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Abstract: The precise identification of plant diseases is essential for 

optimizing agricultural practices. The impact of these diseases on food 

production often leads to significant revenue loss. Detecting diseases that 

primarily manifest symptoms in plant leaves has conventionally depended on 

visual inspection by plant pathologists. However, modern methodologies use 

machine learning and computer vision techniques to facilitate disease 

identification, thus addressing the limitations of traditional approaches. 
However, in most of the existing works, the quality of the leaf image, smaller 

image regions, and chlorophyll content-based vegetation index features were 

not concentrated, which is required to be analyzed for the efficient detection 

of multiple leaf diseases. Therefore, this study highlights the necessity for a 

robust diagnostic system that tackles existing challenges in disease 

identification. Hyperspectral Images (HSI) serve as a valuable resource due 

to their rich spectral information. This research proposes a framework for 

multiple disease identification using hyperspectral data. The process begins 

by identifying target regions within the hyperspectral image through the 

Jeffries-Matusita-based Simple Linear Iterative Clustering (JM-SLIC) 

technique. Subsequently, the segmented image undergoes preprocessing, 

involving dead pixel replacement and noise removal. To approximate the 
resolution effectively, the Stochastic gradient-based Bi-cubic interpolation 

(S-BI) technique is employed. The resolution-approximated spectral images 

are then subjected to unmixing, followed by the estimation of chlorophyll 

content-based indexes. These indexes, combined with various features, 

contribute to disease identification within the leaf using the Atrous 

Convolution-based FractalNet (AC-FNet) model. The experimental 

outcomes strongly support the effectiveness of the proposed framework in 

detecting plant diseases efficiently. 

 

Keywords: Atrous Convolution-Based FractalNet (AC-FNet), Hyper-

Spectral Image (HSI), Vegetation Index (VI), Stochastic Gradient-Based Bi-
Cubic Interpolation (S-BI) 

 

Introduction 

Plant diseases significantly impact agricultural yield, 

which poses a challenge to farm efficiency (Görlich et al., 

2021). Effective disease management is important for 

sustaining crop productivity and minimizing losses 

(Abade et al., 2021). However, detecting and managing 

plant diseases present ongoing challenges, especially with 

the emergence of new diseases in previously unaffected 

areas (Chakraborty et al., 2021). Diseases affecting plants 

can vary in type and can target different plant organs. 

Early symptoms of many plant diseases often manifest on 

leaves, thus allowing for identification through visual 

inspection (Ahmad et al., 2023). Additionally, the color 

variations in leaves directly relate to changes in 

chlorophyll content, which serves as an informative 

indicator of plant health (Gao et al., 2021; Hua et al., 

2022). Therefore, analyzing chlorophyll content plays an 

essential role in predicting and diagnosing leaf diseases. 

Currently, assessing chlorophyll content depends on 

UV spectrophotometry and fluorescence analysis, but 

these methods are notably inefficient (Qi et al., 2021). The 

traditional approach that is reliant on expert opinion is 

time-consuming and sometimes impractical (Ngugi et al., 
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2021). As an alternative, Hyperspectral Imaging (HSI) 

emerges as a non-destructive technique for early crop 

disease detection, enhancing both spatial and spectral 

image data (Lay et al., 2023). HSI facilitates the 

prediction of diseases even before visible symptoms 

emerge (Ouhami et al., 2021). Prior research has 

employed HSI in plant disease detection using various 

techniques, such as Vegetation Indices (VIs) and machine 

learning approaches like Artificial Neural Networks 

(ANN) (Shahi et al., 2023). However, most studies have 

concentrated on identifying single diseases like white leaf 

disease in sugarcane (Zamani et al., 2022), potato late 

blight (Kundu et al., 2021), and similar singular diseases. 

Notably, these models struggled to detect multiple 

diseases affecting a single plant. To address this 

limitation, this article proposes a method for multi-disease 

prediction in multiple plants. 

