dataset, with feature selection carried out via Best First
Search and Genetic Search methods to enhance
classification performance.

However, in the study by Agarwal et al. (2021), the
authors examine the accuracy levels and optimal model
fit of three trustworthy machine learning classification
algorithms, such as SVM, K-Nearest Neighbor (KNN),
and Na“"ive Bayes (NB). The models were trained using
the UNSW-NB15 dataset. The same dataset assesses
various ML models in the study by Dini et al. (2023).
The study conducted by Bitra et al. (2024) utilizes the
KDDCup99 dataset to evaluate various ML models,
including KNN, SVM, RF, and LightGBM. Among
these, the RF achieved the highest accuracy, reaching
98.74%. Moreover, in Al-Daja et al. (2023), various ML
classifiers are analyzed for intrusion detection systems
and highlight that RF outperforms the other classifiers.

In training models, regularization is integrated with
artificial neural networks (ANN) to categorize and
identify abnormalities in the study by Albahar et al.
(2020). They tested their model on the 20% of NSL-
KDD training set for some reasons, such as the large
NSL-KDD dataset being training on the entire dataset
being computationally expensive. Eshak Magdy et al.
(2022) investigates the NSL-KDD dataset through the
lens of several intrusion detection systems. According to
Halimaa and Sundarakantham (2019), an ML model
utilizing the SVM technique is proposed. The model’s
performance was assessed using the NSL-KDD dataset,
resulting in an accuracy of 93.95%.

A hybrid model was developed in Aljawarneh ef al.
(2018). The authors employed J48, Random Tree, and
Na“ive Bayes to predict the degree of intrusion scope
threshold using data from network transactions. Using
the NSL-KDD data set, they were able to obtain 99.81%
accuracy with the binary dataset and 98.56% accuracy
with the multiclass dataset, both of which included 20%
testing data. However, Bhattacharya er al. (2020)
introduced a hybrid ML model (XGBoost) that combines
principal component analysis (PCA) and the firefly

algorithm to classify the IDS dataset. The hybrid model
is implemented to perform dimensionality reduction,
followed by applying the XGBoost algorithm to classify
the transformed dataset.

In another study by Hossain and Islam (2023),
various ensemble techniques and publicly available
datasets are used for intrusion detection. Compared to
other approaches, the Random Forest methodology
consistently achieves FPR and accuracy levels above
99%. Despite notable progress in developing ML-based
IDS for enhancing network cybersecurity, the field
continues to face unresolved research challenges,
particularly in efficiently managing and processing large-
scale datasets.

Materials and Methods

This section outlines the methodology for the
proposed ML-based intrusion detection system, covering
the ML classifiers used, the NSL-KDD dataset, the
system workflow from preprocessing to prediction, and
the evaluation metrics applied to measure model
performance.

Machine Learning Classifiers

A variety of ML algorithms have been designed to
detect anomalies within network traffic, aiming to
distinguish malicious behavior from regular activity.
These methods typically compare network traffic to a
baseline of normal behavior. Anomaly detection in
machine learning 1is categorized into supervised,
unsupervised, and semi-supervised approaches. This
study focuses on supervised methods using labeled data
and highlights standard ML algorithms for multi-class
intrusion detection.

Random Forest (RF)

New sample

l l l

Result 1 Result 2 Result 3
| Majority voting / Averaging |

Random forest prediction

Fig. 2: RF classifier

RF is a robust ML algorithm that addresses
classification and regression tasks. It generates an
ensemble of decision trees, each trained on distinct data
subsets to enhance predictive accuracy and robustness
(Breiman, 2001). By combining predictions from several
decision trees, RFs enhance generalization performance
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and decrease the likelihood of overfitting, as shown in
Fig. 2. This ensemble approach helps to reduce bias and
improve prediction accuracy.

Decision Trees (DT)

The interpretability and ability to provide light on the
underlying data distribution make DTs popular (Quinlan,
1986) and widely used in ML. Decision Trees are easy to
grasp and intuitive because of their tree-like structure, as
seen in Figure 3. They divide the feature space using a
sequence of binary decisions. They comprise decision
nodes, which split the data based on feature values, and
leaf nodes, which contain the final predictions or labels.

