Journal of Computer Science

Research Article

Cloud Privacy Preservation Using Improved Squeezenet-
Based Data Sanitization and Improved Lyrebird
Optimization-Based Optimal Key Generation

Smita Sharma and Sanjay Tyagi

Department of Computer Science and Applications, Kurukshetra University, Kurukshetra, India

Article history
Received: 27-12-2024
Revised: 13-05-2025
Accepted: 26-05-2025

Corresponding Author:

Smita Sharma

Department of Computer Science
and Applications, Kurukshetra
University, Kurukshetra, India
Email:
smital48.sharma@gmail.com

Abstract: Maintaining privacy in the cloud is critical, which implies reliable
and effective models that are adapted to the difficulties presented by cloud
settings. This paper introduces a comprehensive privacy preservation model
tailored specifically for cloud environments, comprising five important
phases such as data acquisition, normalization, feature extraction,
sanitization and restoration. It begins with the meticulous collection of data
from diverse sources, followed by a normalization process to standardize
and cleanse the acquired data, ensuring uniformity and consistency.
Subsequently, crucial features such as improved entropy and statistical
measures are extracted from the normalized data to provide valuable
insights. The pivotal data sanitization phase employs three key processes:
optimal key generation using the Improved Lyrebird Optimization
Algorithm (Imp-LOA), key tuning through deep learning with the Improved
SqueezeNet, and Kronecker product operation to determine the encryption
process. On the other end, the data restoration process is done, which is the
reverse process of sanitization, to retrieve the data. The proposed model
addresses the optimization objectives including hiding failure, data
preservation ratio, modification degree, and privacy. The Improved Lyrebird
Optimization Algorithm generates encryption keys based on the natural
behavior of lyrebirds, providing superior safety. Anticipated outcomes of
this research encompass MATLAB-based simulation and investigational
analysis, benchmarking against existing methods to evaluate the model's
efficacy in terms of security, time efficiency, and other pertinent metrics.
Through this comprehensive analysis, the proposed model's superiority in
safeguarding privacy in cloud environments has been demonstrated,
marking a significant advancement in privacy-preserving techniques within
cloud computing.
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Introduction

In the age of cloud computing, huge volumes of data
are processed and kept on remote systems that can be
accessed online. However, protecting the privacy of
private data has become crucial (Kim and Kim, 2022;
Yan and Gui, 2021). The inherent nature of cloud
environments, characterized by shared resources and
distributed infrastructure, presents numerous challenges
in safeguarding data privacy (Wang and Nakachi, 2020;
Ma et al., 2021). As organizations increasingly rely on
cloud services for their computing needs, addressing
these challenges becomes imperative to maintain trust
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and compliance with regulatory requirements (Fang et
al., 2020; Mondal and Goswami, 2021). The possibility
of unauthorized usage as well as information intrusion is
one of the main issues regarding cloud privacy protection
(Onesimu et al., 2022; Ahmad and Mehfuz, 2024). With
data stored on remote servers accessible via the Internet,
organizations face the constant threat of malicious actors
attempting to gain unauthorized access to sensitive
information. Additionally, compliance with data
protection regulations such as GDPR, HIPAA, and CCPA
add another layer of complexity to the management of
data privacy in the cloud (Liu ef al., 2022; Shen et al.,
2021).
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Traditional approaches to data privacy often involve
encryption techniques to protect data during transmission
and storage (Son et al., 2022; Yang et al., 2020). While
encryption provides a layer of security, it may not be
sufficient to address all privacy concerns, particularly in
scenarios where data needs to be analyzed or processed
by third-party service providers within the cloud
environment (Fugkeaw, 2022; Aminifar et al., 2022). In
such cases, there is a need for more sophisticated
mechanisms that not only encrypt data, but also ensure
that sensitive information is adequately sanitized or
anonymized to avoid disclosures or unauthorized access
(Yang et al., 2020; Gheisari et al., 2023; Patel et al.,
2024).

In response to these challenges, researchers and
practitioners have developed various techniques and
methodologies to preserve privacy in the cloud. These
include encryption techniques such as homomorphic
encryption and differential privacy, anonymization
methods, and access control mechanisms. Additionally,
advancements in technologies such as machine learning
and artificial intelligence are being leveraged to enhance
privacy preservation capabilities in the cloud. However,
traditional sanitization methods may suffer from
limitations in terms of effectiveness, efficiency, or
scalability, especially when dealing with large-scale
datasets in cloud environments. To address these
limitations, innovative approaches are required that
leverage  advancements in  machine learning,
cryptography, and optimization techniques. This research
presents an innovative privacy preservation strategy
designed exclusively for cloud environments to deal with

these problems. The key contributions can be
summarized as follows:
e Proposing entropy-based features and basic

statistical descriptors such as mean, median,
minimum, and maximum into the feature extraction
process. It allows the model to capture important
characteristics of the data that make the preservation
of data more suitable.

e Introducing an innovative sanitization technique
that utilizes optimal tuned key which is produced by
a combination of the proposed Imp-LOA, Improved
SqueezeNet, and Kronecker product.

e Proposing an Imp-LOA method for optimal key
generation, in which the enhancements are carried
out in the exploration phase using the inertia weight
and position refinement in the exploitation phase.
These improvements significantly ensure faster
convergence to the optimal solution.

¢ Developing an improved SqueezeNet model for the
key tuning process that incorporates the proposed
TriSRA activation and the batch normalization
layer.Due to these enhancements, the improved
SqueezeNet model enhances the quality of the key
and offers better security of data within the cloud.

After the introduction, a comprehensive literature
review exploring existing research and methodologies in
this domain and providing a foundation for the proposed
model is presented. In the section System Model, the
basic cloud privacy preservation model is presented and
a structured approach comprising five key phases: data
acquisition, normalization, feature extraction,
sanitization techniques, and data restoration is outlined.
Subsequently, the outcomes obtained from applying the
suggested model are presented and discussed, analyzing
its efficacy in preserving privacy and achieving
optimization objectives are explained. Finally, the paper
concludes by summarizing the main findings and
contributions.

Literature Review

Ahamad et al. (2022) stated that organizations
operating in the cloud computing environment, are
becoming more strategic, insight-driven, and efficient
with artificial intelligence capabilities. Conversely, cloud
computing offers businesses significant cost savings,
flexibility, and agility by keeping data. The two main
parts of the recommended privacy preservation approach
were data sanitization and restoration processes.
Furthermore, the defined sanitization process utilized a
hybrid metaheuristic method to execute well in the key
generation phase. As this hybrid approach combined two
efficient methods, JA and SSO, it is named J-SSO. To
accomplish optimal key creation, a multi-objective
function incorporating metrics such as HR, DM and IPR,
was derived. Ultimately, the research concluded that the
suggested approach was more effective in improving
cloud security than the most recent models. However,
multiple algorithms and techniques need to be integrated
into a cohesive privacy preservation model for cloud
environments.

Yang et al. (2022) proposed two protocols for
outsourcing biometric identification while maintaining
privacy. To achieve the high efficiency goal under the
recognized candidate attack paradigm, one of them
primarily used the effective householder transformations
and permutation technique. Under the known plain-text
attack model, the other one initialized a new random split
approach and combined it with the invertible linear
transformation to attain a higher security requirement.
Additionally, the authors rigorously analyzed the security
of the two suggested methods and thoroughly assessed
their effectiveness by contrasting them with earlier
research. However, managing the algorithmic complexity
to maintain performance and reliability is a major
challenge. Zala et al. (2022) developed PRMS that was a
record management system for the healthcare industry
incorporating privacy preservation and that mainly
considered throughput and latency. To confirm PRMS’s
applicability, a thorough performance analysis was
conducted on several third-party clouds. Furthermore,
through workload adjustments of up to 10,000
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transactions per second, the proposed PRMS system was
compared to blockchain platforms like Hyperledger
Fabric v0.6 and Ethereum 1.5.8 in terms of latency and
throughput. YCSB and small bank datasets were used to
compare the suggested PRMS with the SRHB method.
The findings of the experiment validated that PRMS was
more effective than SRHB in high workload scenarios
and that it could be used in cloud data centers. However,
to enhance the cloud security of patient data, PRMS must
have incorporated data encryption as well as cloud
storage security methods. Shivaramakrishna and
Nagaratna (2023) proposed a new hybrid cryptography
solution to satisfy the secure data storage requirements
associated with cloud computing. The corporate
infrastructure included two strong encryption algorithms,
RSA and AES-OTP, as well as adaptive key management
and time-limited control of access. AES-OTP and RSA
provided both asymmetric and symmetric encryption
layers to improve data security and integrity. With the
establishment of a smart system for key generation,
distribution, and rotations via the adaptive key
administration section, the safety of cryptographic
transactions had progressively improved. Time-limited
access control also helped to preserve data privacy by
limiting security risks and imposing stringent temporal
constraints on data access. Extensive performance
evaluations validated the efficacy of the proposed
framework, demonstrating astounding values for FI-
score (98.56%), accuracy (99.12), precision (98.78), and
recall (98.11%). However, the capabilities of increasing
time-limited access control need to be focused to
strengthen the security of data in the dynamic cloud
computing environment.

Prasad and Rekha (2023) proposed an IAS protocol.
The proposed IAS protocol was based on the use of
blockchain to ensure the validity and security of the data
flow in cloud computing. This enabled decentralized
management of keys for recovery, cancellation, and
authentication of identity. The effectiveness of the
proposed paradigms with BC-IAS was evaluated through
simulation in a cloud-based setting. The delivery of the
message rate, the consumption of energy, the end-to-end
latency, and the information access rates were some of
the main performance metrics that were assessed through
the experiment. Ultimately, the suggested BC-IAS
protocol, which was based on blockchain technology,
seemed to possess the ability to improve cloud
computing safety and confidentiality. The proposed
blockchain-based protocol was an acceptable option for
enhancing cloud privacy and security. Because
blockchain technology is decentralized, data was
maintained in a transparent and tamper-proof manner.
Additionally, the wuse of smart contracts enabled
automatic implementation of access control restrictions.
Furthermore, by ensuring that only authorized persons
may access sensitive data, verification of identity as well
as safe identification reduced the danger of information

theft and cyber attacks. However, blockchain’s inherent
scalability limitations need to be mitigated to meet the
substantial transaction and data processing demands
typical in cloud computing settings.