Research Motivation 

Even though many research studies related to leaf disease 

were delivered by different authors, some specific limitations 

restricted the superiority of the prediction outcome. In most 

of the prevailing leaf disease prediction systems, the gathered 

leaf images were not preprocessed efficiently. This led to the 

training of the noisy and imperfect image data, causing 

incorrect disease prediction. Furthermore, the image 
resolution played a significant role in detecting the leaf 

diseases, which were not analyzed deeply in the existing 

works. Also, the existing works processed the leaf images 

either based on the image features or the vegetation index 

features, which does not exactly outlet the leaf disease. 

Additionally, the efficiency of the prediction model also 

impacted the accuracy of the prediction. But, in most of the 

conventional works, the overfitting or gradient vanishing 

issue of the classifier degraded the detection performance. 

Hence, these drawbacks, which are probably found in the 

related works, remain the motivation behind the proposed 
work for developing the enhanced detection of multiple 

diseases in plant leaves. 

Problem Statements 

Current approaches in plant disease prediction utilizing 

Hyperspectral Imaging (HSI) cause several limitations: 

 

• Even though HSI achieved better accuracy for single 

disease prediction in plants, the multi-disease 

identification within multiple plants was not 

effectively concentrated by HSI in existing works 

(Mahum et al., 2023) 

• Disease prediction based on low-resolution leaf 

images and post-separation from soil images 

diminishes prediction accuracy (Liao et al., 2022) 

• Leaf disease predicted solely through indexes 

without considering leaf features caused unreliable 

prediction outcomes (Rahman et al., 2023) 

Major Contributions 

By addressing the aforementioned issues, the novel 

contributions of the proposed model are as follows: 
 
• The AC-FNet model is utilized to develop an efficient 

leaf disease prediction model capable of handling 

multiple disease scenarios in multiple plants. With 
the help of this utilized model, the low-level feature 

maps of leaf images are rapidly processed and 

efficiently predict diseases 

• The resolution of leaf images is enhanced by 

introducing the S-BI technique for accurate disease 

classification 

• To improve the prediction accuracy for multi-disease 

occurrences in individual plants, both disease and 

leaf features are incorporated along with the indexes. 

Hence, the leaf structure gets deeply analyzed and the 

diseases are exactly predicted. 
 

Related Work 

Tetila et al. (2020) proposed the use of Deep 

Convolutional Neural Networks (DCNN) to identify 

soybean leaf diseases in UAV images. The approach 

employed SLIC segmentation for leaf separation, which 

shows higher accuracy in disease prediction with DCNN. 
However, the post-SLIC segmentation caused lower-

resolution images, potentially affecting the result’s 

reliability. Liao et al. (2022) introduced a model for 

Eucalyptus leaf disease detection using UAV 

multispectral Imagery. The approach utilized random 

forests for disease prediction. Also, incorporating spectral 

bands and VIs with the approach enhanced model 

accuracy. However, the absence of proper dead pixel 

calibration could degrade the random forest's outcomes. 

Wang et al. (2022) advocated a convolution network 

enhanced transformer for classifying tomato diseases that 

depended on a vision transformer. Results indicated the 
model's reliability and accuracy. But, the visual 

transformer, with a limited dataset, was susceptible to 

overfitting. 

Lei et al. (2021) presented a method for remote 

sensing detection of Yellow Leaf Disease (YLD) in Areca 

nut. The scheme employed five VIs and five classifier 

models, thus achieving higher accuracy in YLD severity 

prediction. However, image noise negatively impacted the 

results. Du et al. (2023) proposed a strategy for 

monitoring Wheat Stripe Rust (WSR) using Sun-Induced 

chlorophyll Fluorescence (SIF) and NDVI to predict 
WSR severity levels. While they attained higher WSR 

severity prediction, the approach's accuracy was 

influenced by phonological differences. Ashwini and 

Sellam (2023) utilized Ebola Optimization Search (EOS)-

based 3-D dense CNN for accurate corn leaf disease 

prediction. The EOS technique reduced classification errors, 

ensuring precise disease prediction. Srivastava et al. (2021) 
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conducted a sensitivity analysis of ANN for chlorophyll 

prediction, employing the Leks' profile method. The 

outcomes highlighted chlorophyll's role in predicting crop 
health status. However, the leaf structure was not 

analyzed, which resulted in inaccurate disease prediction. 

