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Abstract: Advanced cyberattacks outperform traditional threat detection
methods in the rapidly expanding cybersecurity field. Advanced Machine
Learning (ML) algorithms can detect network traffic and system problems
using AI-based Anomaly Detection (AD) for cybersecurity in real-time.
Signature-based systems may overlook new and subtle threats. This paper
examines Artificial Intelligence (AI) driven AD systems' design,
methodology, and efficacy. The process includes data preprocessing and
feature extraction. Unsupervised learning and real-time data streams can
detect insider threats and zero-day attacks without attack signature
information-AI-based cybersecurity AD strengths and downsides. According
to numerous research and trials, its high accuracy and memory in detecting
anomalies reduce false positives compared to older methods. Cyber
attackers use protected channels to launch attacks. Cryptographic channels
obscure legal and malicious network traffic. Alternative studies use AI and
traffic information to discover anomalies. Integrating AI, blockchain, and
Quantum Computing (QC) can boost cybersecurity. According to research,
growing cyber risks require adaptive, scalable, and intelligent AI-powered
cybersecurity solutions. Deep generative models can detect novel cyber-
physical dangers and minimize Cyber Physical System (CPS) susceptibility
without labelled information.

Keywords: Cybersecurity, Anomaly, Artificial Intelligence, Machine
Learning, Internet Traffic

Introduction
Humayed et al. (2017) have shown that smart

manufacturing, electricity grids, and transportation use
Cyber-Physical Systems (CPSs) in Industry 4.0. Rich
networked actuators and sensors connect a computer,
networking, and physical environments in
multidimensional CPSs in Industry 4.0. AD is a potential
way to monitor CPSs and notify them instantly if
abnormalities are identified. Kwon et al. (2019)
introduced abnormal behaviours, known as anomalies,
contamination, intrusions, outliers, or failures, that depart
from normal data distribution in diverse applications.
Choi et al. (2019) introduced that unsupervised learning
is preferable to inherent labelling for AD because it is
difficult, time-consuming, and often impossible. Li and
Wen (2014) introduced the idea that transformation-

based unsupervised algorithms struggle with multivariate
time series with inherent correlation and nonlinearity.
The conventional Internet was vulnerable to sniffing and
spoofing attacks using Transmission Control
Protocol/Internet Protocol (TCP/IP). With time, the
Internet has shared more sensitive corporate and
intellectual property data. As TCP and IP do not default
to encryption, attackers can steal data or change packets.
Due to security risks, Transport Layer Security (TLS)
protects internet communication. Contrary to
expectations, encrypted Internet traffic is rising. Cyber
attackers employ encrypted channels. An encrypted
attack survey found 57% in 2020, 80% in 2021, and
above 85% in 2022.

Wang et al. (2017) introduced the Deep Packet
Inspection (DPI) in the packet attack detection
environment needs updation. Analyzing plaintext and
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packet payload data can detect network traffic anomalies.
Van Ede et al. (2020) use key data in packets to detect
abnormalities. However, it cannot be used on encrypted
communication because it uses payload data. Today's
digital world sees more and more cyberattacks.
Conventional signature-based cybersecurity methods
cannot adapt to changing threats.

Traditional techniques assess threats reactively based
on attack patterns. Advanced persistent attacks and zero-
day exploits are difficult to detect. High-performance
ML algorithms for identifying abnormal behaviour
analyze vast amounts of realtime data. Even without
symptoms, our proactive method detects unusual cyber-
attack patterns. AI anomaly detection requires ongoing
learning and adaptability. ML models can identify
network or system activity with the help of large
datasets. These skilled models can identify anomalies in
realtime data. The dynamic adaptability of this system
helps detect zero-day attacks and insider threats that
standard methods overlook.

Chandola et al. (2009) employ the ideas of feature
extraction, data preprocessing, and ML techniques like
Clustering, SVMs, and neural networks. AI-based
systems can protect against cyberattacks by combining
these elements.

This research addresses AI-based AD challenges like
huge datasets, processing costs, and adversarial attack
sensitivity. Case studies and experiments examine these
strategy's pros, cons, and mitigation techniques.

Vyas (2023) introduced the study that AI enhances
real-time cybersecurity. Innovative and integrated
technology is needed to create intelligent, scalable, and
flexible cybersecurity systems. AI-based AD protects
digital infrastructures from rising cyber threats. Table (1)
presents the DL-AD taxonomy for CPS.
Table 1: Cyber-physical system, Deep learning, AD Taxonomy

Types Description
Types of
Anomalies

Attacks: network communication layer Faults:
Control system

Strategies for
detection

Data inputs include time-series data, network
traffic data, sensor and actuator data, and system
calls and logs.
Design of neural networks: RNN, CNN, GAN,
etc., personalized models.
Scores for anomalies: Errors in prediction,
reconstruction, and predicted label

CNN in Table (1) stands for Convolutional Neural
Network and is typically used in image and video
recognition tasks. It is mainly perfect for identifying
patterns and features inside an image.

RNN in Table (1) stands for Recurrent Neural
Network; this is a kind of neural network suited
particularly to linear data like time series data or natural
language; they have a "memory" component, so they can
process information in sequence while keeping context.

A neural network used for generative tasks, like
creating new images, videos, or text, is called a
Generative Adversarial Network (GAN). The
discriminator network, which seeks to separate the new
data from the real one, and the generator network, which
creates the new data, are the two main parts of a GAN.
The generator creates the data to deceive the
discriminator during their joint training.

Attacks in CPS

CPSs are always at risk of attacks since they run
essential infrastructure, including ICS, medical
equipment, and power grids. Financial interest, privacy
theft, and governmental activity can motivate an attacker.
These kinds of attacks can target several CPS parts.