Decision Node » Root Node

Decision Decision
Node

Leaf Node Leaf Node Decision Leaf Node
label 1 label 2 Node label 1

Leaf Node Leaf Node
label 1 label 2

Fig. 3: DT classifier

Support Vector Machines (SVM)

At its core, the algorithm seeks to construct the most
discriminative hyperplane in a high-dimensional space,
ensuring a precise separation of classes — a concept
visually represented in Figure 4. SVM can be used for
binary and muti-class classifications. The authors in (Xu
et al., 2017) suggested a multiclass SVM model that
maximizes the separation between training examples and
the hyperplane. SVMs can handle non-linear
relationships using kernel functions to map data into a
higher-dimensional space (Ghosh et al., 2019).

Margin (gap between decision
boundary and hyperplanes)
Support vectors

P Hyperplane
Hyperplane __—for second
for first class class

X1

Fig. 4: SVM classifier

NSL-KDD Dataset Description

The Network Security Laboratory Knowledge
Discovery and Data Mining (NSL-KDD) Dataset
(Tavallaee et al., 2009) is utilized in this study. It serves

as a commonly adopted benchmark for assessing the
effectiveness of IDS. The dataset comprises a
comprehensive network traffic record set encompassing
normal and attack activities. It is partitioned into separate
training and testing subsets, enabling researchers to
develop and assess their models on distinct data portions.

The NSL-KDD dataset encompasses a broad
spectrum of attack types, including denial-of-service
(DoS), probing, user-to-root (U2R), remote-to-local
(R2L), as well as regular traffic. This diversity renders it
a valuable benchmark for evaluating the robustness and
generalizability of IDS models. It had 43 variables, such
as packet length, protocol type, and source/destination IP
addresses, that contained numerical and categorical data
and a labeled field indicating the type of attack. The
distribution of instances across all categories is detailed
in Table 1. A thorough examination and understandable
description of the NSL-KDD dataset are provided by
(Dhanabal and Shantharajah, 2015).

Table 1: The distribution of the NSL-KDD’s primary attack types

Attack Category Total instances
dos 45927

normal 67343

probe 11656

21 995

u2r 52

The dataset exhibits a significant imbalance, with
some classes significantly under-represented compared
to others. Including the least two classes, which account
for only a small fraction of the total instances, could
heavily bias the classifier toward these minority classes,
leading to poor generalization of the more prevalent
classes. This poses a considerable challenge in training a
classifier.

Therefore, this study focuses on detecting well-
represented attack types (e.g., dos, probes, and normal
ones). These classes represent the most critical attack
types in real-world IDS and are more likely to be
encountered in practice. By concentrating on these
classes, the model’s performance on the more prevalent
attack types is optimized, which is crucial for real-world
applications of intrusion detection systems. For the most
focused class, the authors (Baleev et al, 2024)
concentrated on the DoS attack, in which unauthorized
users “sniff” the network to find the weak spots of a
particular resource in a probing attack and dos attacks,
the goal is to overwhelm network services with excessive
data packets to render them inaccessible (Bhattacharya et
al., 2020).

Using all five classes, including the minority ones,
might lead to a trade-off in model performance due to the
difficulty in adequately learning from the highly
imbalanced data. By excluding the least represented
classes, we can enhance the classifier’s focus on
distinguishing between the more common attack types,
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enhancing the model’s accuracy regarding the majority
classes.

ML-Based Intrusion Detection System

ML-based IDSs have emerged as powerful tools for
safeguarding networks against a constantly evolving
landscape of cyber threats. These systems examine
network data using advanced algorithms to spot unusual
patterns that might be signs of malicious activity. In
contrast to signature-based IDS that depend on
predetermined criteria, ML-IDS is able to learn from past
data and identify both known and new attacks.

Figure 5 below illustrates a deep understanding of the
workflow of the proposed ID classification model and
the evaluation criteria for assessing it.

oog

Training dataset

Testing dataset

ML Models
RF, DT, SVM

.0

Test Model

v

Model
Evaluation

S~

Classification
Output

Fig. 5: The workflow of the ML-based multiclass ID
classification

Model Development

Intrusion detection, a critical task in network security,
presents unique challenges for machine learning
algorithms. Accurate classification of malicious activities
often requires a multi-step data preparation process. This
process may involve data collection, cleaning, scaling,
and partitioning (into training and testing sets) before
applying the ML model. For example, Figure 5 visually
represents the complete workflow of the ML-based
multiclass ID classification on the NSL-KDD dataset.

e Data input: This phase involves loading the
NSLKDD dataset (i.e., labeled data) into the ML

system and preparing it for analysis.

