
© 2025 Lau Nguyen Dinh and Le Thanh Tuan. This open-access article is distributed under a Creative Commons Attribution (CC-BY)
4.0 license.

Research Article

Based Approach to Improve the All-Pair Shortest Path
Computation

1Lau Nguyen Dinh and 2Le Thanh Tuan

1Department of Information Technology, University of Education and Science, University of Danang, Vietnam
2Department of IT-Cipher, Communist Party of Vietnam Central Committee's Office, Vietnam

Article history
Received: 29-07-2023
Revised: 04-12-2023
Accepted: 25-05-2025

Corresponding Author:
Lau Nguyen Dinh
Department of Information
Technology, University of
Education and Science, University
of Danang, Vietnam
Email: ndlau@ued.udn.vn

Abstract: This paper presents the development of a centralized algorithm
for finding the shortest path between all pairs of vertices on a graph,
utilizing the basic structure of the Floyd-Warshall sequential algorithm. The
proposed algorithm leverages multiple processors to compute the shortest
path between all vertex pairs, with one processor taking the central role in
data management. This central processor divides the workload, assigning
tasks to other processors for parallel computation of the shortest paths. The
algorithm is implemented in Java and tested on both MapReduce and MPI
architectures, running on the computer system at Hanoi National University
of Education (ccs1.hnue.edu.vn). The study utilizes traffic road data
collected from Da Nang City, Vietnam, providing real-world input for
evaluating the algorithm's performance on large-scale datasets. The results
demonstrate the efficiency of the algorithm in a distributed environment,
highlighting its potential for solving shortest path problems in real-world
urban networks.

Keywords: All Pairs, Floyd-Warshall System, MapReduce

Introduction
The Floyd-Warshall algorithm, which finds the

shortest paths, has garnered significant attention due to
its wide range of practical applications. Given a graph

 with  for all edges , the
problem of finding the shortest path between all vertices
is addressed by the Floyd-Warshall algorithm (APSP),
which is one of the optimization problems on graph
networks with broad real-world applications as well as
interesting implications in discrete mathematics.
Currently, the parallel processing model has been
strongly developed to address issues such as deadlock,
which the sequential processing model must
automatically resolve, including challenges like program
execution time, processing speed, memory storage
capacity, and large-scale data processing (Roosta, 2000).

The Floyd-Warshall algorithm has a sequential
complexity of , which can be time-consuming when
applied to graphs with a large number of vertices and
edges. To address this issue, we implement the Floyd-
Warshall algorithm on MapReduce and MPI structures to
leverage multi-core, multi-processor, and cluster
systems. In this study, we conduct experiments on both
MapReduce and MPI structures using the cluster at
Hanoi National University of Education. Several studies
have explored the Floyd-Warshall algorithm in different

parallel environments. The emergence of MapReduce
and MPI architectures is particularly suitable for
handling large-scale data problems.

There are several publications related to this
algorithm in various libraries mentioned (Wang et al.,
2008; Adoni et al., 2017-2018; Dean & Ghemawat,
2008; Ghemawat et al., 2003; Han et al., 2006; Hena &
Jeyanthi, 2021; Kalia & Gupta, 2021; Khezr &
Navimipour, 2017; Kulkarni et al., 2015; Lau et al.,
2014; Naik et al., 2014; Petrosyan & Astsatryan, 2022;
Raj, 2018; Singh & Bawa, 2017; MPI Forum, 1993;
Vavilapalli et al., 2013; Wadkar & Siddalingaiah, 2014;
Wasi-ur-Rahman et al., 2018; Xiaobing et al., 2013; Yan
& Song, 2012). We utilize MapReduce and MPI models
to experiment with real datasets.

