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Abstract: Conjugate Gradient (CG) methods are broadly employed in
solving bigger-scale unconstrained optimization problems. Two famous
methods are the Hestenes-Stiefel (HS) as well as Polak-Ribière-Polyak
(PRP) CG methods, which usually work well in practice. However, they
cannot satisfy the Global Convergence (GC) property. To retain and enhance
the previous practical behavior as well as rectify the latter difficulty, this
paper constructs a new CG method based on the Dai-Liao conjugacy
condition, the Restart Property (RP), and the Lipschitz constant. It is refined
that the suggested method meets the sufficient Descent Condition (DC), and
the GC properties with the new RP depend on the Lipschitz Constant (LC).
To study the behavior of the method, we compared its performance with that
of the useful CG-Descent 6.8 as well as non-negative Dai-Liao methods by
applying them to 143 optimization problems that are selected from the
CUTEst library. The numerical findings indicate that the newly proposed
method surpasses the latter two methods as well as other recently published
CG methods in terms of the number of iterations, the number of functions,
gradient evaluations as well as the CPU time required to solve the problems.
In addition, we present an application of the considered CG methods to the
solar panel for dust effect and prevent dust accumulation and optimize
module performance.

Keywords: Unconstrained Optimization, Conjugate Gradient Methods,
Sufficient Descent Condition

Introduction
The optimization problem given below is taken into

consideration:

In which  resembles a continuous and
differentiable function. Moreover, the subsequent
assumption holds significant importance in ensuring the
convergence analysis with respect to Conjugate Gradient
(CG) methods.

Assumption 1

A. The level set  is bounded,
inferring the existence of a positive constant  given
by , where  resembles the
Euclidean norm.

B. In certain neighborhood  of ,  resembles a
differentiable continuous function, in which the
gradient is also Lipschitz Continuous (LC). This
infers that  a constant  exists given
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that , where 

Furthermore, based on this assumption, we may infer
that a positive constant  exists giving:

The CG methods achieve a stationary point by
employing an iterative technique that commences from
the initial point, , as outlined below:

To acquire the step length , we employ two
primary line search techniques: The first one is an exact
line search as specified below: Suppose we have

, which is a sub-problem that
emerges from , aims to determine a steplength in the
direction , ensuring . Suppose the step
size is specified that it minimizes the search direction
given by:

This line search is known as optimal line search or
exact line search, while  is referred to as an optimal
steplength. Moreover, in practical calculations, it is often
challenging to find the exact optimal step length,
especially when the initial point is distant from the
optimal solution or when the dimension is larger (Sun &
Yuan, 2006). Hence, employing an inexact line search
with a lower computational burden is preferable.

The second category is the inexact line search, with
the renowned inexact line search methods including:

A. The Strong Wolfe-Powell (SWP) (Wolfe, 1969;
1971) line search conditions defined by:

And:

in which  and 

B. The weak Wolfe-Powell (WWP) line search
condition (3) and:

The CG approach’s search direction is given by:

In which  is called the CG formula.

The famous traditional CG methods are Hestenses–
Stiefel (HS) (Hestenes & Stiefel, 1952), Polak–Ribiere–
Polyak (PRP) (Polak & Ribiere, 1969) as well as (Liu
and Storey, 1991) (LS):

In which:

Meanwhile, Fletcher–Reeves (FR) (Fletcher, 1964),
Fletcher (CD) (Al-Baali & Fletcher, 1986); Dai and Yuan
(1999) (DY) are given by:

Dai and Liao (2001) introduced the CG formulation,
written as:

Where,  Nonetheless, acquire similar
problem as  as well as  that  is positive
generally. Therefore, Dai and Liao (2001) reinstated Eq.
(7) by:

In Hager and Zhang (2005) proposed the subsequent
CG method (CG-Descent) derived from Equation (7):

in which:

, 

And  is a constant.

Remark: Suppose , then 

Note that the latest version of CG-Descent is called
CG-Descent 6.8 (Hager & Zhang, 2013).