e Data preprocessing: Effective data preprocessing is
a critical component of data analysis that directly
impacts the accuracy of predictions. Several
techniques can be applied, such as removing
duplicates, one-hot encoding (Matos et al., 2022),
and data standardization. One-hot encoding is a
method that helps transform categorical input into a
format that ML algorithms can understand—data
standardization to ensure that different features
contribute equally to the model’s learning process.

e Training and Testing datasets: The dataset should
represent real-world network traffic, encompassing
a diverse range of normal and abnormal activities.
The training dataset is used to train the ML model,
while the testing dataset evaluates its performance
on unseen data.

e ML classifier models: constructing prediction
models for datasets where RF, DT, and SVM were
the three machine learning classifiers utilized in this
step. The model is trained by exposing it to the
training data, allowing it to learn the underlying
patterns and relationships. During training, the
model undergoes iterative adjustments to minimize
the discrepancy between its predicted outputs and
the actual labels in the training dataset.

e Model evaluation: Evaluate the model’s ability to
generalize patterns to new data. Several metrics,
including the confusion matrix and accuracy, may
be applied to evaluate the machine learning models
that are being utilized.

¢ C(lassification outputs: Once the model is trained
and tested by interpreting unfamiliar network traffic
from the test set, it generates informed predictions
about the most likely attack types associated with
each instance. These predictions can be in the form
of probabilities or class labels. The output of the
classification process is crucial for identifying
potential intrusions and triggering appropriate
response actions.

Evaluation Metrics

Several evaluation metrics may be used to evaluate
the performance of the utilized ML-based ID models
according to the actual and predicted results (Japkowicz,
2006). These metrics are predominantly composed of
four distinct factors: True Positive (T+), False Negative
(F-), False Positive (F+), and True Negative (T-), as
illustrated in Table 2.

Table 2: The four distinct factors

Actual Predicted Terminology Definition

+ + True Positive (T+) Correctly predicted + instance

True Negative (T-) Correctly predicted instance

- False Negative Incorrectly predicted -

(F-) instance

False Positive (F+) Incorrectly predicted +
instance
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Accuracy (Acc): The ratio of accurately classified

instances to the overall number of predictions (i.e.,
Total).

Ace = ED+H(T) (1)

Total
Precision (P): The count of instances predicted as
belonging to the positive class.

(T+
P = myen @

Recall (R): The proportion of accurately predicted
instances in comparison to the total number of actual
positive cases.

_ (1)
R = mv ©)

Fl-score (F —measure): The metric quantifies the
optimal balance between recall and precision.

F — measure = %?‘ 4

Confusion Matrix (CM): It is a visual representation
of all factors for each class as shown in Fig. 6 in the case
of multiclass classification.

Predicted Class
A B C
Al T | P | P
o
-
o
T B | F+ T- F-
=]
[
T
C| F+ F- T-
Fig. 6: Visual representation of CM for multiclass
classification

Table 3: Train/Test results of ML-based IDS classification (5 classes)

Results and Discussion

This section explores the experimental findings
derived from implementing diverse ML models on the
NSL-KDD dataset, aimed at addressing the complexities
of multiclass intrusion detection. Since its introduction in
2009, the NSLKDD dataset has gained broad recognition
as a benchmark standard in modern cybersecurity
research. The NSL-KDD dataset comprises KDDTrain+
with 125,973 records and KDDTest+ with 22,544
records, by considering the top three classes with a total
of 113,270 records in training (89.92%) and 19,590
records in testing (86.89%) with 9 and 3 duplication
records in training and testing, respectively.

The experimental phase comprised training and
evaluating several widely recognized ML models, such
as RF, DT, and SVM. These models were selected based
on their proven effectiveness in handling complex
classification tasks and suitability for intrusion detection
problems.

To evaluate the effectiveness of each model, a
comprehensive set of performance metrics was utilized
—both for the complete five-class intrusion detection
scenario, as shown in Table 3, and for the top three-class
setting, as detailed in Table 4.

According to Table 3, the ML models have achieved
perfect results in the training while showing a substantial
performance drop from the training set to the testing set,
especially regarding accuracy and F-measure. RF and
DT have a noticeable drop of approximately 24-25% in
accuracy from training to testing, while SVM
experiences a slightly smaller drop (around 24%).
Therefore, using all five classes, including the minority
ones, might lead to a trade-off in model performance due
to the difficulty in adequately learning from the highly
imbalanced data. By excluding the least represented
classes, we can enhance the classifier’s focus on
distinguishing between the more common attack types,
making the model more accurate and robust regarding to
the majority classes as listed in Table 4.