Materials and Methods 

This section aims to outline the materials and 

equipment incorporated in this research for plant disease 

identification using hyperspectral imaging and the AC-
FNet approach. The hyperspectral images are acquired 

using a Hyperspectral Imaging (HSI) camera, covering a 

spectral range [400-1000 nm] with a spectral resolution of 

[5 nm]. The imaging system is configured to acquire plant 

leaf samples under controlled illumination using 

halogen/tungsten light sources. Also, the proposed work 

utilizes the publically available hyperspectral plant 

disease dataset named plant village-HSI dataset. 

Moreover, the proposed method introduces the JM-SLIC 

to isolate target regions effectively. Further, the proposed 

S-BI method is used to improve the spatial resolution of 

hyperspectral images. This section ensures reproducibility 
and transparency of the research by providing significant 

details about the materials. 

Detecting multiple diseases in plants before visible 

symptoms emerge can significantly enhance plant 

yield. Therefore, this study proposes a multi-disease 

prediction model using AC-FNet for multiple plants, as 

depicted in Fig. (1). 

Input Data 

Initially, the input HSI of tomato, corn, soybean, and 
mango crops taken by the Unmanned Ariel Vehicle 

(UAV) is denoted as: 
 
𝐿𝑛 = {𝐿1 , 𝐿2 , . . . . . , 𝐿𝛼} (1) 
 
where, Lα signifies the αth leaf image. 
 

 
 
Fig. 1: Architecture of the proposed model 

Target Region Identification 

The images captured by UAVs include the field area 

along with the leaves, thus necessitating separate 

segmentation of leaf images. This segmentation is 

achieved using the Jeffries Matusita-based Simple Linear 

Iterative Clustering (JM-SLIC) technique. While SLIC 

generates compact superpixels efficiently, its time 

complexity poses limitations. To address this, the Jeffries 

Matusita (JM) technique is incorporated within SLIC, 

which also reduces the computational challenge. Initially, 

the Hyperspectral Image (HSI) undergoes uniform 

segmentation into superpixels based on the total pixel 
count blocks of the same size as P/K. 

Then, the characteristic vector of the center of the 

superpixel block z is given as: 
 
𝑐𝑧 = [ℓ𝑧 , 𝑎𝑧 , 𝑏𝑧 , 𝑢𝑧 , 𝑣𝑧] (2) 
 

Here, ℓ, a, b denotes the color values of lab space, and 
u, v represents the coordinates of the pixel. Each center 
point contains a specific label and the distance is calculated 
to the neighboring superpixel blocks using JM as: 
 

ℜℓ𝑎𝑏 =  √(ℓ𝑧+1 − ℓ𝑧)2 + (𝑎𝑧+1 − 𝑎𝑧)2 + (𝑏𝑧+1 − 𝑏𝑧)2 (3) 
 

ℜ𝑢𝑣 = √(𝑢𝑧+1 − 𝑢𝑧)2+ (𝑣𝑧+1 − 𝑣𝑧)2 (4) 
 

𝑑𝑧 = 2(1− exp(ℜℓ𝑎𝑏 +
𝛽

𝐶
ℜ𝑢𝑣)) (5) 

 
where, ℜℓ𝑎𝑏 and ℜ𝑢𝑣 are the color and space differences 

between pixels, respectively, dz is the similarity degree 

between pixels, C is the center point distance and 𝛽 is the 

balance parameter to control the compactness of 

superpixel blocks after clustering. For smaller dz, the 

pixels are assigned with the same label as cz. Once all the 

superpixels are grouped, the center point (℘) of the blocky 

is re-calculated as: 
 

℘𝑦 =
1

𝑃𝑦
∑𝑐𝛿 (6) 

 
where, 𝑐𝛿 is the 5-dimensional characteristic vector of the 

pixel 𝑢𝛿 in the superpixel clustering region, the process is 

iterated until all the pixels are converged. 