Ragu and Ramamoorthy (2023) presented a
revolutionary digital forensic architecture for the IaaS
cloud. It combined the rapidly developing Blockchain as
well as SDN technique. The proposed forensic
framework used the blockchain system to exchange the
proof collected between multiple peers, facilitating its
storage. It was suggested to use the SRVA approach to
guard from fraudulent accounts. Secret keys were
generated throughout the HSO procedure, strengthening
the cloud infrastructure. Each piece of data was
encrypted using SAD-ECC and kept on a cloud server on
the basis of sensitivity. The cloud-stored piece of data
was constructed by the SDN manager, who also
maintained metadata representing the history of the data.
SHA-3 was used to construct each block as a Merkle
Tree. The recommended approach enabled clients to
track their data by using fuzzy-based smart contracts.
The creation of a logical group of evidences, using data
collected via Blockchain, allowed for the eventual
possibility of evidence analysis. The Java environment as
well as the network simulator 3.26 were used for the
experiments. An extensive analysis showed that the
suggested forensic structure exhibits evidence insertion,
verification time, and positive response. However,
forensic networks need to be integrated within the SDN
infrastructure and incorporating cloud forensics is
required to enhance the capabilities of digital forensic
networks.

Transmitting sensitive data over the network can
offer hackers a chance to steal information, intercept it,
and prevent medical personnel, along with patients, from
accessing their data. Thus, security and privacy were the
primary challenges that needed to be handled for the
healthcare industry to trust and use the cloud computing
platform. In order to deal with this issue, Irshad et al.
(2023) described data sanitization and restoration
procedures utilizing the optimal key to ensure privacy
and security. The authors employed the BFL-PSO
approach to compose the optimal key on the basis of
multi-objectives. The hospital discharge dataset was used
to conduct the experiment. Security, encryption time,
delay time, convergence speed, and error rate were
evaluated during the performance analysis with the
traditional works. Performance analysis showed that
compared to traditional security techniques, the
recommended solution was superior in providing
security. However, artificial intelligence-based hashing
has to be incorporated within an authorization framework
for user identification in multilevel setups.

Patil and HimaBindu (2023) presented a new
approach to cloud-based data security. The proposed
approach used an enhanced apriori method to clean the
information and protected sensitive data kept in large
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datasets from misuse. Here, the primary goal was to
produce a key by the application of an optimization
method called CIAO-TME. The key was generated on
the basis of multi-objectives and then utilized for data
sanitization as well as restoration. The DM, HR and IPR
were considered to analyze the performance of suggested
approach and found it more effective in contrast with
earlier researched schemes for all three datasets.
However, data sanitization and key generation
techniques should be effectively integrated so that data
security can be improved more. Kumar et al. (2023)
executed the privacy preservation paradigm in IloT by
utilizing the developments in artificial intelligence
techniques. IIoT data restoration and sanitization were
the two main phases of the developed system. Sensitive
information in the IIoT was hidden by data sanitization
to stop information leaks. The intended sanitization
technique employed a new G-BHO approach to produce
keys as efficiently as possible. A multiobjective strategy
that included the level of modification, the hiding rate,
the coefficient of correlation between the original and
restored data, and the data preservation rate, was used to
generate the optimal key. The outcome demonstrated that
the suggested model was superior to other cutting-edge
models in terms of several performance indicators.
However, the approach can be improvised to address
privacy concerns in IIoT environments.

Sharma and Tyagi (2024) presented a model to
preserve privacy in the cloud environment by
incorporating artificial intelligence with deep learning.
The authors identified the sensitive data using an
improved dynamic itemset counting method and then
sanitized the data using an optimal tuned key. The key
was developed by a combination of LSTM and
MUAOA, a hybrid metaheuristic algorithm, based on
fourfold objectives. The proposed scheme competed with
the traditional schemes and outperformed them in terms
of HR, IPR, DM, and privacy. The suggested scheme
was also superior on the basis of key sensitivity,
effectiveness of sanitization and restoration as well. The
authors concluded that the model can be appropriate for
privacy preservation and ensuring data security.
However, the proposed algorithm worked effectively
only for small-scale datasets, and it needs to be
improvised for large-scale datasets.

Rahman et al. (2024) proposed an innovative method
for restoring sanitized sensitive autism datasets with
enhanced performance. The study utilized an optimal key
generated through a hybrid PSO-GWO framework,
which was applied to effectively conceal sensitive
autism-related information and prevent data leakage. The
same key was then used in the restoration phase,
significantly improving the accuracy of recovering the
original data. This dual-phase use of the optimal key
contributed to stronger security and privacy measures in
handling autism-related datasets. However, a notable
drawback of the approach is the increased computational

overhead resulting from the integration of multiple
algorithms.

Dhamdhere et al. (2025) introduced a deep learning-
assisted data sanitization method aimed at enhancing
data security in cloud environments. The proposed
process contained several stages such as preprocessing
data, optimal key generation, deep learning-based key
refinement, and application of the Kronecker product.
The data were pre-processed while considering both the
raw data and the extracted statistical features. A novel
SANBO algorithm was developed for optimal key
generation and the suitable candidates from the pool of
generated keys were fine-tuned using an improved Deep
Maxout classifier. The sanitization process was then
completed by employing the Kronecker product. This
process was reversed to restore the original data in the
data restoration phase. This method effectively
strengthened data security and mitigated the risk of
malicious attacks in cloud settings. However, a noted
limitation of the approach is its relatively limited
capacity to minimize computational resource costs.

Problem Statement

Although considerable progress has been made in
cloud privacy preservation research, several persistent
challenges continue to limit the effectiveness of existing
methods. For example, Ahamad ef al. (2022) emphasized
the importance of integrating diverse algorithms for
comprehensive privacy protection, but the complexity of
coordinating multiple techniques into a single cohesive
model presents significant implementation challenges.
Similarly, Shivaramakrishna and Nagaratna (2023)
developed a hybrid cryptographic approach combining
RSA and AES-OTP to enhance data storage security.
Nonetheless, it does not adequately address the need for
time-sensitive access controls in the dynamic cloud
settings. Prasad and Rekha (2023) proposed a
blockchain-based IAS protocol to ensure secure and
valid data transmission. However, the protocol inherits
blockchain’s stability limitations which can hinder
performance in data-intensive cloud environments.
Irshad et al. (2023) introduced a BFL-PSO technique to
generate optimal keys for securing health data transfer to
the cloud. Yet, the model lacks integration with Al-based
hashing mechanisms within an authorization framework
for user identification in multi-level environments.
Furthermore, Patil and HimaBindu (2023) introduced the
CIAO-TME method for cloud data security, yet faced
difficulties in effectively integrating data sanitization
with key generation process. Additionally, Sharma and
Tyagi (2024) proposed a privacy-preserving framework
that generated optimal key using a combination of the
LSTM model and the MUAOA algorithm, addressing
factors such as HR, IPR, DM and overall privacy.
However, this approach struggles with scalability; as
dataset size grows, its performance in association rule
hiding and key generation tends to degrade. To address
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these gaps, the proposed study develops a novel privacy
preservation model that integrated the Imp-LOA for
robust key generation, utilized the improved SqueezeNet
model for key refinement, and applies the Kronecker
product to strengthen data sanitization. These
enhancements together offer a scalable, efficient, and
secure solution tailored for cloud environments.

System Model

The system model is designed for handling medical
data privacy within cloud environment to ensure the
secure, efficient, and privacy-preserving management of
sensitive healthcare information. With the collaborative
nature of cloud computing facilitating access to stored
data by multiple users, the risk of data compromise
escalates. Addressing this challenge necessitates the
development of robust security solutions to safeguard
data during transmission and storage. A novel healthcare
privacy preservation model tailored for the cloud
environment is introduced in this work. In this model,
relevant data concerning heart disease, such as patient
demographics, medical histories, symptoms, diagnostic
results, and outcomes, are collected from various
sources, including medical records, clinical trials, and
research databases. Following this acquisition, the
normalized dataset undergoes feature extraction to
identify key attributes pertinent to heart disease
diagnosis or prognosis. The subsequent phases, including
data sanitization, multi-objective optimization, and
restoration, remain consistent with the original model,
ensuring robust privacy preservation tailored to the
specific context of heart disease data. Figure 1 shows the
system model architecture.
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Fig. 1: System Model

Materials and Methods

The analysis of cloud privacy preservation was
conducted using the Cleveland dataset, which is
commonly associated with heart disease research (Janosi
et al., 1988; Karlekar and Gomathi, 2017). Within this
dataset, there exist 76 attributes; however, research
publications have predominantly centered around a
subset of 14 attributes. Specifically, machine learning
investigations have primarily utilized the Cleveland
database due to its open accessibility, widespread use in
benchmarking, and its rich clinical features, which make
it suitable for evaluating privacy-preserving models. This
section discusses five main stages of the complete
structure of the suggested model i.e. data acquisition,
normalization, feature extraction, sanitization, as well as
restoration. The overall architecture of the proposed
preservation model is depicted in Figure 2. Protecting the
security and privacy of data generated or stored in the
cloud requires considerable thought at each stage. It
includes the following crucial actions:

e At first, collecting diverse datasets from relevant
sources, ensuring they encompass a range of
scenarios and data types pertinent to the cloud
computing environment, comes under the process of
data acquisition.

¢ Then standardizing and cleansing the acquired data
in the data normalization phase to ensure
uniformity, consistency and suitability for
subsequent analysis.

e After the data normalization phase, the specific
features are extracted, including the improved
entropy and the basic statistical features such as
mean, median, maximum, and minimum. These
features are significant in preserving privacy and
maintaining data utility.

e Afterwards, the pivotal data sanitization phase
employs three key processes: optimal key
generation utilizing Imp-LOA, key tuning through
deep learning using Improved SqueezeNet, and
Kronecker product operations to encrypt the data
features.

e Here, the improved Lyrebird optimization algorithm
is proposed for optimal key generation which would
offer more stable convergence and a fine-tuned
solution with higher precision.

e Subsequently, a deep learning model is proposed for
the key tuning process, in which the improved
SqueezeNet model is developed using the proposed
TriSRA activation function and the batch
normalization layer. This improved version
enhances the security and strengthens sanitization.
Thereby, the Kronecker product is performed
between the tuned keys to augment the privacy of
the sanitization process.

e Finally, the data restoration process is done to
retrieve the original data. The model addresses
optimization objectives including hiding failure,
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data preservation ratio, modification degree, and
privacy, ensuring a holistic approach to privacy
preservation.