ML Model Train Test
Acc | P R F-measure Acc P R F-measwre
RF 99.9944 99.9944 99.9944 99.9944 75.9982 81.8537 75.9982 71.7215
DT 99.9944 99.9944 99.9944 99.9944 76.4241 81.6141 76.4241 72.6774
SVM 98.5456 98.5184 98.5456 98.5252 74.1127 73.8859 74.1127 70.2674
Table 4: Train/Test results of ML-based IDS classification (3 classes)
ML Model Train Test
Acc | P R F-measure Acc 1 P R F-measure
RF 99.9970 99.9970 99.9970 99.9970 85.4216 86.7788 854216 85.1202
DT 99.9952 99.9952 99.9952 99.9952 85.3053 86.3102 85.3053 72.6774
SVM 99.0226 99.0202 99.0226 99.0207 84.5162 84.9988 84.5162 84.3678

As a result of the comparison results between five
and three ID classes in training, both RF and DT show

almost identical performance in both tables during the
training phase, with slight improvements in accuracy,
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precision, recall, and F-measure when moving from the
5-class to the 3-class. SVM performs slightly better with
three classes than with five classes, which indicates that
the more straightforward classification task with fewer
classes is more manageable for SVM to handle. The
training metrics for SVM in the 5-class table were
around 98.5%, while for the 3-class table, SVM achieved
around 99.02%. However, in testing, RF and DT showed
better performance in the 3-class compared to the 5-class
in the test data. The accuracy for RF and DT increases
from around 76% in the 5-class to 85% in the 3-class.
SVM also performs better in the 3-class than the 5-class,
with an accuracy improvement from 74.11% to 84.52% .
The performance gap between training and testing data is
smaller for all models in the 3-class compared to the 5-
class, indicating that simplifying the classification task
(fewer classes) leads to better generalization.

Furthermore, the confusion matrix for each of the
utilized classifiers is shown in Figure 7, 8, and 9 for
three classes. In Figure 7, the RF correctly classifies
almost all ”dos,” “normal” instances, and all “’probe”
instances in training. while in testing, the RF model
correctly classified 16,887 out of 19,769.

60000

Training Confusion Matrix

Testing Confusion Matrix 8000

50000
dos -JEELD

6000
40000

normal normal

True label
True label

30000 2000

probe 20000 probe

2000
dos normal probe 10000 dos normal probe
Predicted label predicted label

0

Fig. 7: RF Confusion Matrix

60000

Training Confusion Matrix

Testing Confusion Matrix 8000
50000

6000
40000

normal

True label
True label

30000 2000

20000 probe

2000
dos normal probe 10000 dos normal probe
Predicted label Predicted label

0

Fig. 8: DT Confusion Matrix

9000

Training Confusion Matrix

UEE 45864

True label

probe

dos  normal  probe
Predicted label

60000

50000

40000

30000

20000

10000

Fig. 9: SVM Confusion Matrix

True label

normal

probe

Testing Confusion Matrix

dos  normal  probe
Predicted label

8000

7000

6000

5000

4000

3000

2000

1000

The DT confusion matrix reveals a lower number of
incorrect instances (6 out of 124926) in training data and
(2,905 out of 19769) in testing data (as shown in Figure
8).

As shown in Figure 9, both the training and testing
confusion matrices show high accuracy, indicating that
the SVM model is generalizing well to unseen data. It
correctly classified 123,705 instances in training and
16,708 in testing.

Furthermore, Fig. 10 shows the Receiver Operating
Characteristic curves (ROC curve), for the RF classifier
in 3-class ID classification. The micro-average ROC
curve achieves an AUC (Area Under the Curve) of 0.95,
indicating a strong overall classification performance
across all classes.

Receiver Operating Characteristic for Multi-Class (RF)

True Positive Rate

024 s = = micro-average ROC curve (area = 0.95)
| g —— ROC curve of class dos (area = 0.94)
,’ ROC curve of class normal (area = 0.97)
’/’ = ROC curve of class probe (area = 0.95)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig. 10: RF-ROC curves for multiclass classification

These findings indicate that the RF model
demonstrates strong class discrimination capabilities
while sustaining a minimal F+ rate. The normal traffic
class achieved the highest classification performance,
with an AUC of 0.97, indicating the model’s strong
capability in accurately distinguishing normal traffic
from attacks activity. Also, the probe class (AUC = 0.95)
and DoS class (AUC = 0.94) exhibit strong classification
capability, with consistent separation from other attack
types. Overall, the curves exhibit a steep rise towards the
top-left corner, indicating that the model achieves high
T+ rates with relatively low F+ rates.