First Part- Layer of network communication: Field
devices like actuators and sensors communicate via
communication networks. Additionally, data centres
receive sensor values and device status, while control
systems send commands via the network. Level 0 (𝐶0)
and 1 (𝐶1) communication can be addressed here. These
attacks can also alter 𝑆2, 𝐴2, and 𝐷1 (in 𝐶0 and 𝐶1
traffic). Further, there are three types of attacks:

Denial-of-Service (DoS) attacks: Applications for
real-time cyber-physical systems are at risk from
DoS attacks. Aircraft collisions or inefficient traffic
use could result from the lack of ADS-B technology.
However, the broadcast function of CPS
communication protocols, such as the CAN
protocol used in smart car systems, leaves the
network open to DoS attacks

Attacks that involve a Man-In-The-Middle
(MITM): Many emerging protocols in CPSs may
lack a robust authentication method. CPS Ethernet
can be utilized for MITM attacks. Packet content
can be changed, and MITM attacks can disclose
sensitive data

Injecting packets: Attackers with network access
can inject random packets to give control
commands. When given erroneous control
commands, operating devices can cause
catastrophic damage and even death. An accident
may result if the driver commands the engine and
brakes incorrectly

Second Part- System for Control: The core of CPSs is
control systems, which use sensor data to communicate
with actuators or field equipment. Control systems might
not have clear protection mechanisms because of harsh
operating conditions or insufficient hardware resources.
Actuator commands (𝐴2) and SCADA data (𝐷1) can be
altered if control systems are compromised. SCADA
stands for Supervisory Control and Data Acquisition.
Equipment that handles important and time-sensitive
materials or events can be monitored and controlled
thanks to this computer-based system that is made to
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gather and analyze data in real time. CPS targets two
types of attacks:

Malware: Attackers use malware in control systems
to monitor and disclose information over time.
Additionally, malware can launch stealthy attacks
(e.g., APT) at vital moments. Malware can distort
sensor readings. Malware may cause physical
damage to gadgets in rare cases

Fake control signals: Devices may act differently
than normal when receiving erroneous control
signals. Incorrect operations can damage equipment
and reduce its lifespan. Hackers often hide
unauthorized access and transmit fake control
commands at vital times

Third-Party Faults: Complex systems and diverse
components might cause unanticipated problems in
CPSs. Usually, flaws occur in two layers:

Sensor layer: False sensor values are common
sensor layer faults. Damage or flaws might cause
sensors to produce erroneous values. Previously
unknown events may force sensors to function
above their capabilities. Sensors on spacecraft may
encounter unexpected situations

Control system: CPSs are characteristically
dynamic, resulting in unanticipated scenarios during
system design. Different event sequences and
timings in PLC code can lead to assembly line
collisions in industrial operations

Strategies for Anomaly Detection

Deep Learning-based Anomaly Detection (DLAD)
algorithms are developed considering three key aspects.

Input data: DLAD techniques identify anomalies and
decide the input data type. The layer and data collection
method help identify four input data types. Sensors and
actuators' data, time-series data in numerical form,
including preprocessed sensor, network, and log data;
data on network traffic, system calls and logs; Using
semi-supervised and unsupervised learning, DLAD
methods handle unlabeled data, especially anomalous
data.

Neural network design: DLAD employs several
neural network architectures based on tasks and input
data. Deep networks—that which Broadbent and
Schaffner (2016) refer to as either hybrid combinations
(e.g., LSTMCNN) or stacked models (e.g., LSTMS).
There are several neural network designs, but we found
three fundamental ideas for creating them. First, time-
series data is often analyzed using LSTM models—a
type of RNN. Second, an autoencoder allows
unsupervised learning and addresses distorted data.
Third, CNN models can spot context and correlations in
multivariate measurement data.

Anomaly scores: There are three steps to gauge the
detection mistake. First, there is a prediction error since

the deep learning AD method forecasts sensor or actuator
values using past data. It gauges the difference between
the expected and actual values. Sometimes, projected
values differ from anomalous data. Second,
Reconstruction errors; the model represents a low-
dimensional space by compressing input data into hidden
layers. After that, the data is rebuilt to its natural scale.
One finds the same error between reconstructed and
original values. Usually, one uses a threshold of error to
identify aberrant data. Third is a label/class prediction; if
labelled data is sufficient in a domain, say the SWaT
testbed in ICS, then DLAD models may predict input
data labels. The concept is to find anomalies using latent
features from neural networks. There are a few ways to
adopt this architecture since great manual work is needed
to identify large volumes of data.

Types of Anomaly Detection

AD finds expected data patterns. Anomalies are data
points that significantly deviate from the dataset in
statistical analysis for AD. There are three types of
anomalies in Figure (1).

Fig. 1: Types of anomalies

Point Anomalies: Outliers refer to individual data
points that deviate significantly from the remaining data.

Contextual Anomalies: Anomalous data instances that
deviate from the norm within a particular context but do
not exhibit such deviations in other contexts.

Collective Anomalies: A set of linked data points that,
taken together, deviate from normal.

Machine Learning Algorithms

Inoue et al. (2017) proposed several multiple-
learning algorithms for AD. Their learning paradigms
help to classify these algorithms. Figure (2) presents
several kinds of learning methods.

Supervised ML train models to identify data points as
normal or aberrant using annotated datasets. One finds
the inclusion of algorithms, including neural networks,
SVMs, and decision trees. Approaches of supervised
learning provide consistent and quick results. Build AD
models with annotated data. Still, much-annotated

http://192.168.1.15/data/12903/fig1.png
http://192.168.1.15/data/12903/fig1.png
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training data is needed, including rare and diverse
aberrations.

Fig. 2: Types of learning

Unsupervised ML: Unsupervised learning methods to
find anomalies without labelled data using inherent
patterns and structural identification in data. The
techniques used are Principal Component Analysis

(PCA), Isolation Forests (IF), Clustering using
KMeans and DBSCAN. Unsupervised learning methods
are useful when there is a lack of labelled data since they

allow one to identify anomalies in CPS with limited
training data. However, people may find it difficult to
differentiate between harmless abnormalities and real
hazards, leading to higher rates of inaccurate positive
identifications.

Semi-Supervised ML: Training models through this
method requires limited labelled data and large amounts
of unlabeled data. Using this approach yields benefits for
situations that involve costly or timeconsuming data
labelling processes. Semi-supervised learning strategies
provide a solution to link data sets with different
labelling levels. They are ideal for detecting anomalies in
CPS with minimal labelled data. However, optimizing
hyperparameters and model topologies may require
significant modification. Table (2) presents some
common algorithms that are part of these techniques.

Supervised learning, such as distribution and
regression, is widely used when the target is known.
Unsupervised learning analyses data and patterns such as
clusters and associations. Semi-supervised learning acts
as a bridge, taking advantage of both methods, especially
in environments where labelled data is limited.