With the advent of MapReduce and MPI architecture.
The MapReduce and MPI architectures are suitable for
problems with large datasets. In the study by Dragomir
(2016), a parallel algorithm to solve the problem has
been proposed, which has proven to reduce parallel
computing time compared to sequential computing.
However, in the papers by Dragomir et al. (2019), the
authors require the number of elements that each
processor receives to be , where p is a numbers
slave. This leads to the number of vertices of the input
graph and the number of processors must match to divide
the elements of the weight matrix for p processors.
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To the best of my knowledge, there are very few
studies that have specifically tested the shortest path
distance calculation between two points using data from
Da Nang City on MapReduce and MPI architectures. In
this context, the authors propose a new algorithm to
evaluate the shortest path problem on a traffic road
dataset from Da Nang. The paper aims to address this
gap by conducting experiments using MapReduce and
MPI architectures on traffic data from Da Nang,
leveraging the potential of multi-core, multi-processor,
and cluster systems to improve performance and
scalability. The structure of the paper will include an
introduction to the problem, background of the
methodology, framework, then the proposed algorithm
on different frameworks, and the experimental setup and
results based on real-world traffic data.

Materials and Methods
We surveyed all the actual traffic routes in Da Nang

City, Vietnam. The data is very enormous and is always
updated regularly. They are attached to the weights at T-
junctions and internet sections and that results in the
massive actual data to interpret so we tested the
algorithm on many different libraries and on many
blocks for comparison. The general algorithm in the
distributed environment is tested on MPI with the
computer cluster of Hanoi National University of
Education. The MapReduce algorithm has been tested on
many different blocks and Table (1) compares the results
of the computation time among the blocks.

Hadoop MapReduce

The Hadoop ecosystem consists of four main
modules:

Hadoop Common: These are the Java libraries and
utilities that other modules rely on. They provide
the file system and OS abstraction layer and contain
the necessary Java code to initiate Hadoop
Hadoop Yet Another Resource Negotiator (YARN):
This is a framework for managing the processes and
resources within a cluster
Hadoop Distributed File System (HDFS)
Hadoop MapReduce

Input and output data are stored in HDFS. The
algorithm is divided into blocks and mapped into a
MapReduce function for execution. These two functions
will take input as keys and values, then calculate, reduce,
and rearrange for further processing.

MPIs

The Message Passing Interface (MPI) is a library of
functions designed for use in programs written in C,
Fortran, and C++. As its name implies, MPI facilitates
communication between processors by passing
messages. The MPI program operates with independent
processors executing their own instructions in a Multiple

Instruction Multiple Data (MIMD) model. These
processors do not need to execute identical instructions
and communication occurs through MPI communication
functions. The MPI application runs as a set of
concurrent tasks, with the program consisting of user-
written code linked with MPI library functions.

APSP Algorithm

Input: Graph G = (V, E, w), V = {1, 2, …, n}, with weight
w
Output: Matrix D = [d(l, m)], Matrix P = [p(l, m)]
Method:

Let D0 = [d0(l, m)], with d0(l, m) = w(l, m)
Let P0 = [p0(l, m)], with p0(l, m) = m

and p0(l, m) is undefined if no edge from node l to
node m.

Assign t = 0
For t = 0, …, n

if t = n, stop. D = Dn, P = Pn. Else
t := t + 1
For l in |V|

For m in |V|
if dt-1[l, m] > dt-1[l, t] + dt-1[t, m]

dt[l, m] := dt-1[l, t] + dt-1[t, m]
pt[l, m] := pt-1[l, t]

APSP Algorithm on MapReduce

Algorithm APSP Mapper

Input: (Key, Value): {i, { ∀j in V, w(i, j) }}
Output: (Key, Value)
For i = 1 to n do

(Key, Value) = (Key, Value)
For i = 1 to n do

M = |A|, A = {j | (i, j) ∈ E}
For j = 1 to m do

Emit (Key, Value)
Key: i
Value1: {i1, w(m, j1), [Num]}
Valuet>1: {m, w(k, m) + w(j, m), [Num]}

“Num” is used to record the number of times the path
is received. Num=1,2,3,4,… or NULL

Algorithm APSP Reducer

Input: (Key, Value) from Mapper
Output: (Key, Value)
For i = 1 to n ∀ ID ∈ Key

If (ID == i)
Key = i;
Value = {a | (a, i) ∈ E,

Min{w(i, a)}, [Num]}
Emit (Key, Value)

Sort by key

APSP Algorithm in General Distributed
Environment

In the initial matrix D0, there are always n rows and n
columns. The parallel algorithm will divide the number
of elements of D0 by m processors to recalculate the new
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elements. Specifically, divide n rows equally by m
processors.