Then, the adjacent merging strategy is used to 

eliminate the isolated pixels with small sizes to ensure the 

connectivity of the final obtained target images. The final 

obtained target images are given as follows: 
 
𝑙𝑞 = {𝑙1 , 𝑙2, . . . . , 𝑙𝜀} (7) 
 
where, 𝑙𝜀  depicts the 𝜀𝑡ℎ  leaf image obtained after the 

JM-SLIC segmentation. 

Preprocessing 

For the extracted leaf image lq, preprocessing is 

performed to enhance the accuracy of the disease prediction. 
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Dead Pixel Removal 

Dead pixels refer to missing or zero-valued pixels 

within the Hyperspectral Image (HSI). In this context, 

pixels that contain 25% zero values within the spectrum 

are identified as dead pixels. These pixels are substituted 

by computing the median values from neighboring pixels. 

Gaussian Noise Removal 

Once the dead pixels are removed, the Gaussian noise 

is removed using the Weiner filter (𝐹(𝑙𝑞))  as: 
 

𝐹(𝑙𝑞) =
𝐵∗(𝑢,𝑣).𝑝𝑚(𝑢,𝑣)

|𝐵(𝑢,𝑣)|2 .𝑝𝑚(𝑢,𝑣)+𝐴(𝑢,𝑣)
 (8) 

 
where, pm (u, v) is the images’ power spectra, A (u, v) is 

additive noise, the blurring filter is denoted as B (u, v) and 

𝐵∗ (u, v) depicts the inverse filtering. 

Thus, the preprocessed image is given as 𝜆𝑞. 
 

Resolution Approximation 

After preprocessing, the image resolution is improved 

using the S-BI technique to address the low-resolution 

images generated by JM-SLIC. Bi-cubic Interpolation is 

chosen for its effective magnification and sharpening 

capabilities. However, precise edge interpolation may be 

compromised due to neighboring pixel calculations. To 

mitigate this, a stochastic gradient is included within the 

BI technique to enhance edge accuracy. 
The S-BI uses an up-sampling distance U to estimate 

the unknown pixels for interpolation. 

At a pixel position (𝑗
∧

, 𝑘
∧

), the pixels are interpolated as: 

 
I
𝑗
∧
, 𝑘
∧ = [𝜛−1(𝑈ƛ)  𝜛0 (𝑈ƛ)  𝜛1  (𝑈ƛ)  𝜛2 (𝑈ƛ)]

[
 
 
 
 
𝐼𝑗−1, 𝑘−1       𝐼𝑗, 𝑘−1         𝐼𝑗+1, 𝑘−1          𝐼𝑗+2, 𝑘−1
𝐼𝑗−1, 𝑘          𝐼𝑗, 𝑘            𝐼𝑗+1, 𝑘              𝐼𝑗+2, 𝑘

𝐼𝑗−1, 𝑘+1      𝐼𝑗, 𝑘+1        𝐼𝑗+1, 𝑘+1           𝐼𝑗+2, 𝑘+1
𝐼𝑗−1, 𝑘+2      𝐼𝑗, 𝑘+2      𝐼𝑗+1, 𝑘+2          𝐼𝑗+2, 𝑘+2 ]

 
 
 
 

     

[
 
 
 
 
𝜛−1  (𝑈𝜇)

𝜛0  (𝑈𝜇)

𝜛1  (𝑈𝜇)

𝜛2  (𝑈𝜇) ]
 
 
 
 
 (9) 

 

Here, 𝑈𝜇 = 𝑘
∧

− 𝑘, 𝑈𝜇 = 𝑗
∧

− 𝑗 , 𝑎𝑛𝑑 𝐼𝑗, 𝑘, are the pixels 

at the position (𝑗, 𝑘), 𝑎𝑛𝑑 𝜛−1, 𝜛0, 𝜛1 , 𝜛2  are the 

weights of S-BI, which are calculated as: 
 

𝜛−1(𝑈, 𝐺) =
−𝑈3+2𝑈2−𝑈

2
, 𝐺

𝜛0(𝑈, 𝐺) =
3𝑈3+5𝑈2+2

2
, 𝐺

𝜛−1(𝑈, 𝐺) =
−3𝑈3+4𝑈2−𝑈

2
, 𝐺

𝜛−1(𝑈,𝐺) =
𝑈3−𝑈2

2
, 𝐺 }

  
 