Table 2: ML Algorithm used

Learning
Type

Summary Common Algorithms Used

Supervised The training process takes place through models that process
textual information while each input receives a specific
outcome. The learning process enables the model to make
predictions after reviewing simulated data entries

Classification: The classifiers implemented in the research
included Support Vector Machines (SVM) together with
logistic regression and decision trees. Regression: Linear
regression, polynomial regression, ridge regression

Unsupervised It involves training models with unknown data, allowing the
algorithm to find patterns and relationships without guidance

Clustering: K-means, clustering process Partial reduction:
Principal Component Analysis (PCA), autoencoders Links:
Apriori Algorithm, Eclat Algorithm

Semi-
Supervised

It combines labelled and unlabeled data for training. It is very
useful if it is too expensive or inconvenient to get a well-
labeled data feature

Algorithms can be a combination of supervised and
unsupervised methods, such as using a small labeled dataset to
train a model and then using it on a larger unlabeled dataset to
generate false labels

Literature Review

AI-based AD in cybersecurity has been studied for a
decade. This literature review discusses AD,
cybersecurity ML algorithms, and realtime threat
detection.

Evolution of Anomaly Detection Technique: The
initial AD methods used statistics and rule-based
systems.

Network behaviour comprehension came from
Threshold-based detection and statistical profiling,
although these methods could not find advanced threats.
The AD strategy development is studied using the Bui et
al. (2021) concept by comparing simple statistical
approaches and advanced ML.

Cybersecurity in Machine Learning: The evolution of
cybersecurity has been radically transformed through
machines that process data for hazardous activity trend
identification. The analysis of AD has included
evaluation with neural networks, SVMs, and decision

trees. Scientists have completed extensive research to
show how clustering and Principal Component Analysis
(PCA) in unsupervised learning detect irregular patterns
in untagged information. A recent study by Jain et al.
(2023) proved that Hidden Markov Models (HMMs)
succeed in detecting network intrusions when researchers
focus on time-based data analysis in AD.

Anomaly detection in real-time: Continuous data
flows are processed by streaming algorithms for real-
time detection. Examine real-time data mining, threat
detection, and response. Biggio and Roli (2018) use the
concept of AD systems that may leverage live learning
and incremental ML model changes to respond quickly
to new threats.

Performance and Issues: AI anomaly detection
accurately detects known and unexpected threats. AI-
based network AD solutions outperformed traditional
methods. AI has challenges like huge datasets,
computational resources for real-time analysis, and
adversarial attacks. Adversarial Machine Learning

http://192.168.1.15/data/12903/fig2.png
http://192.168.1.15/data/12903/fig2.png
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(AML) manipulates input data to avoid detection
systems.

Applications and Case Studies: Many cybersecurity
case studies show AI-based AD applicability. Intrusion
Detection (ID) using DL models in Industrial Control
Systems (ICS) has shown promise. Detected ICS
anomalies with high accuracy and low false positives
using a Deep Neural Network (DNN). Sahay and Sinha
(2018) discussed that reinforcement learning in adaptive
cybersecurity helps AI improve autonomous threat
mitigation.

Comparative Analysis
AI-based AD systems are compared to traditional and

alternative AI-driven methods. This analysis emphasizes

detection accuracy, realtime processing, adaptability,
computational efficiency, and adversarial attack
resistance (Figs. 3-4). Table (3) shows the comparative
analysis of traditional and AI-based AD methods.

Fig. 3: Traditional AD methods

Table 3: Comparative analysis of traditional and AI-based methods

Standard Method Description Performance
Processing
Real Time

Traditional
Methods

Efficient for realtime processing but may not react to new
threats due to established signatures and criteria

High for recognized threats

AI-Based
Methods

Stream Processing Frameworks (e.g. Kafka, Flink):
Enable realtime data ingestion and analysis for rapid
threat detection by Vyas (2022)

Elevated for both identified and unidentified
hazards. The performance of the system varies, with
high performance observed when using stream
processing and lesser performance observed when
using batch learning

Online learning models achieve high-performance
outcomes through the incremental addition of fresh data.
Batch Learning Models: Retrain the entire dataset,
rendering them unsuitable for realtime processing

Adaptability Traditional
Methods

Maintaining efficacy against new threats requires regular
upgrades and human interaction.

Low

AI-Based
Methods

Unsupervised and Semi-Supervised Learning: Benefit
from adaptability to new data, making them ideal for
dynamic contexts

Unsupervised or semi-supervised learning,
particularly at a high level

Reinforcement Learning: Highly adaptable and requires a
robust framework for implementation after continuous
improvement through environmental interaction

Adversarial
Attack
Resilience

Traditional
Methods

They are vulnerable to evasion strategies because
attackers can change their behaviour to escape detection
by specified rules and signatures

Low

AI-Based
Methods

AI models face an increasing security threat because
attackers pursue methods to manipulate their operation.
Researchers establish defensive model structures together
with adversarial training procedures to counter these
vulnerability risks.

Enhancing (using adversarial training and robust
techniques)

To improve AI models' robustness, consider employing
ensemble approaches and anomaly score calibration to
reduce vulnerability to adversarial attacks

Fig. 4: AI AD methods

The study demonstrates how AI-based AD systems
create better real-time cybersecurity through their
advantages in system operation. Although traditional
methods are simple and efficient in dealing with familiar
threats, AI-driven alternatives offer greater adaptability
and accuracy, particularly in identifying new and
complex attacks. Nevertheless, the processing
requirements and ability to withstand adversarial attacks
are crucial factors when implementing AI-powered
systems. Ensuring a harmonious equilibrium of these
aspects is crucial for creating resilient, instantaneous
cybersecurity solutions. To improve the analysis of the

http://192.168.1.15/data/12903/fig3.jpeg
http://192.168.1.15/data/12903/fig3.jpeg
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article on AD in CPS, various unique perspectives could
be incorporated:

Comparative Analysis of Techniques: A thorough
comparison of different AD techniques, including
traditional statistical and advanced ML approaches,
could shed light on their unique strengths and
weaknesses. This would help to contextualize the
methodologies discussed and emphasize situations
where one approach might be more effective than
the other

Real-World Case Studies: Including real-world case
studies highlighting various AD methods across
different industries could enhance the discussion.
This approach would illustrate the practical
implications of the findings and reveal the
challenges encountered during real-time
implementations

Interdisciplinary Approaches: Examining how
interdisciplinary methods, like combining AI with
blockchain and quantum computing, can improve
cybersecurity measures would provide a progressive
viewpoint. This could showcase creative solutions
to the existing challenges in AD systems

Focus on Interpretability: It is essential to address
the interpretability of DL-based AD methods.
Exploring how improving interpretability can foster
greater user trust and encourage system adoption
would offer an important perspective on the
limitations of existing models

Network Security Advancements

More recent research has been conducted on network
security utilizing new technologies. Cyber threat
detection and mitigation are promising with neural
network architectures, as stated by Parsamehr et al.
(2019). Neural networks' ability to recognize complex
patterns and behaviours from massive data sources may
improve Intrusion Detection Systems (IDS) and prevent
network attacks, as shown in Table (4).