Furthermore, Figure 11 and 12 show the ROC curves
for DT and SVM models for multiclass classification of
IDs. As shown in Figure 11, the micro-averaged ROC
curve yields an AUC of 0.90, reflecting the model’s
robust overall classification performance. Among
individual classes, the ”normal” class has the highest
AUC (0.90), suggesting excellent separability, while the
”dos” class follows closely with an AUC of 0.89. The
”probe” class has the lowest AUC (0.79), implying that
the model struggles more in distinguishing this class than
the others.

From Figure 12, the “probe” class has the highest
AUC (0.93), followed by the “normal” class with an
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AUC of 0.92, demonstrating excellent classification
performance. The “dos” class has a slightly lower AUC
of 0.89 but performs well. The SVM exhibits superior
performance compared to the DT model, particularly in
distinguishing the ”’probe” class.

Receiver Operating Characteristic for Multi-Class (DT)

True Positive Rate
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Fig. 11: DT-ROC curves for multiclass classification
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Fig. 12: SVM-ROC curves for multiclass classification

Statistical Test

Friedman’s non-parametric statistical test was utilized
as the evaluation method to compare the classification
algorithms robustly. This method was deliberately
selected for its robustness in identifying statistically
significant differences in performance among the
evaluated models. In Tables 5 and 6, the mean rankings
from Friedman’s test are showcased, offering a clear
comparison of the competing methods across key
performance metrics such as accuracy, precision, recall,
and F-score in both cases (5 classes and 3 classes).

According to Table 5, DT has the lowest ranking
values across various metrics (1.25 for Accuracy, Recall,
and F-measure), indicating that it outperforms the other
classifiers in this evaluation. Although the RF ranks
second in various metrics (1.75 for Accuracy, Recall, and
F-measure; 1.25 for Precision), it outperforms DT in

Precision. SVM consistently ranks 3rd in all metrics
(Accuracy, Precision, Recall, and F-measure = 3.0),
making it the weakest classifier in the case of 5 classes.

Table 5: Mean ranking results of ML-based IDS classifications
using Friedman’s statistical test (5 classes)

Classifier Acc P R F—measure
RF 1.75 1.25 1.75 1.75

DT 1.25 1.75 1.25 1.25

SVM 3.0 3.0 3.0 3.0
p-value 0.15612  0.15612  0.15612  0.15612

Table 6: Mean ranking results of ML-based IDS classifications
using Friedman’s statistical test (3 classes)

Classifier Acc P R F —measure
RF 1.0 1.0 1.0 1.0

DT 2.0 2.0 2.0 2.0

SVM 3.0 3.0 3.0 3.0

p-value 0.13534  0.13534  0.13534  0.13534

In the case of the 3 classes (as listed in Table 6), RF
ranks first (1.0) across all metrics when compared with
other classifiers. These results show that RF outperforms
all other classifiers in this 3-class IDS classification task.
The DT consistently ranks second across all metrics
(2.0), outperforming SVM (i.e., the weakest classifier)
but trailing behind RF. The p-value (0.15612) in the case
of five classes and p-value (0.13534) in the case of three
classes for all metrics indicate that the observed ranking
differences are not statistically significant at a
conventional threshold (e.g., a = 0.05). To further
examine the distinctions between the control classifier
and alternative models, the Holm method was employed
as a post hoc statistical analysis. In line with Friedman’s
test findings, the control classifier outperformed the
others on all performance criteria.

In Tables 7 for five classes and 8 for three classes, the
statistical results from Holm’s study are shown. Based on
the classifiers’ Friedman ranks, z — value is used to
determine the statistical significance of differences
between classifiers (i.e., z; = RQO‘:RRI ). The control
classifier attained an average rank of R, the ith
classifier’s rank is R', and o is the Standard error of
ranks.