Data Acquisition Phase

In this phase, datasets related to heart disease HD are
collected from the online repository (Janosi ef al., 1988).
According to the work, a benchmark dataset is
considered.

Data
Acquisition

Feature Extraction

Improved Entropy
features

Data
Normalization

Statistical based
features

@U

Data Sanitization

Optical Key generation Key tuning
via via
Imp-LOA Improved SqueezeNet

Kronecker
Product

=

Data Restoration Process

Fig. 2: Architecture of Proposed Privacy Preservation Model

Data Normalization Phase

Following data collection, the collected heart disease
data undergo pre-processing for standardization,
ensuring consistency and uniformity across different
attributes which is called as data normalization process
(Jain and Bhandare, 2013). In this proposed approach,
the Min-Max Normalization (Ahamad et al, 2022)
method is utilized, which linearly scales un-normalized
data to predefined lower (a) and upper bounds (b). The
formula used in this process is expressed as per Eq. 1,
wherein, HD represents the input data and the values of a
and b are fixed as 1 and 10, respectively. The normalized
data is termed as Dy.

HD—min(HD)
maz(HD)—min(HD)

Dy =a+ (b—a) (M

Feature Extraction Phase

This section involves the extraction of relevant
information (features) from the normalized data Dy,
including entropy-based features and statistical-based
features such as mean, median, minimum, and
maximum. This shows the transformation of raw data

into a more compact and informative representation,
facilitating the subsequent analysis steps.

Improved Entropy-Based Features (IEn;)

The entropy feature is used to assess the distribution
of values within each feature of a dataset. Traditional
entropy measures (Feng et al., 2018), such as Shannon
entropy, provide valuable insights into the uncertainty or
randomness in the dataset. These features offer a more
refined understanding of the data complexity compared
to traditional entropy measures, but have some
drawbacks. One of the main limitations is that they treat
all features equally, regardless of their importance or
contribution to the overall data structure. Additionally,
traditional entropy measures may not adequately capture
more nuanced patterns and structures within the dataset.
Eq. 2 shows the traditional entropy formula which is
used to quantify the amount of information present in the
data or a specific feature, wherein, the entropy of ith
feature is denoted as £En;, Dy indicates the input
(normalized data), total number of features are
represented as N, probabilities of jth value of iy, feature is
denoted as Qijs which is expressed as per Eq. 3.

N
En; = _T%N) > i1 Qijlog (Qij) @
. (DN)iZ' 3
Ql] - Zf\il(DN)ij ( )

To address these limitations, the proposed logic
introduces improved entropy-based features. These
enhanced features offer a more refined understanding of
the data complexity compared to traditional entropy
measures. The proposed method assigns weights to
features based on their entropy values, which allows for
a more tailored approach to feature extraction. [En;
contain entropy-based weight calculation to assign
weights to features based on their entropy values. This
approach enhances traditional entropy-based feature
extraction by incorporating a weighting mechanism that
emphasizes features with higher entropy, indicating
greater variability or unpredictability in the data. The
proposed method calculates the entropy of each feature
using Eq. 4, which is a modified version of the
traditional entropy formula. This modified formula
incorporates weights assigned to each feature based on
their entropy values, wherein, W; indicates the entropy-
based weight calculation, which is expressed as per Eq.
5. The weights are assigned to features based on their
entropy values, with a normalization term to ensure
numerical stability .

IEn; = = Y Wi+ [Qij - 1og (Q) +é] @)
o 1—En;
Wi= N-YN, En, (5)

Statistical Features (S)

Statistical features extracted from normalized data
encompass a variety of descriptive statistics that
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summarize the distribution and characteristics of the
dataset. These characteristics offer useful details about
the data structure, central tendency, and variability,
facilitating analysis and interpretation. Some common
statistical features extracted from normalized data
include mean, median, minimum and maximum.

e Mean: Adding up each value in normalized data and
dividing it by the total number of values, which is
termed as the mean or average. It represents the
central value around which the data points are
distributed.

e Median: Arranging the data in ascending order, the
median represents the midway value. The dataset is
split in half equally, with fifty percent of the values
falling below and fifty percent above the threshold.
Compared to the mean, the median is less impacted
by extreme numbers and gives an indication of the
overall central tendency.

e Minimum: The minimum value in a dataset is the
smallest value observed. It indicates the lower
bound of the dataset and provides insights into the
smallest value present in the data.

e Maximum: The maximum value in a dataset is the
largest value observed. It indicates the upper bound
of the dataset and provides insights into the largest
value present in the data.

The feature extraction phase plays a crucial role in
the privacy preservation model by enabling the
identification  and  extraction of  meaningful
characteristics from the normalized data, which are
essential for subsequent processing and analysis. Here,
the final feature set is denoted as Fy = [/En; S].

Data Sanitization

The data sanitization step is crucial to protect
sensitive data (features) while preserving the usefulness
of the data. This phase involves the application of
various techniques and processes to modify or transform
the data in such a way that privacy is preserved, and the
risk of unauthorized access or disclosure is minimized.
In this proposed model, three key processes in this phase
are optimal key generation, key tuning and Kronecker
product.

Optimal Key Generation using Imp-LOA

Optimal key generation is crucial for sanitization and
restoration processes to ensure robust security measures.
Generating strong security keys is essential for
safeguarding sensitive data from unauthorized access or
disclosure. In this paper, Imp-LOA is utilized for optimal
key generation. This algorithm is intended to effectively
search for the best possible outcomes (key generation)
based on typical actions of lyrebirds (Dehghani et al.,
2023). The traditional LOA algorithm is effective for
various optimization tasks; however, it suffers from local
search capability, slow convergence speed, and a

tendency to get trapped in local optima, which would
limit its performance. In order to address these
challenges, enhancements were made in the LOA to
ensure more stable convergence and maintain diversity
without compromising directionality, as well as to allow
the Imp-LOA algorithm to fine-tune solutions with
greater precision.

Solution Encoding: Encoding solutions in the Imp-
LOA involve representing potential solutions in a format
suitable for manipulation and evaluation by the
algorithm. The upper and lower bounds define the
feasible range of decision variables, which are taken as 1
and 0, respectively. Population size determines the
number of potential solutions considered during each
iteration, influencing the balance between exploration
and exploitation. It is fixed as 10.

Objective Function: The objective function, also
known as the fitness function or evaluation function, is a
crucial component of Imp-LOA. It quantifies the quality
or fitness of a potential solution based on its ability to
achieve the desired objectives or criteria of the
optimization problem. The objective function takes a
solution as input and returns a numerical value
representing how well that solution satisfies the
optimization goals. Here, the multi-objectives are
considered like hiding ratio (H), data preservation ratio
(P), privacy (Pr), and modification degree (D). Eq. 6
indicates the objective function for finding best solution.

Op =min (H + $ + p; + MD) (6)

a. Hiding Ratio (H): This objective quantifies the
effectiveness of hiding sensitive information within
the sanitized data. It aims to minimize the
likelihood of unauthorized access or disclosure by
obscuring identifiable or sensitive attributes while
retaining the data utility. Hiding ratio is computed
as the ratio of the count of exposed sensitive
information in sanitized data (say S,g) to the total
count of sensitive information present in the
original dataset (say D) as shown in Eq. 7.

S,
H:—Dﬂj (7)

b. Data Preservation Ratio (P): The data preservation
ratio objective measures the extent to which useful
information is retained during the sanitization
process. It seeks to maximize the retention of
valuable insights and patterns in the data while
achieving privacy goals. According to Eq. 8, the
data preservation ratio calculates the difference
between the number of non-sensitive rules in the
sanitized data (say S;) and the number of non-
sensitive rules that remained intact in the sanitized
data (say S;) among all the non-sensitive rules (say
NS)).

_ S5-=8;
P = NS; (8)
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c. Privacy (Pr): Privacy enhancement is a fundamental
objective, aiming to maximize the level of privacy
protection. This includes minimizing the risk of re-
identification or wunauthorized inference from
sanitized data, thereby safeguarding the individual
privacy. Privacy implies encrypting sensitive private
data before storing and processing it due to data
privacy concerns, which is expressed in Eq. 9 with
a and b representing the length of original data (D)
and sanitized data (S), respectively.

1 b D-S
Pr= 531 Y1 mas) ©)

d. Modification Degree (MD): The modification
degree objective evaluates the extent of alterations
made to the original data during the sanitization
process. It aims to minimize unnecessary changes to
the data structure or content, preserving data
integrity and accuracy while balancing the privacy
requirements. This is determined by the Euclidean
distance as per Eq. 10, wherein, u; represents the ith
sensitive data in the original sensitive data and v;
indicates the i sensitive data in the sanitized
sensitive data.

MD = /SN, (u; — v,)’ (10)

Each objective serves as a measure of the
effectiveness and impact of the sanitization process in
preserving privacy and maintaining data integrity.

Mathematical Modeling of Imp-LOA: Mathematical
modeling of Imp-LOA for optimal key generation is
given in this section, which undergoes three key updates.
Firstly, during initialization, the algorithm makes a
uniform distribution of candidate keys within the search
space. Secondly, in the exploration phase, dynamic
inertia weights are introduced to regulate the balance
between exploration and exploitation, allowing for
adaptive optimization. Lastly, after both the exploration
and exploitation phases, candidate solutions undergo
further refinement to enhance convergence and solution
quality.

a. Updated initialization by Uniform Initialization
Algorithm: Inspired by the mating habits of male
lyrebirds, which are renowned for their amazing
capacity to reproduce noises from their
surroundings, Imp-LOA has been proposed as a
nature-inspired metaheuristic algorithm. Here, the
Uniform  Particle  Initialization = Algorithm
(Ardiansyah ef al., 2022) has been used to initialize
its population of solutions. This initialization
strategy ensures that particles are uniformly
distributed across the search space, mitigating the
risk of aggregation, and facilitating effective
exploration of diverse regions early in the
optimization process.