Methodology
Real-time cybersecurity implementation of AI-based

anomaly detection requires data collection,
preprocessing, and feature extraction before selecting
and training a real-time model for real-time detection,
which would be evaluated and deployed. All stages were
created to enhance system performance for threat
detection and response in cybersecurity. Figure (5) shows
the methodology's steps.

Fig. 5: Flow Diagram

Table 4: Mechanism for network attack prevention

Reference Prevention
Network
Attacks

Description

Kumari
and Prabha
(2024)

Deep Learning Deep Learning (DL) has improved
cybersecurity by making AD systems more
flexible. DNNs and DBNs are useful for
detecting network traffic irregularities and
intrusions because they can evaluate
complex, high-dimensional data.
Automatically learning hierarchical data
representations to capture complex links
and dependencies helps DL models detect
cyber threats more accurately and robustly

Verkerken
(2022)

Generalization
and Scalability

Neural networks (NNs) can scale and
generalize to huge data volumes and
diverse network environments. Unlike
signature-based detection methods, neural
networks can learn from data and apply
their experience to new circumstances.
Because they adapt and evolve, neural
network-based IDSs can identify complex
cyber threats like zeroday exploits and
polymorphic malware

Geller et
al. (2014)

Hybrid ethods Besides NN models, hybrid systems
combining many detection methods are
gaining popularity. Hybrid Intrusion
Detection Systems (HIDSs) combine NNs,
rule-based systems, anomaly-based
methods, and ensemble learning to
maximize their benefits and minimize their
drawbacks. A HIDS can use an NN to
detect anomalies and rule-based filters to
verify and improve results. This reduces
false positives and improves detection
accuracy

Anitha et
al. (2023)

Realtime
Detection

Realtime cyber threats demand fast
detection and response to adapt to shifting
tactics and limit impact. Near-real-time
threat detection with neural network-based
IDSs prevents security incidents. Realtime
network traffic monitoring and analysis
allows neural network-based IDSs to
detect potential attacks and take immediate
action to mitigate them

Vasa
(2022)

Limitations
and Issues

Cybersecurity is possible with neural
network-based IDSs, but they must
overcome obstacles. Comprehending their
conclusions is difficult because neural
network models are opaque, especially in
deep neural networks. Explainability is
crucial for decision-making and
accountability. Therefore, the incapacity of
neural network-based IDSs to be applied in
real life hinders their acceptance

Nagaraj et
al. (2023)

Security and
Robustness

Neural network model flaws allow
adversaries to change or escape detection,
limiting IDS efficacy. Researchers are
studying adversarial training and defence
mechanisms to strengthen neural network-
based IDSs. To prevent unauthorized
access, carefully assess the privacy and
security of important neural network
model training data

http://192.168.1.15/data/12903/fig5.png
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(1)

(2)

(3)

(4)

(5)

Data Collection: The initial phase involves collecting
varied datasets to identify normal and abnormal network
dynamics.

Data Preprocessing: Effective data preparation
ensures data quality and consistency. It includes:

Data Cleaning: Remove noise, handle missing
numbers, and fix errors

Normalization: Scaling data for comparability
across features

Segmentation: Breaking down continuous data
streams into manageable sessions

Feature Extraction: The ability to effectively extract
features is crucial for revealing meaningful patterns:

Metrics like frequency, standard deviation, and
mean are calculated and stored in the statistical
features

Time-series analysis involves collecting data over a
period of time and then identifying patterns, trends,
and outliers

Deriving relevant characteristics from domain-
specific information involves understanding
network protocols and user behaviours

Model Selection and Training: Training and selecting
suitable algorithms requires optimal performance from
ML models because model selection and training need
proper algorithm selection and optimization. Neural
Networks, Support Vector Machines, K-means
clustering, and Isolation Forests form the core group of
ML methods, which receive evaluation consistent with
data type and detection targets. The process of both
model selection and training relies critically on the
distinct separation of the dataset between training and
validation groups. The process of model parameter
enhancement through grid or random searches defines
hyperparameter tuning.

Evaluation: The accuracy of the AD system relies on
regular performance evaluations. The model's efficacy is
evaluated by calculating measures including recall,
accuracy, precision, F1 score, and area under the curve
(AUC-ROC). The benchmarking process involves
comparing the system to existing benchmarks and other
systems that detect anomalies. Identifying and analyzing
false positives and negatives is necessary to improve the
models and decrease errors.

Performance evaluation metrics: Comparing the
attack dataset input features to outputs validates the
trained model. Accuracy, precision, recall, F1 score, and
true positives and negatives are used to evaluate the
model. Ji et al. (2024) Load the trained model and
forecast each attack dataset’s input feature to evaluate
model performance. Compare each forecast to the output
to get the mean squared loss.