For example, we have a matrix D0 consisting of 8
rows and 8 columns. If we recalculate the matrix on 3
processors, the first processor (B0) will receive 3 rows,
the second processor (B1) will receive 3 rows and the
third processor (B2) will receive 2 rows.

Suppose that at the time of calculating D4 (k = 4), B1
will broadcast the data of the 4th row to processors B0
and B2 to recalculate new elements. At the kth iteration,
the processors will receive the kth row to calculate new
elements based on the old elements they hold and repeat
k times (Aridhi et al., 2014).

Input: Graph G, n = |V|, with weight w for edge (i, j), 1
master and m-1 slaves
Output: Matrix D = [d[i, j]] is the length of all pairs (i, j).
Matrix P = [p(i, j)] used to determine the shortest path.
Step 1: Master executes.

Master receives the starting matrices D0, P0. The main
processor divides the initial matrices D0 and P0 for m
slaves (n rows of D0 and P0 are divided equally).
We construct Ti (i = 0, …, m-1) as the set of rows that
slave Bi will receive:

k = 0;
For i = 0 to m-1 do

Ti = {k+1, …, k+ni}
k = ni + k;

Let D0i, P0i (i = 0, …, m-1) be the matrices sent by the
master to slave Bi.
The master sends Ti, D0i, and P0i to each slave Bi.

Step 2:
m slave receive D0i (i=1, …, m-1>), P0i (i=1, …, m-1)
and Ti (i=1,..,m-1). So master B0 with receive D01, P01,
T0 and slave B1 receive D01, P01 and T1, slave B2
receive D02, P02 and T2,…, slave Bm-1 receive D0(m-1),
P0(m-1) and Tm-1.

Step 3:
Let the two matrices recalculated at the kth iteration
(k=1, … n) on slave Bi be Dki and Pki (i=0, …, m-1). So
at the kth iteration, master B0 will recalculate Dk0 and
Pk0, B1 will recalculate Dk1 and Pk1, B2 will recalculate
Dk2 and Pk2, …, Bm-1 will recalculate Dk(m-1) Pk(m-1)
For k := 1 to n do

3.1. Bi(i=0, …, m-1) check if k ∈ Ti then Bi will
send the kth row data in the matrix D(k-1)i (i=0, …,
m-1) to B0, B1, …, Bi-1, Bi+1, …, Bm-1.
3.2. If k ∉ Ti then Bi>(i=0, …, m-1) will receive the
kth row data.
In each partition, each master and slaves performs
the computation of the elements of the matrix.
Dkz and Pkz by D(k-1)z and P(k-1)z (z=0, …, m-1),
the mean
Bi (i=0, …, m-1) perform the following tasks at the
same time:
For vi ∈ Ti (i = 0, …, m-1) do call algorithm APSP

Step 4:
Let the two matrices recalculated at the k = nth iteration
on Bi be Dni and Pni (i=1, …, m-1), then m-1 master and
salves will send the two matrices Dni and Pni (i=1, …,
m-1) to the master.

Step 5:
Conclusion, the result of matrix D is the union of the Dni
(i=0, …, m-1) and matrix P is the union of the Pni (i=0,
…, m-1) that the slave sent in step 4. End.

Theorem 1: D is the shortest path length matrix.

Proof:
We prove by induction over k the following proposition:

dk(l,m) is the length of the shortest path among the paths
connecting vertex l to m through intermediate vertices
[1…k].

Basic step: Obviously the proposition is true for k =
0.
Induction step: Suppose the proposition is true for
k-1. Consider dk[l; m].