According to Eq. (7), Andrei (2013a-b) introduced a
pair of Three-Term CG (TTCG) methods in the year
2013, as outlined below:

In which:

Another alteration derived from Eq. (8), as outlined
by Babaie-Kafaki and Ghanbari (2014) is as given
below:

Meanwhile, Alhawarat et al. (2021a) developed the
CG formula given below with restart criteria depending
on the Lipschitz constant as follows:
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Where:

In addition, Alhawarat et al. (2021b); and Alhawarat
(2023) introduced the CG method defined as:

Moreover, Alhawarat (2023) presented a preprint for
Dai and Liao parameters as follows:

The CG method is applicable across various domains,
including image enhancement, neural networks,
engineering mathematical challenges as well as
numerous others.

The New Search Direction and its Motivation

We devise a novel CG technique founded on the Dai-
Lio conjugacy condition with RP reliant on the Lipschitz
constant. This adjusted technique can meet the descent
criterion and exhibit GC attributes. Furthermore, Eq. (11)
proves to be more effective compared to and
other renowned methods like CG-Descent6.8 and DL+ in
terms of iteration count, function and gradient
evaluations as well as CPU time. In addition, the revised
search direction is provided as given below:

Here, we choose  so that
 It is clear that if , then:

It is worth knowing that if  is bi-Lipschitz, it
implies the existence of a constant  given that:

Then,  and we obtain 
Moreover, we observed from the numerical findings that
the value of  for almost all iterations, and rarely
its value becomes greater than one. Now, the important
question is ? By the definition of , it

goes  iff . This means that  and we
know that . Thus, .
However, - see reference (Dai & Liao, 2001)
which implies that . Using Theorem 4.1 and
Lemma 4.3 we reach a contradiction.

This study presumes the subsequent Eq. (11):

Note that Eq. (11) may be simplified to the PRP CG
method when employing an exact line search. Note that
this is due to the application of exact line search
properties, resulting in:

Provided that  we now have:

Algorithm 1 outlines the procedure of the CG method
to acquire stationary points utilizing SWP line search as
well as Eq. (11) Alongside the stopping criteria:

Algorithm

The algorithm is the main part of numerical analysis.
As an example, the cod for algorithm 1 with CG-Descent
formula and approximation of Wolfe-Powell line search
may be gained from the Hager webpage
https://people.clas.ufl.edu/hager/software/

The current release is version 6.8. Another website
(Gilbert & Nocedal, 1992) provided the code for solving
CG+ implementing three distinct CG method versions,
known as the FR method, the PRP method as well as the
positive PRP method (Beta is always positive).
Moreover, the coding has been established at the
Optimization Center, a joint venture of Northwestern
University as well as Argonne National Laboratory CG+
Non-linear Optimization Code (northwestern.edu). The
standard test functions may be taken from the link
CUTEr/st Test Problem Set (rl.ac.uk).

Algorithm 1

Step 1. Set the initial point  Here, the initial direction

. Set 

Step 2. If the stopping condition is satisfied, the process
should be terminated.

Step 3. The search direction  is calculated relying on Eq.
(2) employing Eq. (11).

Step 4. The step sizes  are calculated utilizing Eqns. (3-4).

Step 5. Update  depending on Eq. (2).

Step 6. Set  and move to Step 2.

GC analysis of the CG method with Algorithm 1

The Descent Condition (DC) is formulated by
, is beneficial in the examination of

the CG method, which has a crucial part in the
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(14)

(15)

verification of GC analysis. Here, (Al-Baali, 1985)
altered the DC to a sufficient DC:

In which . Al-Baali and Latif (2022) suggest an
algorithm for tackling non-linear unconstrained
optimization issues by merging an elongated CG
technique and the dampened method of Al Baali-Powell
for the BFGS method.

In the subsequent theorem, we demonstrate that the
exploration direction in Eq. (11) fulfills the adequate
descent criterion (12).

Lemma 4.1. If , then the following equation
holds:

Proof. If then , thus we have the
following cases:

Or:

Then, the following conditions are satisfied:

However, by using Eq. (6) and SWP line search, the
following inequalities cannot be satisfied:

Or:

Theorem 4.1. Assume that the sequences  and
 be produced utilizing Eqs. (2-11), with 

determined by SWP line search. Subsequently, the
condition of sufficient DC (12) is met.

Proof. Multiplying Eq. (11) by  yields:

By utilizing Lemma 4.1, we gain the following result:

The completion of the proof is obtained.