It begins by randomly selecting a base point,
denoted as X, within the feasible search space,
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serving as a pivotal reference for the subsequent
particle distribution. This is followed by the
generation of a random permutation of integers
ranging from 1 to n» — 1, where n signifies the
number of particles, forming the matrix R to infuse
randomness into the initialization process. Each
particle, indexed from 1 to n, and each dimension,
from 1 to D where D represents the dimensionality
of the search space, is then assigned a position Xy
ensuring a uniform spread across the search space
while maintaining a minimum distance between
particles. Boundary handling mechanisms are
employed to meticulously adjust positions that
surpass allowable ranges for particular dimensions,
ensuring adherence to predefined boundaries and
preventing solutions from straying beyond the
feasible region of the search space. This holistic
approach to initialization sets the stage for effective
exploration and robust optimization within the Imp-
LOA framework, ultimately enhancing its capacity
to derive optimal encryption keys efficiently and
reliably. Algorithm 1 represents the uniform
initialization.

Algorithm 1 Uniform Particle Initialization

Initialize X; randomly within the search area
ford=1toDdo
Randomly rearrange [1, 2, ..., (n-1)] to get Ry =
[R1g Rog -+ Rin-1)l
end for
fori=1tondo
ford=1to D do
Xig =Xig * R ppa =1 * Xamax = Xamin)
if X;; > X4,,,. thén
A./id =Xiq- (deax - dein)
end if
end for
end for

. Updated Exploration Phase by Dynamic Inertia

Weight: The exploration phase in Imp-LOA tailored
for optimal key generation is a crucial component,
orchestrating the systematic exploration of the
solution space to derive sanitization keys that
maximize data privacy and security. Inspired by the
lyrebird’s behavior of escaping to safe areas, Imp-
LOA dynamically adjusts the positions of candidate
keys, mimicking the bird’s movement to scan
different regions of the problem-solving search
space. This phase is pivotal in facilitating
comprehensive exploration, allowing the algorithm
to discover promising regions that may contain
optimal solutions.

During the exploration phase of Imp-LOA, each
candidate key identifies safe areas based on the
other keys’ locations with superior objective
function values. These safe areas represent regions
where the sanitization keys exhibit enhanced
characteristics related to data privacy and security.
The set of safe areas for each key i is determined
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using Eq. 11, wherein, i = 1,2,..,N. Here, S4;
denotes the set of safe areas for the iy, sanitization
key, X represents the position of the /; key, and
(Op), is the corresponding objective function value.

SA; = {Xla (Of)z < (OF)i;l € {1’2"" ’N}} (1)

In Imp-LOA, the displacement modeling process
simulates the lyrebird’s escape to one of the
identified safe arcas. Each key’s new position is
computed using Eq. 12, reflecting the dynamic
movement towards regions that exh1b1t superior
sanitization characteristics. Here, .X; Jl indicates the
new position of the iy, sanitization key in the jy,
dimension, R; ; is a random value, S4; i indicates the
position of the safe area in the ji;, dimension, and 7;

is a random binary value.

X{}l = XL]' + Ri,j (SAlJ 1] :171]) (12)

In this position, it is updated by using the dynamic
nature of inertia weights (Fang et al., 2022) and
acceleration coefficients help regulate the balance
between exploration and exploitation, ensuring that
the algorithm effectively explores diverse regions of
the search space while avoiding premature
convergence to suboptimal solutions. Eq. 13
displays the key’s updated location during the
exploration stage. Eq. 14 depicts the calculation of
dynamic inertia weight W(¢), wherein, T, denotes
the maximum number of iterations, ¢ indicates the
current iteration, and random value is denoted as b
that vary dynamically around the value 1, which is
expressed as per Eq. 15. Here, the normal
distribution random number is denoted as 7,
maximum inertia weight is denoted as W,,,, which
is fixed as 0.9 and minimum inertia weight is
denoted as W ;,, which is fixed as 0.4.

min>

XPV= X« W () + Ry - (SA,; — Ty -zy)  (13)
Toiar 14
W (8) = b % Winas [VVH( ) (9

b=1+02x7r (15)

. Updated Mutation Strategy: Dynamic Coefficient
Mutation and DE/Current to Best/3 Mutation
Strategy: After the exploration phase, dynamic
coefficient mutation involves dynamically adjusting
mutation coefficients during the optimization
process. The DE/Current to Best/3 mutation strategy
(Fadhil et al., 2023), tailored for key generation,
mutates current solutions based on the difference
between the current solution as well as the best
solution among three randomly selected individuals.
These mutation strategies aim to introduce diversity
into the population of potential sanitization keys,
enabling the technique to explore different regions
of the key space and potentially discovering
superior key configurations. Here, the dynamic
coefficient mutation is based on the condition as per
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Eq. 16. The updated DE/Current to Best/3 mutation
strategy is expressed in Eq. 17, wherein, the best
solution is denoted as Xpest, the solution of current
ig, position is denoted as X;, the uniform
distribution random number (0,1) is denoted as F,
the randomly selected individuals are denoted by
Xrl, XTQ and P denotes the mutation probability

coefficient (Fang et al., 2022), which is calculated
as per Eq. 18.

R . ; 16

Ri(t+1) = V} (t) P> rand (16)
X;(t) else

Vi (t) = Koo + F 5 [Kpou = X + Fx [Rn - %] (17)

P=02+05x (f) (18)

Eq. 19 updates the position of each lyrebird based
on whether the objective function value for the new
position is improved as compared to the current
position. In the context of key generation, this could
correspond to selecting key values that results in
better sanitization efficacy or improved security.
Here, X"; represents the updated position (final
generated key) in the exploration phase.

5 _ X (00)] < (0p), (19)
= XZ- else

. Exploitation Phase of Imp-LOA: The Exploitation

phase of Imp-LOA is tailored to update the
positions of population members, which represents
potential sanitization keys based on a strategy
inspired by the movement behavior of lyrebirds
seeking suitable hiding areas. This phase aims to
exploit promising regions of the key space by
making small adjustments to the pos1t10ns of the
keys. Eq. 20 computes a new posmonxP . for each
lyrebird (or key) based on the h1d1ng strategy,
aiming to make small adjustments to the current
position. The magnitude of the adjustment is
influenced by random factors and the difference
between the current position and the bounds of the
key space, wherein, xiP,zj represents the new
position for the iy encryption key in the jy
dimension, R; ; represents the random numbers from
interval [0, 1] and uj, lJ represent the upper and
lower bounds for jy, dimension of the key space,
respectively.

o= iy (1 2R, U 20

After this, it is updated using dynamic coefficient
mutation and DE/current to best/3 mutation strategy
of Imp-LOA, which are already shown in Egs. 16 to
Eq. 18. Therefore, the final generated key is
expressed by Eq. 21. If the new position yields an
improved objective function value, indicating
enhanced key quality, it replaces the current
position; otherwise, the current position remains
unchanged. The flowchart of Imp-LOA is shown in
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Figure 3 and the hyperparameter settings are given
in Table 1. This approach ensures that the algorithm
effectively navigates the key space, gradually
refining potential keys to better meet the
optimization objectives, whether they pertain to
security, efficiency, or other relevant criteria.

o P2 P2
X, = X; (OF)i < (OF)i @n
i N
X; else
Table 1: Hyperparameter Settings of the Algorithm
Model Hyperparameters
Imp-LOA  wmax=0.9; (Maximum Inertia Weight)

wmin=0.4; (Minimum Inertia Weight)
r=interval(0,1)

Start [mp-LOA

Input data for the optimization.
Objective function, Tnterval of varisbles and constraints

!

[ Fix the population size, N and maximum number of iterations, I’ ]

!

[ i e b e e ot et ]

Yes
Update Si4, set as per Eq. (1)

Update new position of iz Imp-L OA member
by dynamic inertia weight 3 as per Eq. (13)

Update the best position by mutation
strategy as per Eq. (16), Eq. (17)

Compute new position of the
ith Imp LOA member x/ 25

per Eq_ (20)

Update the position by
mutation strategy as per Eq.
(16).Eq. (1T)

Update i as per Eq {21) ]

Update ¥as per Eq (19) ]

Yes

[ Display the optimal candidate solution ]

Fig. 3: Flowchart of Imp-LOA

Key Tuning Process using Improved SqueezeNet Model

Once the optimal keys are generated, the key tuning
process is used to further enhance their effectiveness.
Specifically, compared with the existing deep learning
method, SqueezeNet is employed in the proposed
privacy preservation model due to its lightweight
architecture, efficiency, and effectiveness in deep
learning-based feature extraction for the key tuning
process. Additionally, SqueezeNet has a smaller model
size and fewer parameters, which offers a balance
between computational efficiency and performance,
crucial for cloud environments. Despite its efficiency, the
conventional SqueezeNet model suffers from the
vanishing gradient problem and inefficient gradient
propagation during training. This could slow down

convergence and limit the model’s ability to learn
effectively in complex data distributions, as well as
provide less stable training. In order to overcome the
flaws found in the conventional SqueezeNet model, an
improved SqueezeNet model is proposed in this research.
This improved version enhances the model’s ability to
capture complex and non-linear patterns. The proposed
activation function helps the model maintain a balance
between efficiency and expressiveness, leading to
improved training dynamics and higher model accuracy.
Key tuning involves adjusting the parameters of the keys
based on learned patterns and characteristics of the data.
This fine-tuning process aims to optimize the keys for
the specific dataset and the sanitization process being
used, thereby improving overall security and efficiency.

Tnnput

H
H

Conv. 1 Fire

]
i

ReLU Layer Conv. 10

Maxpooling

1
I

Maxpooling Global Avg.

pooling

ire2
ez Softmax
Fire7

Fire3
Outpait

i
i

|
I

|

i

Maxpooling

H

Fig. 4: Conventional SqueezeNet Architecture

The standard SqueezeNet architecture (Zia et al.,
2024) is a lightweight Convolutional Neural Network
(CNN). It follows a sequence starting from a
convolutional layer (Convl) and concludes with a final
convolutional layer (Conv10). In between, it incorporates
fire modules, which consist of squeeze and expand
layers. The squeeze layer comprises 1x1 convolutions to
reduce the number of input channels, followed by expand
layers that include a mix of 1x1 and 3x3 convolutions to
capture both spatial and channel-wise information. Eight
fire modules (Fire2 to Fire9), which are specialized units
designed to efficiently extract features from input data,
are incorporated. The network also employs max-pooling
operations with a stride of 2 after Convl, Fire3, Fire5,
and Conv10, contributing to its computational efficiency
and effective feature extraction. Additionally, a dropout
layer with a 50% dropout ratio is applied after Fire9,
enhancing the model’s robustness against over-fitting.
ReLU activation function is used in this network. Figure
4 shows the conventional SqueezeNet architecture.