One of the following two cases will occur:

i. Among the paths connecting vertex l to m through
intermediate vertices [1…k] with the shortest
length, there exists a path p that does not pass
through vertex k. Then p is also the shortest path
connecting vertex l to m through intermediate
vertices [1…k-1], so by the inductive assumption.
dk-1[l; m] = d[p]≤ dk-1[l; k]+ dk-1[k; m]
Therefore, according to the calculation of dk, we
have dk[l; m]:= dk-1[l; m] = d[p] is the length from
node l to node m passing the nodes {1, 2, …, k-1,
k}

ii. Every path connecting vertex l with m through the
intermediate vertices {1, 2, …, k-1, k} with the
shortest length passes through vertex k. Let p = (l,
…, k, …, m) be the shortest path connecting vertex
l with m through the intermediate vertices {1, 2, …,
k-1, k}. Then the segments (l, …, k) and (k, …, m)
must also be the shortest paths through the
intermediate vertices [1…k-1]. We have: dk-1[l; k]+
dk-1[k; m]=d[p] < dk-1[l; m].
(The last inequality follows from the assumption
that all paths connecting vertices l and m through
intermediate nodes {1, 2, …, k-1, k} with the
shortest length pass through vertex k).
Therefore, according to the calculation of dk, we
have dk[l; m] = dk-1[l; k]+ dk-1[k; m] = d[p] is the
length of the shortest path from node l to node m
passing intermediate nodes {1, 2, …, k-1, k}.

Theorem 2: APSP algorithms are correct.

Proof:
In Theorem 1, we have shown that D is the length of the
shortest path. Now we only need to prove that the
method of constructing the path according to the matrix
P, as in the real algorithm, really gives the shortest path.

If dk(l; m) <+∞, assign:

Is the path from l to m built based on matrix Pk as
follows:

δ
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We prove by induction on k the following lemma:

Lemma:  has a length is dk(l; m), that is, the
shortest path among the paths connecting vertices l to m
through intermediate vertices {1,2,…,k}.

Basic step: Obviously the proposition is true for k=0
Inductive step: Suppose the proposition is true for
k-1. Consider:

We consider the following two possibilities:

i. dk[l; m] = dk-1[l; m]:
pk[l; m] = pk-1[l; m]  l1= pk-1[l; m]∈[1…k-1] and
(l; l1) ∈ E, we prove dk[l1; m] = dk-1[l1; m].
Suppose otherwise
dk[l1; m]< dk-1[l1; m]. Then we have dk-1[l1; m]>
dk-1[l1; k]+ dk-1[k; m]
dk-1[l; k]+ dk-1[k; m]≤ dk-1[l; l1]+ dk-1[l1; k]+ dk-
1[k; m] < dk-1[l; l1]+ dk-1[l1; m]≤ dk-1[l; m]

dk[l; m]< dk-1[l; m], conflict with dk[l; m]= dk-
1[l; m]
So we have dk[l1; m]= dk-1[l1; m]
From that, similar to above, we can deduce that
pk[l1; m]= pk-1[l1; m]  l2= pk-1[l1; m] ∈ [1…k-1]
and (l1; l2) ∈E
h=0, …, m, we have pk(lh; m)= pk-1[lh; m] and
lh+1= pk-1[lh; m] ∈ [1….k-1] and (lh; lh+1) ∈E 

=  is the shortest path among the
paths connecting vertex l to m through intermediate
vertices [1…k-1] with length equal to dk-1[l; m]
and dk[l; m]= dk-1[l; m], so it is also the shortest
path among the paths connecting vertex l to m
through intermediate vertices [1…k], with length
equal to dk[l; m].

ii. dk[l; m]< dk-1[l; m]: We have:
dk[l; m]=dk-1[l; k]+ dk-1[k; m]< dk-1[l1; m] and
pk[l; m] = pk-1[l; k]
With l1= pk[l; m]= pk-1[l; k] ∈ . We prove
dk-1[l1; k]+ dk-1[k; m]< dk-1[l1; m] (*)
Suppose otherwise
dk-1[l1; k]+ dk-1[k; m] ≥dk-1[l1; m]. We have:
dk-1[l; l1]+ dk-1[l1; k]+dk-1[k; m] ≥dk-1[l; l1]+ dk-
1[l1; m] ≥ dk-1[l; m].
Because l1= pk-1[l; k] ∈ [1…k-1] lying on the way

, so dk-1[l; l1]+ dk-1[l1; k]=dk-1[l; k]
dk-1[l; k]+ dk-1[k; m]≥dk-1[l; m] conflict.