Holm’s test was applied to evaluate the competing
classifiers, leading to the rejection of hypotheses with p-
values < 0.025 across all evaluation metrics for both the
five-class and three-class scenarios, as presented in
Tables 7 and 8. Given that all p-values are above their
adjusted significance levels, there are no statistically
significant differences among the classifiers across any
measures, according to Holm’s test findings in Table 7.
For Accuracy, Recall, and Fl-measure, DT was the
control classifier, with SVM (z = 1.75, p-value=
0.080118) and RF (z = 0.50, p-value=0.617075) showing
no significant deviation. Similarly, for Precision, RF was
the control, and DT and SVM also resulted in non-
rejection of the null hypothesis.
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Table 7: Holm’s test results among the classification models (5 classes)

i Classifier o ( Ro—R' ) p-value o Hypothesis
IR

Accuracy (DT-control classifier)

2 SVM 1.75 0.080118 0.025 Non Rejected

1 RF 0.50 0.617075 0.050 Non Rejected

Precision (RF-control classifier)

2 SVM 1.75 0.080118 0.025 Non Rejected

1 RF 0.50 0.617075 0.050 Non Rejected

Recall (DT-control classifier)

2 SVM 1.75 0.080118 0.025 Non Rejected

1 RF 0.50 0.617075 0.050 Non Rejected

F1-score (DT-control classifier)

2 SVM 1.75 0.080118 0.025 Non Rejected

1 RF 0.50 0.617075 0.050 Non Rejected

Table 8: Holm’s test results among the classification models (3 classes)

i Classifier 5= ( Ro—R' ) p-value o+ Hypothesis
IR

Accuracy (DT-control classifier)

2 SVM 20 0.045500 0.025 Non Rejected

1 DT 10 0.317311 0.050 Non Rejected

Precision (RF-control classifier)

2 SVM 20 0.045500 0.025 Non Rejected

1 DT 1.0 0.317311 0.050 Non Rejected

Recall (RF-control classifier)

2 SVM 20 0.045500 0.025 Non Rejected

1 DT 1.0 0.317311 0.050 Non Rejected

F1-score (RF-control classifier)

2 SVM 20 0.045500 0.025 Non Rejected

1 DT 1.0 0.317311 0.050 Non Rejected

According to Table 8, the results of Holm’s test
confirm that RF is the best-performing classifier across
all evaluation metrics (Accuracy, Precision, Recall, and
Fl-measure) in the 3-class classification task. RF
consistently achieved the highest ranking as the control
classifier, while DT and SVM ranked lower. While SVM
shows a noticeable difference from RF ( z = 2.0, p-
value= 0.0455), the null hypothesis is not rejected due to
the adjusted significance threshold (a+ i = 0.025).
Similarly, DT (z = 1.0, p-value= 0.317311) does not
show a significant difference from RF, reinforcing RF’s
superior standing. These findings suggest that RF
provides the most robust classification performance and
should be the preferred model for this task.

Conclusion and Future work

In this study, we compared three different intrusion
detection systems that rely on machine learning: RF, DT,
and SVM. We tested them on the NSL-KDD dataset to
see how well they performed. The findings demonstrated
that RF consistently outperformed DT and SVM across
all evaluation metrics, achieving the highest accuracy
(85.42%) in the three-class classification scenario.
Additionally, the study highlighted the impact of
reducing classification complexity, where simplifying the
task from five classes to three classes improved detection

accuracy and model stability, reducing the performance
gap between training and testing. Friedman’s test was
applied to rank classifier performance to ensure
statistical rigor, followed by Holm’s post-hoc analysis to
assess statistical significance. The results confirmed that
RF consistently ranked highest in the reduced classes
across all metrics. While the study provides strong
empirical evidence supporting RF as the most robust
classifier for intrusion detection, practical
implementation in real-world environments introduces
several challenges. Deploying machine learning-based
Intrusion Detection Systems (IDS) requires -careful
consideration of computational efficiency, scalability,
and adaptability to evolving cyber threats. Although the
RF model has a strong performance, it might require
further optimization to fulfill real-time detection needs,
especially in high-traffic network environments.
Additionally, periodic retraining is necessary to ensure
IDS can adapt to emerging attack patterns. Future
research should focus on ensemble learning approaches
or hybrid IDS frameworks to enhance robustness and
provide better threat detection. Furthermore, exploring
new datasets and addressing class imbalance is crucial by
utilizing resampling techniques. Addressing these
implementation challenges will be vital for moving from
experimental validation to practical deployment,
strengthening protection against cyber threats.
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