However, in standard SqueezeNet, several key
challenges emerge. Firstly, there is a perpetual struggle
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between model size and performance, where achieving
high accuracy with a compact architecture is challenging.
In addition, Deeper networks are prone to over-fitting,
especially when trained on limited data. Regularization
techniques are essential to prevent overfitting.

The proposed SqueezeNet architecture introduces
several enhancements to address challenges encountered
in the standard architecture. Firstly, the incorporation of
the TriSRA activation function enhances the model’s
capacity to capture complex patterns more effectively
compared to the standard ReLU activation function. This
improvement helps overcome the challenge of
expressing intricate patterns in the data, thereby
enhancing performance. The architecture of the
improved SqueezeNet model is shown in Figure 5.
According to this proposed model, TriSRA activation
function is used, which incorporates smooth activation
function like Swish (Ramachandran et al., 2017), ReLU
(Nwankpa et al., 2018) and APTx (Kumar, 2022). By
combining multiple activation functions, non-linearity to
the model is introduced which enables the model to
capture more complex patterns. Eq. 22 shows the
proposed TriSRA activation function Z, which is based
on ELU (Clevert et al., 2016) and the average of the
Swish function, the ReLU function, and the APTx
activation function.

Z_{a(ez—l) z<0 (22)
- s(z)+r(x)+ta(z
3 z>0
Input:
Optimal
generated
key
Fire4
[ Fire5 i Fire9 [

Batch Conv.10
i7ats
Normalization
Global Avg.
Maxpooling pooling

Maxpooling

i

Softmax

- Fire6
e :l:
Fire3 Fire7 Tuned Key
L y \ S

]

Batch
Normalization

Fire8

ﬂ

Maxpooling

Fig. 5: Improved SqueezeNet Architecture

Here, s(x) represents the Swish activation function,
which is calculated as per Eq. 23. It introduces a non-
linearity that is smoother than ReLU, potentially leading
to improved training efficiency and generalization. The
value of trainable parameter £ is fixed as 0.1. ReLU
activation function is represented by r(x) and can be
defined as per Eq. 24. It helps the network learn complex
patterns by introducing non-linearity. a(x) represents the
APTx activation function, which is computed as per Eq.
25, where oy = LBgpix = LYapex = 0.5 1t offers stability
in training deep neural networks (improved SqueezeNet)
by mitigating issues such as vanishing or exploding
gradients.

s (z) = z.sigmoid (Bz) (23)
r (z) = maz (0,) (24)
a (:l)) = (aaptz + (tanh (Bapta:m)) * Yaptz (25)

Algorithm 2 Pseudocode of Improved SqueezeNet
Architecture

function SQUEEZENET
Apply Convolutional Layer with 64 filters, 3%3 kernel
and a stride of 2
Apply TriSRA Activation
Apply Batch Normalization
Perform Maxpooling with a pool size of 3%3 and stride
of 2
Repeat for Fire Modules 2 to 9:
if Module 3 or Module 5 then
Apply FIREMODULEUPDATED
else
Apply FIREMODULE
end if
Apply Dropout with a rate of 0.5
Apply Convolutional Layer with 10 filters, 3x3 kernel,
and 'same' padding
Apply TriSRA Activation
Perform Global Average Pooling
Apply Softmax Activation
Return the output
end function
function FIREMODULE
Apply Squeeze Layer with 1x1 convolutions
Apply TriSRA Activation
Apply Expand Layer with 1x1 convolutions
Apply TriSRA Activation
Apply Expand Layer with 3x3 convolutions
Apply TriSRA Activation
Concatenate the outputs of the two expand layers
Return the concatenated tensor
end function
function FIREMODULEUPDATED
Apply Squeeze Layer with 1x1 convolutions
Apply TriSRA Activation
Apply Expand Layer with 1x1 convolutions
Apply TriSRA Activation
Apply Expand Layer with 3x3 convolutions
Apply TriSRA Activation
Concatenate the outputs of the two expand layers
Apply Batch Normalization
Perform Maxpooling with a pool size of 3%3 and stride
of 2
Return the output after maxpooling
end function
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Table 2: Hyperparameters of the Improved SqueezeNet

Model
Improved SqueezeNet

Hyperparameters

Activation Variables:
aaptx = 1,faptx = 1,yaptx = 0.5
Optimizer: Adam epoch: 50

Secondly, batch normalization layers are strategically
integrated throughout the architecture to improve
training convergence and mitigate over-fitting. This
addresses the common challenge of overfitting in deeper
networks like SqueezeNet, ensuring better generalization
to unseen data. Batch normalization layers are
strategically incorporated post-TriSRA activation in fire
3 and fire 5 modules to ensure stable and efficient
training. By leveraging the combined benefits of the
Swish, ReLU, and APTx activation functions within
TriSRA, alongside batch normalization, the model aims
to optimize key parameters effectively, enhancing the
security and efficiency of the data sanitization process in
the cloud environment. Table 2 and Algorithm 2 present
the hyperparameter settings and pseudo code of the
improved SqueezeNet, respectively.

Kronecker Product

In the data sanitization phase, Kronecker product
operations are executed between keys to augment the
security of the sanitization process. By performing
Kronecker product operations between keys, additional
complexity and randomness are introduced into the
sanitization mechanism, bolstering its resistance against
unauthorized access and cryptographic attacks. This
process enhances the robustness of the process utilized
during data sanitization, thereby fortifying the protection
of sensitive information stored or transmitted within
cloud environments. Through the strategic application of
Kronecker product operations between keys, the model
ensures a heightened level of security in safeguarding
data privacy in cloud computing infrastructures.

Data Restoration

The data restoration phase plays a crucial role in the
proposed privacy preservation model, as it facilitates the
reversion of sanitized data to its original state, enhancing
flexibility and usability. This phase ensures that, despite
undergoing sanitization for privacy protection, the data
remains accessible and usable for authorized purposes
when necessary. By utilizing the tuned key to decrypt the
sanitized sensitive material, the data restoration approach
entails reversing the data sanitization process. Firstly, the
tuned key and the sanitized data are binarized, and after
that, an XOR operation is performed. The restored
database is the result of this process, which successfully
retrieves the original data. This procedure ensures the
confidentiality and safety of the data during its
transmission while enabling recipients on the other side
of the cloud to safely recover and use the sensitive
information of the data owners.

Results and Discussion

Simulation Procedure

The proposed cloud privacy preservation model has
been implemented and simulated using MATLAB
version R2021b. The simulation was executed on a
processor with an 11th Gen Intel(R) Core (TM) i5-
1135G7 @ 2.42 GHz, and the system was equipped with
16.0 GB of installed RAM. Three testcases i.e. testcasel,
testcase2, and testcase3 are created by applying
variations of 10, 20, and 30% on the heart disease dataset
(Janosi et al, 1988) to analyze the performance of
proposed model, respectively.

Performance Analysis

A comprehensive analysis was conducted to evaluate
the efficacy of both proposed (Imp-LOA + Improved-
SqueezeNet) and conventional approaches in cloud
privacy preservation. This thorough examination
encompassed critical metrics such as data preservation
ratio, key sensitivity, hiding ratio, privacy, modification
degree, sanitization, and restoration effectiveness.
Additionally, the evaluation integrated statistical analysis
and convergence analysis. Moreover, CPA and KPA
attack analyses were performed to assess resilience
against security threats. The Imp-LOA + Improved-
SqueezeNet method’s performance was contrasted
against state-of-the-art techniques like CIAO-TME (Patil
and HimaBindu, 2023) and G-BHO (Kumar et al., 2023),
and PSO-GWO (Rahman er al, 2024) as well as
established methods including COA, OOA, RPO, LOA,
NBO, Bi-LSTM, DCNN, S-NET, ResNET, and KNN.

Furthermore, it was compared with method
LSTM+MUAOA (Sharma and Tyagi, 2024) and
DeepMaxout (Dhamdhere ef al., 2025). Both Imp-LOA +
Improved-SqueezeNet and conventional methods were
analyzed using the Cleveland dataset, providing valuable
insights into their effectiveness in the cloud privacy
preservation.

Analysis of Data Preservation Ratio

The data preservation ratio quantifies the proportion
of original data retained over time, reflecting the
effectiveness of preservation efforts. It measures the
percentage of data preserved compared to the total
amount initially present, essential for maintaining data
integrity and accessibility in various domains, from
research to information technology. Figure 6 illustrates
the analysis of data preservation ratio comparing the
proposed method with conventional approaches for cloud
privacy preservation across three distinct testcases. The
Imp-LOA + Improved-SqueezeNet method exhibits an
increasing trend in data preservation ratio across
iterations, with values ranging from 3.148 at 10°
iteration to 3.065 at 30™ iteration for testcasel. Notably,
at iteration 10, the Imp-LOA + Improved-SqueezeNet
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method outperforms most conventional methods,
including PSO-GWO (Rahman er al., 2024) (2.093),
DeepMaxout (Dhamdhere et al., 2025) (1.863), CIAO-
TME (Patil and HimaBindu, 2023) (1.896), G-BHO
(Kumar et al., 2023) (1.831), COA (1.991), OOA
(2.231), RPO (2.041), LOA (1.944), NBO (1.913), Bi-
LSTM (1.820), DCNN (2.102), S-NET (2.258), ResNET
(1.938), KNN (1.685), and also LSTM+MUAOA
(Sharma and Tyagi, 2024) (2.635). The Imp-LOA +
Improved-SqueezeNet =~ method  demonstrates  a
preservation ratio of 2.892 for tesetcase3. Despite
variations in performance among conventional methods,
the Imp-LOA + Improved-SqueezeNet method
consistently  outperforms them, emphasizing its
effectiveness in preserving cloud privacy in testcase3 at
the 30™ iteration. The comparison reveals the Imp-LOA
+ Improved-SqueezeNet method’s superiority in
achieving higher preservation ratios, highlighting its
potential for robust and secure cloud privacy
preservation. This underscores the significance of
continual advancements in data preservation techniques
to address evolving privacy challenges in cloud
computing environments.