Determine θ as the mean squared error threshold. A
mean square error loss value below θ indicates a normal
message and matches expectations. A mean square error
loss value above θ indicates an aberrant message,
deviating from expectations:

True Positive (TP): Refers to cases where the model
accurately recognizes positive instances as positive

False Positive (FP): Indicates situations where the
model erroneously classifies negative cases as
positive

True Negative (TN): Refers to situations where the
model correctly classifies negative instances as
negative

False Negative (FN): Denotes instances of false
negatives, where the model incorrectly classifies
positive cases as negative

Accuracy is determined by dividing the number of
accurately predicted samples by the total number of
samples in the model. A higher accuracy rating signifies
a higher level of model performance. The accuracy can
be determined by applying the following formula:

Precision is a metric that quantifies the ratio of
accurately predicted positive cases to all the samples
projected as positive by the model. A high precision rate
indicates high accuracy in the model's predictions of
positive cases. The calculation can be determined using
the following equation:

Recall quantifies the ratio of accurately predicted
positive examples to all actual positive examples. A high
recall score demonstrates the model's ability to identify
positive examples accurately. The calculation is
performed in the following manner:

Using the F1 score evaluates model performance by
combining two parameters: precision and recall.
Measurement of the F1 score requires a specific
calculation method:

False Positive Rate (FPR) is an evaluation index that
evaluates the percentage of normal data mistakenly
categorized as anomalies by an anomaly detection
model. FPR measures the system's capacity to prevent
false positives from normal data being misclassified as
anomalous data:

The True Negative Rate (TNR) measures the
anomaly prediction of normal data and can be used to
evaluate a model's false positive rate:

Accuracy = TP + TN/TP + FP + TN + FN

Precision = TP/TP + FP

Recall = TP/TP + FN

F1Score = 2 × Precision × Recall/Precision +
Recall

FPR = FP/FP + TN



Shalini Kumari et al. / Journal of Computer Science 2025, 21 (6): 1307.1321
DOI: 10.3844/jcssp.2025.1307.1321

1314

(6)

(7)

(8)

The False Negative Rate (FNR) measures a model's
ability to predict anomaly data as normal:

ROC-AUC, the area of the ROC curve according to
the threshold, is an evaluation index that shows the
model's precision and FPR change rate. The closer ROC-
AUC is to 1, the better the model distinguishes normal
and abnormal data. The Matthews Correlation
Coefficient (MCC) measures binary classification model
performance by considering all confusion matrix values
(TP, TN, FP, and FN). When analyzing binary
classification problems, MCC provides more information
than F1-score and accuracy since it examines the
balancing ratio of TP, TN, FP, and FN. Model
performance improves with greater values:

ML and DL model training errors are called losses.
Regression models use Mean Squared Error (MSE) and
Mean Absolute Error (MAE), while classification models
use cross entropy. The model predicts better with lower
loss values.

Impact of Benchmarks on Anomaly Detection
Effectiveness

Benchmarks are essential for improving the
effectiveness of AD systems, especially in CPS. They
offer a standardized framework that allows for evaluating
and comparing various AD methods, ensuring that
researchers can measure their performance under
uniform conditions. Here are several ways benchmarks
influence the effectiveness of AD.

Diversity of Data Types: Effective benchmarks
should include a range of data types, such as sensor data,
actuator data, network data, and control system log data.
This variety enables a more thorough assessment of how
effectively different algorithms can manage diverse
inputs and situations.

Performance Metrics: Using established performance
metrics like recall, accuracy, precision, F1 score, and
area under the curve (AUC-ROC) is crucial. These
metrics offer measurable insights into a system's
performance, helping researchers pinpoint the strengths
and weaknesses of their models.

Real-World Relevance: Benchmarks that incorporate
real-world anomalies and labelled datasets, such as the
SWaT testbed, are essential for evaluating the practical
effectiveness of AD methods. They ensure that the
algorithms can successfully recognize both familiar and
new threats in realistic environments.

Adaptability and Resilience: Benchmarks should also
assess how effectively anomaly detection systems can
adapt to realtime data streams and withstand adversarial

attacks. This is crucial for maintaining the systems'
effectiveness in dynamic and potentially hostile
environments.

Role of AD in Detecting Network Anomaly in CPS

Due to the growing dependence on digital
infrastructure, the consequences of security breaches
have become more severe, affecting various aspects such
as personal privacy and national security. Conventional
security measures, typically rule-based and unchanging,
must be revised when confronted with dynamic and
sophisticated cyber threats. This deficiency has
stimulated the pursuit of more advanced and intelligent
solutions, resulting in the incorporation of ML
techniques. With its capacity to acquire knowledge from
data, adjust, and recognize patterns, ML presents a
potential opportunity to revolutionize network anomaly
detection. Through the utilization of machine learning,
systems have the potential to identify new or developing
threats that escape detection by traditional mechanisms.
This theoretical investigation aims to gain a
comprehensive understanding of the role of ML in
network anomaly detection. This framework aims to
integrate existing knowledge and practices while also
striving to advance the field by proposing innovative
approaches and methodologies. Figure (6) shows the AD
in detecting network anomalies in CPS.

Fig. 6: AD in network anomaly in CPS

The architecture of an Intrusion Detection System
(IDS). The system first consumes data from the network,
logs, and the system itself. After that, the IDS System
processes the data using two primary detection methods:

Detection Based on Signatures: This technique
compares incoming data with a Signature Database

TNR = TN/TN + FP

FNR = FN/TP + FN

MCC = TP × TN − FP × FN/  (TP + FP )
 (TP + FN) (TN + FP ) (TN + FN)

http://192.168.1.15/data/12903/fig6.png
http://192.168.1.15/data/12903/fig6.png
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to identify malicious behaviour patterns. An alert
will be set off if a match is detected

Anomaly-Based Detection: This method generates
an Activity Profile and investigates using AI
techniques. There are two main types of AI
methods:

RNN, CNN, and DNN, which are deep learning
methods

ML methods (including SVM, KNN, DT, and NB)

These AI methods communicate with a Behaviour
Database to identify suspicious activity in network
traffic. Based on the results of both detection methods,
the system then makes decisions. The traffic is
considered normal if neither approach detects any
threats. But if either of those things detects something
dangerous, then an alarm goes off. The IDS can better
detect both old and new security threats because of this
dual-approach technology, which merges signature-based
and anomaly-based detection.

Analytical Discussion
Although AI-based AD systems provide substantial

benefits compared to conventional methods, their
successful deployment in real-time cybersecurity
requires careful consideration of various constraints and
downsides. The challenges include data requirements,
computing demands, model interpretability, and
vulnerability to sophisticated attacks, among other
factors.

AI models, especially DL algorithms, need lots of
labeled and unlabeled data for normal and pathological
behavior classification. Data quality and relevance affect
AI model performance. Carlini and Wagner (2017) use
the concept of Noisy or irrelevant data can weaken
models and cause anomaly detection errors. Training and
inference of complex models, especially deep learning
architectures, need plenty of computer resources. GPUs
and TPUs are usually pricey.