Lemma 4.2. If  and , then:

Proof. We will carry out the proof utilizing
contradiction. Let’s assume that:

We now divide both sides by  yielding:

Since . We deduce that the inequality
formulated in (14) is false, leading to a contradiction.
Consequently, inequality (13) holds true.

The Zoutendijk (1970) condition introduced a helpful
Lemma for examining the GC characteristic of the CG
method. Here, the Lemma is provided as follows:

Lemma 4.3. We assume that Assumption 1 remains
valid. Take into account that any CG method in the form
of (2) holds the DC and  adheres to the WWP line
search (3) and (5), where the search direction descends.
Consequently, the subsequent condition is upheld:

Dai and Liao (2001) provide the following corollary

Corollary 4.1. Suppose that Assumption 1 holds.
Take into account that any CG method in the form (2)
satisfies the DC and  adheres to the WWP line search
(3) and (5), in which the search direction descends. If:

For any , then the method converges.

Dai and Liao (2001) provide a helpful theorem for
acquiring the GC theorem of the CG method as given
below:

Theorem 4.2. Assuming Assumption 1 is valid. Take
into account any CG method presented in Eq. (2), in
which  satisfies sufficient descent direction while  is
derived from the robust Wolfe line search. Provided that:
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Hence:

GC of Algorithm 1 Having General Non-Linear
Functions

Establishing the convergence analysis for our novel
search direction relies heavily on the subsequent
limitations for . The primary significance of this
limitation is to prevent the multiplayer of the CG method
from being positive:

Therefore, Eq. (12) will subsequently become:

Where:

The subsequent lemmas correspond to Lemma 4.1 as
well as Lemma 4.2, as outlined by Gilbert and Nocedal
(1992).

Lemma 4.4. Take into consideration that Assumption
1 is valid. Moreover, the sequences , as well as 
, are produced utilizing Algorithm 1, in which the step
size  is calculated through the SWP line search,
ensuring that sufficient DC holds. Suppose we have

. Therefore, there exists a constant , such
that  for all . Hence, 
while:

, in which .

Proof. First, provided that . Therefore, the
sufficient DC yields  Hence, we assume that

 while:

We partition Eq. (11) into two segments, as described
below:

We then define the following:

The definition of  yields:

Because the UK is a unit vector, we then have:

Utilizing the triangle inequality and  yields:

Subsequently, utilizing definition  yields:

By utilizing Eq. (18), we gain the inequalities below:

Next, utilizing Eq. (17) yields:

Which completes the proof.

Gilbert and Nocedal (1992) introduced Property* in
their paper.

Property*

Set any CG method expressed in the form of Eqns.
(1-2). Let:

For all . The CG method then acquires Property
(*) provided that , constants  and  exist,
such that  and , which yields .

Lemma 4.5. We incorporate the CG method outlined
in Eqns. (2) as well as (6), incorporating the parameter

, in which the step size adheres to SWP line search (3)
as well as (4). Provided that condition (19) is met. Then,

 exhibits Property* provided that Eq. (16) is true.
Therefore,  as well as  such that , we
obtain  while if , we get 

Proof. Here, we set , while 

.

Utilizing SWP (3) as well as (4) with Eq. (19) yields:
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To show that , we divide the proof
into two subsequent cases.

Case A: . Provided that . Here, we
conclude that  by using Lemma 4.2:

Case B: . Utilizing Assumption 1 and Eq. (12)
yields:

The completion of the proof is obtained.

The Lemma, as well as the theorem below, bear a
resemblance to those introduced by Gilbert and Nocedal
(1992). In this instance, Lemma 4.4 is presented without
its proof, which is available for reference in Gilbert and
Nocedal (1992).

Lemma 4.6. Suppose Assumption 1 remains valid.
Additionally, suppose sequences , as well as ,
are produced by Algorithm 1, where  is calculated
through the WWP line search. Under these
circumstances, the sufficient DC is satisfied, provided
that the method possesses Property*. Provided also that

 for several . Therefore,  such that
for arbitrary as well as arbitrary index , an
index  exists satisfying:

In which ,
 resembles the positive integers set, while 

expresses the number of elements in .