Analysis on Hiding Ratio

The hiding ratio quantifies the proportion of sensitive
data exposed relative to the total dataset. It serves as a
measure of the effectiveness of hiding or obscuring
sensitive data, with a lower ratio indicating greater
successful concealment, typically employed in contexts
prioritizing privacy and confidentiality. In Figure 7, the
hiding ratio analysis is presented, comparing the Imp-
LOA + Improved-SqueezeNet scheme with traditional
strategies for cloud privacy preservation. It examines

35 - - T 4

three distinct testcases across iterations (5, 10, 15, 20, 25,
and 30). Minimized hiding ratio ratings are essential for
effective privacy preservation in the cloud, highlighting
the scheme’s efficacy in concealing sensitive
information. The hiding ratio analysis for testcase2
reveals significant insights into the effectiveness of the
Imp-LOA + Improved-SqueezeNet scheme compared to
traditional strategies for cloud privacy preservation.
Initially, at iteration 5, the Imp-LOA + Improved-
SqueezeNet ~ scheme  demonstrates  exceptional
performance with a hiding ratio of 0, indicating highly
successful concealment of sensitive information.
Although some conventional methods such as PSO-
GWO (Rahman et al., 2024) (0.0604), COA (0.0761),
NBO (0.1029), DeepMaxout (Dhamdhere et al., 2025)
(0.1029), and OOA (0.1051) exhibit slightly higher
ratios, the proposed scheme stands out for its ability to
minimize the hiding ratio effectively. As the analysis
progresses through iterations 10 to 30, the Imp-LOA +
Improved-SqueezeNet scheme maintains its superiority
with consistently low hiding ratio. This trend
underscores its reliability in preserving privacy within
cloud environments. Notably, the proposed scheme
outperforms conventional methods, including CIAO-
TME (Patil and HimaBindu, 2023), G-BHO (Kumar et
al., 2023), COA, OOA, RPO, LOA, NBO, Bi-LSTM,
DCNN, S-NET, ResNET, KNN, PSO-GWO (Rahman et
al., 2024), DeepMaxout (Dhamdhere et al., 2025), and
LSTM+MUAOA (Sharma and Tyagi, 2024) across all
iterations, emphasizing its effectiveness in concealing
sensitive data. Overall, the findings highlight robustness
of Imp-LOA + Improved-SqueezeNet scheme in
achieving the minimized hiding ratio, essential for
ensuring the cloud privacy preservation.
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Fig. 6: Data Preservation Analysis of Imp-LOA+Improved-SqueezeNet and Conventional Methods for (a) Testcasel, (b) Testcase2,

and (c) Testcase3

Analysis on Key Sensitivity

Key sensitivity denotes how responsive a system is to
changes in critical factors, guiding optimization by
identifying pivotal variables crucial for performance.

Figure 8 illustrates the key sensitivity analysis
comparing Imp-LOA + Improved-SqueezeNet and
conventional methodologies across variations of key
factors (10, 20, 30, 40, and 50%). Reducing key

sensitivity values is imperative to ensure robust privacy
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preservation in cloud environments. Initially, at 10%
variation, CIAO-TME (Patil and HimaBindu, 2023), G-
BHO (Kumar et al.,2023), COA, OOA, RPO, LOA,
NBO, LSTM-MUAOA (Sharma and Tyagi, 2024), PSO-
GWO (Rahman et al, 2024), and DeepMaxout
(Dhamdhere et al., 2025) exhibit sensitivity values of
0.231, 0.198, 0.197, 0.188, 0.182, 0.219, 0.192, 0.158,
0.213, and 0.231, respectively, while the Imp-LOA +
Improved-SqueezeNet scheme showcases a notably
lower sensitivity of 0.127 (testcase3), indicating its

superior adaptability to key variations. As the variation
increases, the proposed scheme consistently maintains
lower sensitivity values compared to conventional
methods, emphasizing its robustness in preserving the
cloud privacy effectively. At 50% variation, the Imp-
LOA + Improved-SqueezeNet scheme achieves the
lowest sensitivity of 0.100, underscoring its efficacy in
mitigating the impact of key variations on privacy
preservation.
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Analysis on Modification Degree

Modification degree quantifies the extent of
alterations made to an item or system from its original
state. It measures the magnitude of changes relative to
the initial condition, aiding in assessing the effectiveness
of modifications. Figure 9 illustrates the analysis of
modification degree, contrasting the Imp-LOA +
Improved-SqueezeNet approach with conventional
methods for cloud privacy preservation. Effective
privacy preservation in the cloud requires minimizing the
modification degree. Across all testcases, the Imp-LOA +
Improved-SqueezeNet scheme consistently exhibits a
minimized  modification  degree  compared to
conventional strategies. In testcasel, the modification
degree analysis reveals pertinent differences among
methodologies examined for cloud privacy preservation
across iterations. At iteration 10, the Imp-LOA +
Improved-SqueezeNet = scheme  demonstrates  a
significantly lower modification degree of 3.632
compared to conventional methods, such as CIAO-TME
(Patil and HimaBindu, 2023) (4.897), G-BHO (Kumar et
al., 2023) (4.830), COA (4.856), OOA (4.797), RPO
(5.095), LOA (5.193), NBO (4.87), LSTM+MUAOA

25 T

(Sharma and Tyagi, 2024) (4.164), PSO-GWO (Rahman
et al., 2024) (5.062), and DeepMaxout (Dhamdhere et
al., 2025) (5.119). This trend persists throughout
subsequent iterations, with the Imp-LOA + Improved-
SqueezeNet scheme consistently exhibiting lower
modification degrees compared to other conventional
methods such as OOA, RPO, LOA, NBO, Bi-LSTM,
DCNN, S-NET, ResNET, KNN, at LSTM+MUAOA,
PSO-GWO, and DeepMaxout. For instance, iteration 30,
the Imp-LOA + Improved-SqueezeNet scheme maintains
a modification degree of 3.475, contrasting with higher
values observed in several other conventional methods.
Through meticulous analysis across varied testcases and
iterations, it becomes evident that the proposed method
consistently achieves lower modification degrees. This
signifies its proficiency in minimizing alterations to
sensitive data, crucial for maintaining data integrity and
confidentiality in cloud environments. The findings

accentuate the importance of adopting advanced
techniques, such as the Imp-LOA + Improved-
SqueezeNet method, to mitigate unauthorized

modifications and uphold robust privacy standards in
cloud computing.
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Fig. 10: Privacy Analysis of Imp-LOA+Improved-SqueezeNet and Conventional Methods for (a) Testcasel, (b) Testcase2, and (c)
Testcase3

Analysis on Privacy

In Figure 10, the privacy assessment of the Imp-LOA
+ Improved-SqueezeNet methodology is done in contrast
with the conventional methodologies for cloud privacy
preservation. Privacy ratings serve as crucial indicators
of the effectiveness of privacy measures, with higher
values signifying superior protection of sensitive data
within cloud environments. The comprehensive analysis
of privacy ratings across iterations offers valuable
insights into the efficacy of diverse methodologies for
cloud privacy preservation. The Imp-LOA + Improved-
SqueezeNet model achieves a privacy rating of 2.031 for
testcasel, surpassing other conventional methods such as
CIAO-TME (Patil and HimaBindu, 2023) (1.302), G-
BHO (Kumar ez al., 2023) (1.368), COA (1.062), OOA
(1.584), RPO (1.445), LOA (1.207), NBO (1.375), Bi-

LSTM (1.674), DCNN (1.414), S-NET (1.611), ResNET
(1.428), KNN (1.316), LSTM+MUAOA (Sharma and
Tyagi, 2024) (1.767), PSO-GWO (Rahman et al., 2024)
(1.622), and DeepMaxout (Dhamdhere et al, 2025)
(1.283). This significant difference underscores the
potential of the Imp-LOA + Improved-SqueezeNet
approach to offer heightened privacy protection
compared to traditional strategies. Similarly, the
proposed scheme attains higher privacy ratings of 6.01
for testcase2 and 1.272 for testcase3 at iteration 20,
indicative of its persistent efficacy in safeguarding
privacy within cloud environments.

Convergence Analysis

Figure 11 presents a comprehensive convergence
analysis contrasting the Imp-LOA method with CIAO-
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TME (Patil and HimaBindu, 2023), G-BHO (Kumar et
al., 2023), COA, OOA, RPO, LOA, NBO and PSO-
GWO (Rahman et al., 2024) across three distinct test
cases for cloud privacy preservation. This evaluation
spans iteration counts from 0 to 30, aiming to determine
models offering minimized cost ratings alongside faster
convergence rates for effective cloud privacy
preservation. While evaluating all testcases, initial
iterations yielded higher cost values for all models,
gradually decreasing with iteration advancement.
Notably, the Imp-LOA approach consistently
outperformed conventional methods by achieving the
lowest cost values across all testcases. In testcasel, the
Imp-LOA scheme achieved a minimized cost rate of

5.279 at the 30™ iteration. In comparison, CIAO-TME,
G-BHO, COA, OOA, RPO, LOA, NBO and PSO-GWO
attained cost rates of 5.528, 5.547, 5.495, 5.445, 5.308,
5.362, 5.474, and 5.363 respectively. Likewise, in the
other two test cases, the Imp-LOA approach exhibited
minimum cost values compared to the conventional
methods. Through rigorous assessment across multiple
testcases and iterations, it is evident that the Imp-LOA
method exhibits quicker convergence and lower cost
ratings compared to conventional methods. This
underscores its efficiency in achieving convergence
towards optimal solutions, essential for enhancing
privacy and security in cloud environments.
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Sanitization Analysis

Sanitization involves removing sensitive data to
make information safe for public release or use,
protecting privacy and security by minimizing the risk of
unauthorized access or disclosure. Table 3 provides a
detailed overview of the sanitization analysis conducted
on Imp-LOA + Improved-SqueezeNet and conventional
methodologies for cloud privacy preservation across
three distinct testcases. Across all the testcases, various
sanitization methods were evaluated based on their
correlation values, with lower correlations indicating
more effective sanitization. In testcasel, the Imp-LOA +
Improved-SqueezeNet = method  demonstrated a
correlation of 0.101, surpassing conventional methods.
Similarly, in testcase2 and testcase3, the proposed
method exhibited the lowest correlation of 0.067 and
0.086, respectively, again outperforming all other
methods. The correlation values of the conventional
methods, such as LSTM+MUAOA (Sharma and Tyagi,
2024), PSO-GWO (Rahman et al., 2024), DeepMaxout
(Dhamdhere et al., 2025), COA, G-BHO, ResNet,
DCNN, and Bi-LSTM, are 0.108, 0.143, 0.161, 0.143,
0.150, 0.127, 0.136, and 0.142 for testcase3. This result
demonstrates the strength of the proposed approach in
minimizing the resemblance between original and
sanitized data, which is critical for protecting privacy in
the cloud environments. These comprehensive
comparative findings highlight the consistent superiority
of the Imp-LOA + Improved-SqueezeNet method in

achieving effective sanitization across all testcases,
underscoring its pivotal role in ensuring robust privacy
and security measures by minimizing the risk of
unauthorized access or disclosure.