AI models for real-time data from massive,
distributed networks must scale. High detection accuracy
and low latency processing demand complicated
optimization and durable infrastructure. Decisions made
by deep learning AI algorithms are opaque. Hinton et al.
(2012) introduced the idea that cybersecurity specialists'
reputations suffer from ambiguity.

Root Cause Analysis can obscure why a model labels
an activity as uncommon for threat response. Root cause
research and mitigation are difficult with opaque AI
models. Liu et al. (2024) introduced that AI-based
anomaly detection systems may tire security specialists
and alert them with false positives.

Abadi et al. (2016) uses the concept of models may
miss sophisticated attacks, resulting in false negatives.
Consistency between sensitivity (actual positive rate) and

specificity (real negative rate) must be revised. Attackers
can make AI models think irregularities are normal.

Kumari and Prabha (2023) uses the concept of
Adversarial training and AD ensembles, which must be
researched to protect AI models from adversarial
approaches. Integrating AI-based anomaly detection into
cybersecurity systems takes planning. Data retraining,
upgrades, and monitoring keep AI systems running.
Maintenance needs resources.

Advanced ML algorithms utilizing AI-based AD have
demonstrated encouraging outcomes in realtime
cybersecurity by accurately identifying network traffic
and system problems. Shruti et al. (2024) introduced that
AI-powered AD systems have shown exceptional
accuracy and memory in identifying anomalies, reducing
false positives compared to conventional methods. By
employing unsupervised learning algorithms and
continuously analyzing realtime data streams, these
systems may identify previously unknown attacks and
internal security breaches without depending on
predefined attack patterns, thus demonstrating their
exceptional ability to detect threats. These systems
encounter issues like handling massive datasets,
managing computational burdens, countering adversarial
attacks, and adopting efficient mitigation measures.
Proposing the integration of AI, blockchain, and
Quantum Computing (QC) as a feasible technique to
improve cybersecurity defences indicates a promising
future approach to address cyber threats. Kaur and
Ramkumar (2022) stated that systems have succeeded
overall, but their generative models may need help
differentiating attack patterns that closely resemble
normal data or deviate from the normal distribution near
the normal cluster in latent space.

AI-powered AD systems improve the accuracy of
identifying irregularities and decrease the occurrence of
incorrect positive detections. Semi-supervised ML
combines labelled and unlabeled data to discover
anomalies. The evaluation measures comprise recall,
precision, F1 score, and AUC-ROC.

Deep Learning-Based Anomaly Detection
Limitations

While DLAD research is progressing rapidly, there is
still an opportunity to improve current systems. The
absence of interpretability: Shrivastava and Pancham
(2021) introduced AD methods that can be interpreted to
allow users to understand the cause of a detection result.
Conventional machine learning approaches generally
exhibit high interpretability. As an illustration, it can
analyze the decision path of methods based on decision
trees and investigate the subset to which the input sample
belongs. DLAD approaches priorities by enhancing
detection accuracy (precision and recall). Therefore, the
discussion and study of the model's interpretability are
limited.
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High construction and maintenance costs: The cost of
DLAD procedures is mostly due to two factors. The
computing resources of CPSs devices are typically
insufficient for running DL models. GPUs cost a lot.
Secondly, developers invest significant time in creating
and maintaining neural network models. Researchers
must develop models based on specific CPS designs and
anomalies during the design stage. Tuning
hyperparameters during training is hard. The transfer of
parameters during maintenance strains the
communication network of CPSs.

Poor Data Quality: Sufficient high-quality input data
is a prerequisite for DLAD methods that operate as data-
driven systems. The analysis establishes three obstacles
related to training data which affect CPS programs. First,
CPS’s surroundings are changing. Physical system
components added or removed might result in newly
discovered vulnerabilities. Generally, no indication is
provided to distinguish between standard data patterns
and attack data types. Manually produced samples
include all uncommon cases. Quick alterations disrupt
the point and contextual anomalies detected by DLAD
methods. These detection systems tend to operate
ineffectively when the same cases of continuous
collective anomalies occur.

DLAD methods can be compromised. The neural
model used in DLAD calls for data maintenance from
CPS databases. There are two primary categories of
attacks based on two distinct approaches: Poisoning
strike through tampered training data and biased model
detection findings, and Adversarial attacks, which
degrade CPSs undetected by DLAD.

The practical implementation of AI-driven AD
systems in Cyber-Physical Systems (CPS) faces several
significant challenges. Organizations must manage the
complexities of incorporating these tools into existing
Operational Technology (OT) environments while
maintaining seamless operations. Humayed et al. (2017)
note that deploying CPS requires careful consideration of
legacy systems and protocols that may not have modern
security features. Resource demands pose a major
obstacle, necessitating careful evaluation of
computational and human resources. DL-based AD
systems often require substantial computational power
and memory, which may not be available in resource-
limited CPS environments. Integrating with the current
security framework introduces unique challenges.

Inoue et al. (2017) argue that organizations must
ensure the smooth integration of new AI-driven detection
systems with existing security technologies, such as
firewalls, SIEM systems, and traditional IDS/IPS
solutions. This integration must be achieved without
creating new vulnerabilities or undermining existing
security measures. The training and skill requirements
are also demanding. Bui et al. (2021) highlight that
organizations need personnel skilled in cybersecurity and

machine learning to implement and maintain these
systems effectively. This includes expertise in data
preprocessing, model selection, hyperparameter tuning,
and ongoing system improvement.

Moreover, the resource implications extend beyond
the initial deployment. Liu et al. (2024) emphasized that
organizations must dedicate resources for continuous
model training and updates to maintain detection
accuracy in response to new threats and changing system
behaviours. This requires ongoing computational
resources and skilled individuals who can interpret
model outputs and adjust system parameters. Effectively
executing these tasks is crucial for the success of AI-
driven anomaly detection in CPS.