So (*) is true and we have dk[l1; m]=dk-1[l1; k]+ dk-
1[k; m] and pk[l1; m] = pk-1[l1; k] l2= pk[l1; m]=
pk-1[l1; k] 
Recursively, we can prove that there exists h such
that:

That is:

Next, we have

dk[l; k]+ dk[k; m] ≥ dk[l; m]= dk-1[l; k]+ dk-1[k; m]
On the other hand dk[l; k] ≤ dk-1[l; k] and dk[k; m]
≤ dk-1[k; m] dk[l; k] = dk-1[l; k] and dk[k; m] =
dk-1[k; m]

According to case (i) (applied to the pair of vertices (k;
m)), =  is the shortest path among the
paths connecting vertices k to m through intermediate
vertices {1,2,…,k-1}, with length equal to dk(k; m). On
the other hand, according to construction , then

 is the connection of two paths  and
: =  and has length equal

to dk[i,j]. and has a length equal to  is the shortest
path among the paths connecting vertices i to j through
intermediate vertices [1…k].

The lemma is proven.

From the lemma, we deduce the required proof because:

Dataset

The input data is examined from traffic roads in Da
Nang City, Vietnam with this traffic network data
including 140 main traffic intersections, 302 traffic
routes, and 1004 source-destination node pairs.

The nodes at T-junctions and intersections in reality
have their weights, so the number of nodes for
experimentation surges a lot. We also always update the
real data because urban data is increasingly expanding
for our experimentation.

Fig. 1: Map of Da Nang city

The control area is shown on the map in Figure (1)
and is modeled using an expanded traffic network as
follows:

G (V, E,w). (Table NODES contains V, w)
Figure (2) is the structure of the 'node' table stored in

the file danata_ss.sql. Table 'node' contains V (set nodes)
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and w (capacity of nodes).

Fig. 2: Table structure for table `nodes`

Results and Discussion
The login interface (Figure 3) allows users to enter

their credentials to access the system. The user
authentication data is stored in a SQL database named
danata_ss. Upon successful login, the system retrieves
the relevant records from this database and inputs them
into the program for further testing and analysis.

Fig. 3: Login interface

For the traffic network in Da Nang city, the running
time on the 1, 2, 4, 6, and 8 blocks gives results shown in
Table (1), and the level of Speedup acceleration is shown
in Figure (4) (Ts is the sequential running time, Tp is the
parallel running time, Ts/Tp is the speedup level). This
result shows

In Table (1), some blocks are provided to experiment
with the program on the MapReduce structure. The
results reveal that the experiment on the huge number of
blocks needs a shorter time on the same input data set,
this is shown in Figure (4). In Figure (4), the speedup is
greater when the blocks are larger. This means that the

algorithm implemented on the MapReduce structure is
much better than the sequential algorithm. The time is
significantly reduced when the input data is enormous. In
this study, we also experimented with the general
algorithm in the MPI structure. The experimental results
on MPI also reduce the computing time when the
number of processors is larger.

Fig. 4 : The speedup on blocks with data from Da Nang city

Table 1: Time and Speedup

Number block in MapReduce Run time (minute) Ts/Tp (Speedup)
1 90.6848  
2 65.5342 1.4
4 40.1279 2.3
6 29.3527 3.1
8 20.5134 4.4

Conclusion
The MapReduce APSP algorithm is presented in

detail. We have built a mathematical model for the
problem of an expanded traffic network, thereby
designing the data structure and collecting data for a
large traffic network in Da Nang City. When performing
on data with 1 block, the algorithm execution time is too
large. Therefore, we build a parallel algorithm to
improve the computational performance of the traffic
distribution problem for extended traffic networks. The
results in Figure (4) show that the parallel algorithm
reduces time significantly compared to the sequential
algorithm.
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