Table 3: Sanitization Analysis of Proposed and Conventional

Schemes

Methods Testcasel Testcase2 Testcase3
PSO-GWO 0.172 0.098 0.143
DeepMaxout 0.167 0.116 0.161
CIAO-TME 0.172 0.105 0.142
G-BHO 0.142 0.118 0.150
COA 0.158 0.114 0.143
0O0OA 0.152 0.118 0.130
RPO 0.139 0.110 0.132
LOA 0.157 0.094 0.130
NBO 0.175 0.096 0.159
Bi-LSTM 0.157 0.122 0.142
DCNN 0.146 0.108 0.136
S-NET 0.143 0.122 0.130
ResNET 0.142 0.120 0.127
KNN 0.159 0.104 0.130
LSTM+MUAOA 0.117 0.083 0.108
Proposed 0.101 0.067 0.086
Restoration Analysis

Restoration refers to the process of recovering data or
systems to their original state or condition following
breaches, data loss, or unauthorized access, aiming to
ensure the continued integrity and confidentiality of
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sensitive information stored or processed in cloud
environments. Table 4 presents the correlation values for
restoration analysis across all testcases. Higher
correlation  value  indicates  better  restoration
performance. In testcasel, the Imp-LOA + Improved-
SqueezeNet method achieved a high correlation of 0.959,
surpassing conventional methods, like CIAO-TME (Patil
and HimaBindu, 2023) (0.849) and COA (0.872), while
also outperforming LSTM+MUAOA (Sharma and Tyagi,
2024) (0.956), PSO-GWO (Rahman et al., 2024) (0.834),
and DeepMaxout (Dhamdhere et al., 2025) (0.844).
Similarly, in testcase2, the Imp-LOA + Improved-
SqueezeNet method exhibited superior restoration
effectiveness with a correlation of 0.964, surpassing
LSTM+MUAOA  (0.962), PSO-GWO  (0.874),
DeepMaxout (0.833) and other traditional methods, like
RPO (0.911) and ResNet (0.840). In testcase3, the
proposed method maintained its dominance with a
correlation of 0.999, showcasing its effectiveness over
LSTM+MUAOA (0.995) and other conventional
methods, like PSO-GWO (0.937), DeepMaxout(0.801),
G-BHO (Kumar et al., 2023) (0.909), COA (0.939),
OOA(0.851), LOA (0.939), ResNET (0.921), Bi-LSTM
(0.894), and DCNN (0.830). These results demonstrate
the effectiveness of the proposed framework in
accurately recovering the sanitized data with minimal
information loss. Overall, these findings highlight the
consistent superiority of the Imp-LOA + Improved-
SqueezeNet method in achieving effective restoration
across all testcases, underscoring its crucial role in
maintaining data integrity and confidentiality within
cloud environments.

Table 4: Restoration Analysis of Proposed and Conventional

Schemes

Methods Testcasel Testcase2 Testcase3
PSO-GWO 0.834 0.874 0.937
DeepMaxout 0.844 0.833 0.801
CIAO-TME 0.849 0.884 0.874
G-BHO 0.876 0.774 0.909
COA 0.872 0.858 0.939
OO0A 0.900 0.770 0.851
RPO 0.862 0.911 0.860
LOA 0.788 0.840 0.939
NBO 0.864 0.782 0.801
Bi-LSTM 0.884 0.785 0.894
DCNN 0.810 0.866 0.830
S-NET 0.862 0.908 0.878
ResNET 0.851 0.840 0.921
KNN 0.836 0.883 0.871
LSTM+MUAOA 0.956 0.962 0.995
Proposed 0.959 0.964 0.999
CPA and KPA Analysis

The CPA analysis, conducted to evaluate the
resilience of Imp-LOA + Improved-SqueezeNet and
conventional methods across three testcases, is illustrated

in Table 5. Across all testcases, the proposed method
consistently exhibited lower CPA scores compared to
conventional methods, indicating its enhanced resistance
against chosen-plaintext attacks. In testcasel, the Imp-
LOA + Improved-SqueezeNet method achieved a CPA
score of 0.104, notably lower than competing methods,
such as CIAO-TME (Patil and HimaBindu, 2023)
(0.164), G-BHO (Kumar et al., 2023) (0.168), PSO-
GWO (Rahman et al, 2024) (0.168), DeepMaxout
(Dhamdhere et al., 2025) (0.164), and LSTM+MUAOA
(Sharma and Tyagi, 2024) (0.120). In testcase2, the Imp-
LOA+ Improved-SqueezeNet method demonstrated
exceptional resilience with a CPA score of 0.021,
outperforming all other methods. Similarly, in testcase3,
it maintained its superiority with a CPA score of 0.101,
showecasing its robustness against CPA attacks compared
to other conventional methods. The KPA analysis,
performed to assess the susceptibility of Imp-LOA +
Improved-SqueezeNet and conventional methods to
known-plaintext attacks across all testcases, is
summarized in Table 6. In testcasel, the Imp-LOA +
Improved-SqueezeNet method exhibited a notably lower
KPA score of 0.101, compared to CIAO-TME (Patil and
HimaBindu, 2023) (0.146), G-BHO (Kumar et al., 2023)
(0.151), and other conventional methods. This suggests
that the Imp-LOA + Improved-SqueezeNet method
offers better resilience against known-plaintext attacks.

Table 5: CPA Analysis of Proposed and Conventional Schemes

Methods Testcasel Testcase2 Testcase3
PSO-GWO 0.168 0.034 0.163
DeepMaxout 0.164 0.031 0.156
CIAO-TME 0.164 0.033 0.158
G-BHO 0.168 0.034 0.162
COA 0.167 0.034 0.161
OOA 0.152 0.031 0.147
RPO 0.162 0.033 0.157
LOA 0.161 0.033 0.156
NBO 0.160 0.033 0.154
Bi-LSTM 0.164 0.034 0.159
DCNN 0.165 0.034 0.159
S-NET 0.157 0.032 0.152
ResNET 0.153 0.031 0.148
KNN 0.167 0.034 0.161
LSTM+MUAOA 0.120 0.029 0.129
Proposed 0.104 0.021 0.101

Similarly, in test case 2, the Imp-LOA+ Improved-
SqueezeNet method displayed superior resistance with a
KPA score of 0.021, outperforming competing methods
like LSTM+MUAOA (Sharma and Tyagi, 2024) (0.024),
and in testcase3, it again showcased its robustness with a
KPA score of 0.098, surpassing all conventional
methods, including PSO-GWO (Rahman et al., 2024)
(0.145), and DeepMaxout (Dhamdhere et al., 2025)
(0.140), and highlighting its efficacy in mitigating
known-plaintext attacks.
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Table 6: KPA Analysis of Proposed and Conventional Schemes

Methods Testcasel Testcase2 Testcase3
PSO-GWO 0.150 0.031 0.145
DeepMaxout 0.145 0.030 0.140
CIAO-TME 0.146 0.030 0.141
G-BHO 0.151 0.031 0.146
COA 0.152 0.031 0.147
OO0OA 0.147 0.030 0.142
RPO 0.157 0.032 0.151
LOA 0.148 0.030 0.143
NBO 0.152 0.031 0.147
Bi-LSTM 0.149 0.031 0.145
DCNN 0.155 0.032 0.150
S-NET 0.154 0.031 0.149
ResNET 0.154 0.032 0.149
KNN 0.148 0.030 0.144
LSTM+MUAOA 0.116 0.024 0.112
Proposed 0.101 0.021 0.098

Analysis of CPA and KPA in terms of Encryption
Algorithms

Tables 7 and 8 demonstrate the security analysis of
the proposed model against CPA and KPA compared to
conventional encryption methods such as RSA and AES,
in terms of correlation coefficient. As shown in Table 7,
the Imp-LOA + Improved-SqueezeNet model
consistently achieved the lowest correlation coefficients
of 0.104, 0.021, and 0.101 against CPA analysis for
testcases 1, 2, and 3, respectively. In contrast, RSA and
AES yield higher values across the same testcases, with
RSA recording 0.122, 0.029, and 0.198, while AES
reporting 0.162, 0.033, and 0.157. The results indicate a
reduced statistical relationship between plaintext and
ciphertext with the proposed model.

Table 7: CPA Analysis of Proposed and Conventional Encryption

Schemes
Methods Testcasel Testcase2 Testcase3
Proposed 0.104 0.021 0.101
RSA 0.122 0.029 0.198
AES 0.162 0.033 0.157
Table 8: KPA Analysis of Proposed and Conventional Encryption
Schemes
Methods Testcasel Testcase2 Testcase3
Proposed 0.101 0.021 0.098
RSA 0.122 0.026 0.130
AES 0.150 0.031 0.145

Similarly, in the KPA analysis shown in Table 8, the
proposed model maintained lower correlation
coefficients of 0.101, 0.021, and 0.098 for testcases 1, 2,
and 3, respectively. RSA and AES, on the other hand,
yield 0.122 and 0.150 for testcasel, 0.026 and 0.031 for
testcase2, and 0.130 and 0.145 for testcase3,
respectively. These lower coefficients in both attack
scenarios confirm that the proposed model makes it more
difficult for the attacker to infer the original data. The

performance improvement is primarily due to the
advanced key generation with the Imp-LOA and adaptive
key tuning through the improved SqueezeNet
architecture, which collectively increase the privacy of
cloud data.