Theorem 4.2. Let Assumption 1 remain valid. In
addition, note that the sequences , as well as ,
are formulated via Algorithm 1, wherein  is measured
using the WWP line search method and satisfies the
sufficient DC. Furthermore, let Property* be upheld.
Therefore, we obtain 

Results and Discussion
To examine the efficacy of the novel search direction

given in Eq. (11), we opted for more than 140 test
functions from CUTEst in Bongartz et al. (1995) with
dimension . A comparison with other
well-known and robust CG coefficients was carried out,
which included CG-Descent6.8, DL+ CG formula as
well as FTCGAZPRP based on CPU time, function
evaluation count, iteration count, and gradient evaluation
count. We employed the SWP line search method to
determine the step length using  as well as 

 for all algorithms except CG-Descent, for which we
used an approximate WWP line search as specified by
the researchers. Here, the findings of DL+ CG as well as
FTCGAZPRP methods were gained by performing the
altered code of CG-Descent.

The gradient norm, precisely , was
utilized as the stopping condition for all techniques. The
computer used is an AMD A4-7210 APU Radeon R3
Graphics with 4 GB of RAM, running Ubuntu 20.04.2.0
LTS. Moreover, the outcomes are depicted in Figs. (1-4),
employing a performance metric established by Dolan
and Moré (2002).

Figure (1) infers that FTCGAZPRP substantially
surpasses the CG-Descent6.8 as well as the DL+ CG
formula in terms of the number of iterations. Apart from
that, Figure (2) depicts the number of function
evaluations, indicating that the FTCGAZPRP** method
also markedly surpasses the CG-Descent as well as DL+
methods. In Figs. (3 as well as 4), we observe that the
FTCGAZPRP method marginally outperformed CG-
Descent and DL+ as we utilize SWP line search.
Nonetheless, if the SWP line search is extended, we
anticipate that the efficiency of gradient evaluation will
improve for DL+ and FTCGAZPRP.

Fig. 1: Measure of performance relying on the number of
iterations
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Fig. 2: Measure of performance relying on the function
evaluation

Fig. 3: Measure of performance relying on the gradient
evaluation

Fig. 4: Measure of performance relying on the CPU time

Application for Solar Panel

Despite fossil fuels currently meeting most of the
industrial energy demands, their limited and dwindling
resources, coupled with increasing environmental
concerns, for instance, climate change as well as global
warming (Hermanson et al., 2022; USGCRP, 2018), pose
significant risks to mankind.

Consequently, there is an escalating need to
increasingly depend on renewable energy resources like
hydro, wind, solar, biomass as well as geothermal
energies. Utilizing PV solar modules has experienced a
notable rise in the last decade. These modules have
effectively shifted from large-scale lab models to smaller
applications, resulting in a rise in commercial production
as well as sales of PVs. Presently, PVs are not only
widespread in households or off-grid settings but are also
being deployed in large-scale power plants, supplying
electricity not only to districts but also to entire cities
globally. However, despite the benefits of clean energy
from solar cells, this field faces several challenges that
hinder conversion efficiency, including environmental
variables, for instance, temperature (Schwingshackl et
al., 2013), humidity, rainfall(Simsek et al., 2021),
seasonal variations, dust and wind speed (Bhattacharya
et al., 2014) as well as direction. In conjunction with
environmental factors, installation variables like
positioning, seasonal alterations in incline, angle of
inclination (Hailu & Fung, 2019), elevation as well as
installation location also affect the performance of solar
panels (Gupta et al., 2019). The dust accumulation on
solar panels significantly diminishes incoming solar
radiation to photovoltaic modules. Over recent decades,
researchers have extensively investigated as well as
explained the efficiency losses caused by clouds and
dust.

Elminir et al. (2006) showed that the decrement in
glass transmittance due to dust is impacted by attributes
like deposition density, plate tilt angle, as well as surface
orientation relative to wind direction. Kaldellis and
Kokala (2010) studied dust effects in Athens. They found
that a small dust deposition density (around 1 g/m²) can
significantly impact PV-panel performance, leading to
energy.

production reductions of up to approximately 6.5%.
This reduction translates to an annual income loss of
approximately €40/kWp, representing 1% of the present
turnkey-specific price with respect to domestic PV
generators.