Improving Deep Anomaly Detection
Methods

Benchmarks with enough labelled and real-world
anomalies: Few benchmarks exist in CPSs for comparing
DLAD algorithms. While specific datasets, such as
SWaT, are commonly utilized, DLAD algorithms are
often customized and adapt processed data
independently. Benchmarks in specific CPS domains,
such as aerial systems, might enhance evaluation.
Various techniques can evaluate performance on the
same benchmark. Identify many benchmark
requirements:

1. Cover enough data types. The provision of sensor,
actuator, network, and control system log data is
ideal. Based on design goals, DLAD methods can
use any data. Models demonstrate best performance
on specific data categories, including sensor time-
series information that can operate independently

2. Label anomalies. The evaluation of DLAD methods
becomes challenging because abnormal events lack
proper labelling. Researchers need to build attack
and fault simulation models. Attack situations that
are complete and verified allow detection systems to
work more efficiently with less data processing
involved. Simulation exists for specific fields like
the smart grid, but real-world measurements and
anomalies create better descriptions of system status

Improve running performance in real time: Various
research studies have evaluated the performance
capabilities of DLAD approaches in smart vehicles.
Smart cars require immediate response because
catastrophic accidents could occur. Other CPS systems
require practical implementations of DLAD methods,
and their running performance must be considered
fundamental. The system's design contains two aspects
that need improvement. (1) Allow real-time input
measurements. The operation of DLAD approaches
depends on realtime system measurements combined
with live traffic data rather than offline dataset inputs.
The data volume, sampling rate, and coherent format
should be defined according to network capacity and
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computational power. The detection speed of DLAD
methods improves substantially when utilized on edge
devices because these devices possess superior
computational power. (2) Take realtime actions.
Detecting anomalies is critical, but administrators should
also find methods to prevent severe failures. Designing
and training DLAD models requires the adoption of
particular steps.

Find the abnormal device or cause: Current DLAD
algorithms have great detection performance (e.g., true
positives, accuracy). However, the location and source of
the anomaly are often unknown. Even if DLAD
algorithms detect anomalies, users lack knowledge of
their origin and handling. In addition, anomalies in
different CPS components have varying effects. We
propose that DLAD approaches enhance detection
granularity to the component level. Convlstm is used to
identify anomalies in sensors and actuators. Once an
anomaly is found, the infected device is also identified.
Taking specific precautions could avert the loss.
Additionally, this process can be automated without user
intervention.

Neural network architectures can be adapted to suit
various CPSs and situations: Different CPSs have
common data kinds and abnormalities. Industrial Control
Systems (ICS) often collect sensor time-series data.
Anomalies in sensor and actuator changes can disrupt
time relations in data. Attacks on the CAN bus system in
Intelligent Transportation Systems (ITS) are common.
LSTM and CNN capture time and context information,
such as packet order and content.

Enhanced Quantum Blockchain and Quantum
Computing Aspects in CPS

Peng et al. (2008) use the concept that Digital
signature crackers pose an imminent threat. A thief may
impersonate any user, take their digital assets, and forge
any digital signature using Shor's algorithm and a
quantum computer. Most experts agree that developing a
large-scale universal quantum computer will take at least
ten years. Still, some researchers believe it could be done
sooner with emerging quantum computational devices
with limited capabilities. This research is also ongoing at
quantum computing businesses D-Wave Inc. and Zapata
Computing Inc. Due to their fast solution times, a few
individuals using quantum computers can control Bitcoin
mining and censor transactions. Stewart et al. (2018)
show these groups could double-spend by undermining
lawful transactions or preventing their blockchain
entries. Recent studies in Singapore, Austria, France, and
the UK consider a realistic assault scenario.

Cryptocurrencies will crash without protocol updates
when quantum computers are used. The quantum safety
and quantum internet deal with security aspects related to
blockchain and are discussed below.

Blockchains with quantum safety: Quantum
cryptography is an enhancement method for blockchain
security systems. Under quantum communication,
attacks are prevented because the system operates
authentically. The methods encode and send bits through
photons as part of their transmission process. The
quantum states require fundamental physics to remain
unchanged during measurement or replication, according
to Kiktenko et al. (2018). An eavesdropper can be
immediately identified during any attempt at
eavesdropping. Through quantum cryptography, all
blockchain peer-to-peer encryption, together with digital
signatures, can be substituted. However, the complexity
and cost of quantum cryptography networks will limit
their use. This technique is safe in blockchains if all
nodes are connected pairwise, ensuring direct
communication and no node can be confident. Current
Internet connections use one-way cryptography and
many intermediate nodes for security. Untrusted
intermediary stations can securely relay signals between
two parties using new device-independent quantum
communication protocols. Fibre optic photon losses are
another issue. Modern quantum key distribution systems
are limited to tens of miles by these limits. A quantum
repeater is proposed using teleportation and optical
memory to distribute entangled states between
communicating parties. A viable gadget still needs to be
present despite the study. One-way functions can be
tightened till then. Some proposals take time to reverse
using conventional and quantum computers. Although
insecure, these could buy time on the present gear. They
will be understood eventually.

Blockchain quantum Internet: Chapron (2017) states
that Blockchain processes can be more secure and
efficient than quantum networks. A "quantum Internet"
connects quantum computers using quantum
communications. Complete quantum blockchains would
be possible. Recent Swedish, Israeli, and Russian
preprints show that avoiding computationally difficult
verification and consensus phases may increase speed
and security. Quantum Bitcoin could be secured using
the quantum mechanics no-cloning theorem. Bank notes
could contain quantum information to avoid forgery.
Quantum Internet is decades away. Processing massive
amounts of data requires full-scale quantum computers
and a quantum communication network. 'Blind quantum
computation' follows. Users with conventional
computers can perform algorithms on remote quantum
computers without exchanging data or algorithms. The
technology would enable public cloud quantum-
computing platforms, making blockchains more
economical and accessible.

Quantum Computing's Effect

Three methods of encryption are used in
contemporary cryptography: Symmetric, asymmetric,
and hash functions. Symmetric cryptography's
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encryption and decryption processes rely on the same
secret key. It doesn't work with blockchain since all the
nodes in the network can read the message, even if their
sole job is to check if the new data is genuine. One
solution to this problem is public-key cryptography,
often known as asymmetric cryptography. This technique
requires the sender to create a digital signature on the
transaction they want recorded on the blockchain using a
private key and then broadcast the signature with a
public key. Receiving nodes can use this public key to
confirm that the correct user generated the digital
signature. Mavroeidis et al. (2018) showed that
asymmetric cryptography employs prime number
factorization or the discrete logarithm problem to
generate these key pairs. The key aspect of hash
functions is that they cannot be used to extract the
original data from the hash output; instead, they take an
input of any length and return a string of a defined
length.