Statistical Analysis on Fitness

The statistical analysis of Imp-LOA and conventional
methods with a focus on fitness function parameters,
such as the best, worst, mean, median, and standard
deviation, is presented in Table 9. This comparison
includes the Imp-LOA method alongside CIAO-TME
(Patil and HimaBindu, 2023), G-BHO (Kumar et al.,
2023), COA, OOA, RPO, LOA, NBO, and PSO-GWO
(Rahman et al., 2024) for a thorough assessment. The
Imp-LOA method demonstrated competitive fitness
across all metrics, with a fitness score of 5.321 at the
mean statistical metric, which is comparable to or better
than most conventional methods, such as CIAO-TME
(5.549), G-BHO (5.557), COA (5.519), OOA (5.463),
RPO (5.376), LOA (5.413), NBO (5.517), and PSO-
GWO (5.444). The Imp-LOA method obtained the
lowest fitness score of 5.279 (best statistical metric),
showcasing its competitive performance relative to other
conventional methods such as CIAO-TME (5.528), G-
BHO (5.547), COA (5.495), OOA (5.445), RPO (5.308),
LOA (5.362), NBO (5.474), and PSO-GWO (5.365). The
overall results demonstrate that the proposed method
shows exceptional performance over the existing
metaheuristic algorithms.

Table 9: Statistical Assessment in terms of Fitness

Methods Best Worst Mean Median Standard Deviation
Imp-LOA 5.279 5.530 5.321 5.314 0.057
PSO-GWO  5.365 5.541 5.444 5422 0.058
CIAO-TME 5.528 5.624 5.549 5.528 0.030
G-BHO 5.547 5.611 5.557 5.548 0.022

COA 5.495 5.700 5.519 5.495 0.052
OOA 5.445 5.700 5.463 5.445 0.059
RPO 5.308 5.667 5.376 5.329  0.101
LOA 5.362 5.632 5.413 5366 0.079
NBO 5.474 57700 5.517 5.484 0.074
Ablation Study

Ablation analysis is a technique used to assess the
contribution of individual components in a model by
systematically altering or removing certain features. In
this study, the proposed Imp-LOA + Improved-
SqueezeNet model is compared against model with
statistical features and conventional entropy feature,
model with statistical features and skewness features,
model with statistical features and kurtosis features,
model with conventional LOA, and the model with
conventional ~ SqueezeNet, to understand their
effectiveness in privacy preservation presented in Table
10. The results show that the proposed model
outperforms all other models in terms of privacy (2.031)
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and DPR (3.065), indicating its strong ability to restore
original data while maintaining privacy and security. On
the other hand, model with statistical and conventional
entropy features, model with statistical and skewness
features, model with statistical and kurtosis features,
model with conventional LOA, and model with
conventional SqueezeNet exhibit lower privacy values of

1.429, 1.299, 1.454, 1.207, and 1.611, respectively.
Moreover, the proposed model acquires better values of
modification degree and sanitization effectiveness of
3.475 and 0.101, respectively, which is superior to the
results of other models. Overall, the proposed model
offers the best balance for privacy preservation and data
restoration as compared to other models.

Table 10: Ablation Analysis of the Proposed Imp-LOA + Improved SqueezeNet Model and the Model with Statistical Features and
Conventional Entropy Feature, Model with Statistical Features and Skewness Features, Model with Statistical Features and Kurtosis
Features, Model with Conventional LOA, and the Model with Conventional SqueezeNet

Measures Model with Statistical Model with Model with Model with Model with Imp-LOA +
Features + Conventional  Statistical Features + Statistical Features + Conventional Conventional IS-Net
Entropy Feature Skewness Features ~ Kurtosis Features ~ LOA SqueezeNet Model

Sanitization 0.144 0.157 0.169 0.157 0.143 0.101

Effectiveness

Restoration 0.835 0.814 0.813 0.788 0.862 0.959

Effectiveness

Hiding Ratio  0.011 0.239 0.24 001 0.008 0

Data 1.758 2.191 2326 1.635 1.736 3.065

Preservation

Ratio

Privacy 1.429 1.299 1454 1.207 1.611 2031

Modification  4.986 5.033 4426 4926 5.095 3475

Degree

Table 11: Parametric Analysis of the Proposed Model

Parameter (random value) Variation Hiding Ratio Data Preservation Ratio Privacy  Modification Degree

02 0 3.157 2.008 3.633

04 0 4.048 5.657 3.546

0.6 0 2.876 1.336 3.508

Table 12: Computational Time Analysis of Proposed and
Conventional Schemes

Models Computational Time (s) Models

Testcasel Testcase2 Testcase3
Proposed 14.659 12,257 10.569
PSO-GWO 20.234 17.831 19.21
DeepMaxout 24.805 15.699 15.097
CIAO-TME 20.411 17.541 12.568
G-BHO 30.663 29.673 22.665
COA 22.234 20.678 18.654
OO0A 29.298 26.584 25.688
RPO 32.091 35.688 28.561
LOA 19.023 16.547 12.659
NBO 19.675 15.359 12.557
Bi-LSTM 16.007 13.833 12.849
DCNN 19.877 13.877 13.137
S-NET 17.562 17.086 14.152
ResNET 16.122 15.926 13.507
KNN 16.045 15.64 12.059
Parametric Analysis

The analysis of parameter variation for the Imp-LOA
+ Improved-SqueezeNet model, presented in Table 11,
provides valuable insights into the impact of different
parameter settings on the performance of the model,
specifically in terms of HR, DPR, Privacy, and MD. In
this case, the parameter being varied is the random value

used in equations (13) to (15), which seems to influence
the model’s behavior in terms of these key metrics. The
random values are varied as 0.2, 0.4, and 0.6. HR and
MD should be minimum, whereas DPR and privacy
should be maximum for an optimum solution. The results
show that with the parameter value 0.4, the proposed
model generates better outcomes for DPR, MD, and
privacy than other two values. However, MD continued
to attain better outcome at 0.6 value also, but privacy and
DPR are not as good as at 0.2 and 0.4 values. Overall,
this analysis illustrates a clear trade-off between privacy
and data integrity for the cloud data.

Analysis of Computational Time

Computational time refers to the total amount of time
an algorithm takes to complete a specific task. The
computational time analysis, presented in Table 12,
highlights the efficiency of the Imp-LOA + Improved-
SqueezeNet model compared to other state-of-the-art and
traditional models. Across all test cases, the proposed
model  consistently  demonstrates  the  lowest
computational time, performing significantly faster than
many of the alternative models. For testcasel, the
computational time for proposed model is 14.659s,
notably faster than CIAO-TME (20.411s), G-BHO
(30.663s), COA (22.234s), OOA (29.298s), LOA
(19.023s), NBO (19.675s), Bi-LSTM (16.007s), DCNN
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(19.877s), S-NET (17.562s), ResNET (16.122s), KNN
(16.045s), PSO-GWO (20.234s) and DeepMaxout
(24.805s). Similarly, for testcase2 and testcase3, Imp-
LOA + Improved-SqueezeNet maintains minimum
computing times of 12.257s and 10.569s, respectively,
outperforming models like PSO-GWO, DeepMaxout Bi-
LSTM, DCNN, ResNET, RPO, G-BHO, and OOA.
These results highlight the efficiency of the proposed
model that provides high performance without excessive
computational overhead, further strengthening its
position as an effective solution for cloud-based privacy
preservation.

Conclusion

In conclusion, this paper presented a comprehensive
privacy preservation model tailored specifically for cloud
environments, with a focus on safeguarding sensitive
medical data related to heart disease. Through
meticulous data acquisition, normalization, feature
extraction, sanitization, and restoration phases, the
suggested model ensures the security, privacy, and utility
of the data while leveraging innovative techniques such
as optimal key generation by using Imp-LOA and
Improved SqueezeNet-based key tuning. By addressing
optimization objectives including hiding ratio, data
preservation ratio, privacy, and modification degree, the
model offers a holistic approach to privacy preservation.
MATLAB-based simulations and investigational
analyses demonstrate the efficacy of the model with
respect to security, time efficiency, and other pertinent
metrics, showcasing its superiority in safeguarding
privacy in cloud computing environments. Overall, this
paper marks a significant advancement in privacy-
preserving techniques within cloud computing, with
implications for enhancing healthcare data security and
facilitating the adoption of cloud-based solutions in the
medical domain. However, the proposed approach has
some limitations, as the employed Cleveland dataset has
only clinical features, focusing on the tissues of the heart
by analyzing radiomics features like pericoronary
adipose tissue and thoracic and epicardial subcutaneous
fat texture, and has a limited count of samples. This will
be considered in future research to investigate the
performance of the model by using large datasets.
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Nomenclature

Abbreviation Description

AD Average Delay

AES-OTP  Advanced Encryption Standard - One Time Password

BC-IAS Block Chain based Identity Management, Access Control
and Secure Sharing

BFL-PSO  Bee-Foraging Learning-based Particle Swarm Optimization

Bi-LSTM  Bidirectional Long Short Term Memory

CIAO-TME Corona-Integrated Archimedes Optimization with Tent Map
Estimation

CSR Compressed Sensing Reconstruction

COA Coati Optimization Algorithm

CPA Chosen Plain-text Attack

DE Differential Evolution

DCNN Deep Convolutional Neural Network

DM Degree of Modification

G-BHO Grasshopper—Black Hole Optimization

HR Hiding Ratio

HSO Harmony Search Optimization

TaaS Infrastructure as a Service

1AS Identity Management, Access Control and Secure Sharing

IIoT Industrial Internet of Things

IPR Information Preservation Ratio

JA Jaya Algorithm

J-SSO Jaya-based Shark Smell Optimization

KNN K-Nearest Neighbor

KPA Known Plain-text Attack

LOA Lyrebird Optimization Algorithm

LSTM Long Short-Term Memory

MUAOA  Mouse Updated Arithmetic Optimization Model

NBO Namib Beetle Optimization

OOA Osprey Optimization Algorithm

PRMS Patient’s E-Healthcare Records Management System

PSO-GWO Particle Swarm Optimization-Grey Wolf Optimization

RPO Red Panda Optimization

ResNET Residual Network

SAD-ECC  Sensitive Aware Deep Elliptic Curve Cryptography

SANBO Self-Adaptive Namib Beetle Optimization

SDN Software Defined Networking

SET System Execution Time

SHA-3 Secure Hashing Algorithm-3

SRHB Secure and Robust Healthcare-Based Blockchain
SRVA Secure-Ring-Verification-based Authentication
S-NET SqueezeNet

SSO Shark Smell Optimization

YCSB Yahoo Cloud Serving Benchmark
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