In areas without rain for extended periods, the daily
energy loss is, in general, much larger. Experimental
investigations by Saidan et al. (2016) inferred that dust
accumulation on photovoltaic solar modules in a desert
environment caused average performance degradation
rates of 6.24%, 11.8%, as well as 18.74% for exposure
periods of 1 day, 1 week, and 1 month, accordingly. Al-

http://192.168.1.15/data/13149/fig2.png
http://192.168.1.15/data/13149/fig2.png
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(20)

(21)

Sudany (2009) studied natural dust deposition on solar
panels in Baghdad and found that transmittance
decreased by approximately 50% over one month,
highlighting the significant impact of the accumulation
period on performance degradation.

Said and Walwil (2014) reported a 35% reduction in
spectral transmittance due to dust on PV module glass
covers. Kazem et al. (2014) and Darwish et al. (2015)
confirmed performance degradation in multicrystalline
PV modules due to various pollutants. Mekhilef et al.
(2012) established a correlation between dust thickness
on PV modules and efficiency reduction, noting a
significant output drop of 10-20% with heavy dust
layers. In contrast, small amounts of dust had minimal
effect on sunlight transmission.

The type of glass covering the panel surface, size of
dust particles, solar radiation intensity, dust quantity, and
dust weight all impact the power produced by a PV panel
(Darwish et al., 2013). Furthermore, a variety of
pollutants, including ash, sand, soil, and silica, can
accumulate on PV panels, affecting their electrical
performance. These particles have distinct chemical,
physical, as well as structural characteristics relying on
environmental factors like air quality, temperature, and
humidity. A number of research studies have explored the
consequences of dust settling on PV panels, consistently
revealing a decrement in efficiency.

Karmouch and Hor (2017) carried out practical
experiments in the Jazan region (KSA) to assess the
effects of dust accumulation on commercial solar cells at
various inclinations. Findings indicate that the settling of
dust from the air onto solar panels significantly reduces
the short circuit current over a 15-week period for both
inclinations, consequently diminishing the solar cells’
efficiency. This decline is attributed to reduced
transmittance, influenced by dust deposition density as
well as particle sizes, which are, in turn, affected by
exposure duration and tilt angle. Efficiency reduction
amounts to around 10.4% after 16 weeks for panels
angled at 30° as well as 9.7% for panels angled at 55°,
even with relatively short exposure to dust (Figure 5).
Limited rainfall exacerbates the situation, necessitating
natural water cleaning to restore efficiency, albeit time-
consuming for large solar panel arrays. A self-cleaning
system is strongly recommended for dusty regions like
Jazan to prevent dust accumulation and optimize module
performance.

Figure (5) infers that the characteristics of the solar
cell panel measured for 16 weeks tilted at 30°. The
relationship between x and y is a parabola relation.
Hence, the regression function may be inferred by:

where, ,  and are the regression parameters.
By using the least square method, we want to solve:

This equation can be converted into an unconstrained
optimization problem in the following manner:

By using Algorithm 1, we can obtain the following
results:

Fig. 5: Characteristics of the solar cell panel measured for 16
weeks

Application of Using the CG Method in a
Regression Problem

The following table (Table 1) represents the rate of
people who have medical checkups for different clinics.

The relationship that exists between x as well as y is a
parabola relation. Thus, the regression function may be
expressed by:

where, , are the regression parameters.
Utilizing the Least Square Method (LSM) yields:

This equation may be transformed into an
unconstrained optimization problem given by:

Using the first five data points from Table (1) and
applying the poly fit function in MATLAB, we can
derive the following values.:

By using the extreme value of calculus, we obtain the
following solution:
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By using Algorithm 1, we obtain the following
results:

Thus, if we substitute the value  using
Algorithm 1 in Eq. (21) and setting , we found that
the approximate solution is given by:

Where the relative error is .
Table 1: The number of people who review the medical clinics

Number of
data (x)

Year Number of people who have medical checkups
(y)

1 2010 796693
2 2011 903233
3 2012 917624
4 2013 946239
5 2014 988701
6 2015 970,785

Conclusion
This study introduces an enhanced version of a novel

CG method, which is founded on the Dai-Lio conjugacy
condition with an RP dependent on the Lipschitz
constant. The adapted method meets the DC and exhibits
GC properties. Additionally, numerical outputs
demonstrate that the novel approach surpasses the most
renowned CG methods of this era in terms of function
evaluations, CPU time, gradient evaluations as well as
iteration count. Finally, we illustrate the CG method
application in assessing the impact of dust on solar
panels to prevent dust accumulation and optimize
module performance.
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