A quantum computer uses problem-specific quantum
algorithms, as indicated before. The security of
blockchain technology is at risk from two major quantum
algorithms. Fernandez-Carames and Fraga-Lamas (2020)
showed that the exponential speedup relative to
conventional computers, Shor's approach was proposed
in 1992 to tackle prime number factorization. An attacker
can crack asymmetric cryptography and the digital
signature of the blockchain with a method variant that
can also solve the discrete logarithm problem. An
adversary armed with a quantum computer running
Shor's algorithm may deduce the private key by utilizing
data from the publicly disclosed public key that
accompanied a transaction. After gaining access to the
victim's private key, the malicious actor could use it to
publish additional transactions. Cui et al. (2020) use the
concept of the victim's funds but charging a higher fee to
increase the probability that miners would include the
attacker's transaction instead of the original one, explores
the concept of transaction hijacking in the context of
cryptocurrency, where the attacker could broadcast
conflicting transactions using the computed private key
before the original one was finalized in a block.

The discovery of a collision enables attackers to
modify block transactions since the modified content and
other block data generate the same hash value yet
preserve the blockchain. The implementation of Grover's
algorithm provides quantum computer miners with the
ability to mine blocks at a much faster rate than
conventional computer systems can achieve. One
instance that gains control of more than half the network
computing power through a 51%-attack would acquire
absolute authority to select block data during new block
creation. The danger in cryptocurrency applications
becomes severe because this attack method enables
attackers to exclude their spending operations from
blockchain records. Through their control of the
computing power, an attacker could form a concealed

chain from chosen modified blocks to alter previous
transactions. The perpetrator controls most of the
network power; thus, his fake chain extends beyond the
existing blockchain's length. The system automatically
accepts the longest chain as the truth, meaning the forged
chain replaces the previous chain of blocks during this
process.

Blockchain and Quantum Computing Aid in CPS

Blockchain technology and quantum computing
operate differently, but they offer promising
enhancements for protecting CPS cybersecurity systems.
The fundamental security features of blockchain include
decentralized operation and unalterable records that
prevent covert attack vectors, which preserve data
integrity. An aspect of blockchain technology which
increases buyer trust in digital shopping relies on its
transparent, distributed consensus systems. The adoption
of quantum computing brings benefits and specific
drawbacks in its operation. The technology presents an
encryption security threat but provides the capability to
enable quantum encryption mechanisms like quantum
key distribution to establish perfectly secure
communication pathways. Computation at the quantum
scale helps security operations by accelerating difficult
problem solutions in threat detection and analysis.
Implementing these technologies in CPS's cybersecurity
frameworks requires solving numerous practical and
technological obstacles.

Future Directions

The advancement of cybersecurity through Cyber
Physical Systems (CPS) will receive major
enhancements through top technological innovations. AI
integration with blockchain technology alongside QC
may develop robust cybersecurity protection against
modern cyber threats. The integration seeks to boost
AD's security and operational efficiency while solving
the current systems' vulnerabilities. Generative models
need further research to become more skilled at
distinguishing between normal data distributions and
attack patterns. This enhancement is essential for
augmenting AD systems and bolstering CPS's security
framework. The paper underscores that ongoing
innovation and adaptation are crucial for keeping up with
the changing landscape of cyber threats, highlighting the
necessity of creating scalable and intelligent AI-driven
solutions capable of responding effectively to emerging
difficulties in real-time. The opportunities for the future
presented in the paper emphasize the imperative for
continuous research and technology progress to
strengthen cybersecurity frameworks in a progressively
digital environment.

The advancements in AD systems for CPS carry
substantial implications, and future research should
concentrate on several critical areas to improve the
effectiveness and resilience of these systems. Below are
some detailed and constructive recommendations.
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Integration of AI and Blockchain: Future research
should investigate the integration of AI with blockchain
technology to strengthen security frameworks. This
combination can offer a decentralized and tamper-proof
approach to logging anomalies and responses, improving
accountability and traceability in CPS environments.
Additionally, the exploration of QC should be considered
to enhance defences against sophisticated cyber threats.

Generative Models for Anomaly Detection: There is
an urgent need for research to improve generative
models to better recognize the distinctions between
normal data distributions and attack patterns. By
enhancing these models, researchers can create more
effective anomaly detection systems that can adapt to
new threats and lower the rate of false positives, a
common challenge in current systems.

Realtime Adaptation Mechanisms: It is vital to
develop scalable and intelligent AI-driven solutions to
address emerging threats in real-time. Future research
should aim to create adaptive algorithms that learn from
new data and adjust their detection strategies
accordingly. Adaptability will be crucial for keeping
anomaly detection systems effective in dynamic settings.

Improving Interpretability of Deep Learning Models:
With the rise of Deep Learning-based Anomaly
Detection (DLAD) methods, it is essential to enhance
their interpretability. Research should develop techniques
that help users understand the reasoning behind detection
results. This transparency can increase trust in AI
systems and lead to more effective decision-making in
response to identified anomalies

Addressing Data Quality Challenges: Future studies
must explore strategies for improving data quality in
CPS environments. This includes creating better
labelling techniques and generating high-quality
synthetic data to train anomaly detection models.
Addressing these challenges can boost detection systems'
reliability and effectiveness in identifying threats.

Focus on Collective Anomalies: Research should also
aim to identify collective anomalies often neglected by
current systems. It's important to develop algorithms that
can track behaviour patterns over time instead of just
looking at isolated incidents, as this will be key to
spotting complex attack scenarios that may not trigger
immediate alerts.

Conclusion
This study presents notable advancements in

cybersecurity because of artificial intelligence integration
in anomaly detection systems targeted at Cyber-Physical
Systems (CPS). AI-based anomaly detection systems
perform exceptionally in detecting network abnormalities
and system breakdowns through accurate identification
processes beyond possible human achievement rates.

These systems detect zeroday attacks and insider threats
through unsupervised learning of real-time data streams
without requiring attack signature definitions,
demonstrating their ability to confront new cyber threats.
This research investigates cybersecurity protocol
problems that demand ongoing technological
improvements because the systems struggle to process
large datasets and extended workload requirements.
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