  
 

 (10) 

 
where, G represents the stochastic gradient of the 

interpolated pixel to the neighboring pixels, which is 

equated as: 

 

𝐺 = 𝜙𝑘 − 𝜂(
𝜕

𝜕𝜙𝑗
. 𝑄(𝜙𝑗)) (11) 

Here, Q () is the summed gradient value of the 

neighboring pixels and 𝜙𝑘  is the gradient between the 

pixel position kˆ and k. 𝜂 is the parameter for controlling 

the gradient of the interpolated pixel. Thus, the resolution-

enhanced image (Rq) is obtained. 

Un-Mixing 

As the enhanced HSI image Rq contains red, blue, Near 

Infra-Red (NIR), and green spectral bands, they are 

separated with an un-mixing technique for easier 

computation of the VIs. Here, the Bayesian method is 

used for un-mixing based on the posterior probability 

density (𝜌(𝛷,𝜔|𝑅,𝜃)) as: 

 

𝜌(𝛷,𝜔|𝑅, 𝜃) =
𝜌(𝑅|𝛷,𝜔,𝜎2).𝜌(𝛷|𝜃)𝜌(𝜔|𝜃)𝜌(𝜎2|𝜃)

𝜌(𝑅)
 (12) 

 

where, 𝜎, 𝛷,𝜔 represent the parameters of the probability 

distribution, 𝜃 is a super parameter made up of 𝜎, 𝛷,𝜔 

𝜌(𝑅|𝛷,𝜔, 𝜎2)  denotes the likelihood function and 

𝜌(𝛷|𝜃), 𝜌(𝜔|𝜃), 𝜌(𝜎2|𝜃) are the prior distribution of end-

members, abundance, and noise, respectively. Thus, the 
spectral set is depicted as s. 

Indices Estimation 

From s, the chlorophyll content-based VI features, 

such as Normalised Difference VI (NDVI), Green NDVI 

(GNDVI), Red-Green Ratio (RGR), Infrared Percentage 

VI (IPVI), Green Chlorophyll Index (CLgreen), red-edge 

Chlorophyll Index (Clrededge) and Chlorophyll VI (CVI) 

are estimated. The dimensions of the retrieved indices-

based leaf features are 1'7. Thus, the obtained VI set is 

depicted as 𝑉ℏ, ℏ = 1,2, . . . . . ,7. 

Feature Extraction 

Meanwhile, to predict the multi-disease in a single 

leaf, image-based features like airspace characteristics 

(S), texture features (T), and Sequential Maximum Angle 

Convex Cone (SMACC) (E) features are extracted as: 

 
𝑆 = ∫ 𝑑𝑔1 𝑑𝑔2⁄

𝑇 = 𝐺𝐹

𝐸 = ∑ 𝑌(𝑖, 𝜗)
𝑊

𝜗=1
𝑁(𝜗, 𝜐)

} (13) 

 

where, g1 and g2 are the green and non-green pixels, 

respectively, GF denotes Gray Level Co-occurrence Matrix 

(GLCM) features, such as mean, dissimilarity, 

homogeneity, contrast, second moment, and entropy, i 

depicts the band index, W signifies the total number of end 

members, N is the abundance of end-member 𝜐  to end-

member 𝜗 and Y is the end-member spectrum matrix. The 

extracted image-based features from the leaf image are in 

the dimension of 1'14. The final feature set is given as 𝐻ℑ. 
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Feature Fusion 

Then, to combine the VI features and the image 

features, the feature fusion for the single leaf takes place, 
which is described as: 
 
ƛ𝑞 = 𝐻ℑ ∪𝑉ℏ (14) 
 

Here, ƛ𝑞 depicts the fused feature set of the leaf q and 

∪ symbolizes the combining or fusing operation, which 

unites both the indices-based leaf features and the image-

based features. So, the fused feature vector has a 

dimension of 1'21. This fused dimension of the feature 

vector is minimized to 1'10 based on the dimension 

reduction approach. Thus, the dimensionality curse 

problem is prevented without losing information. Thus, ƛ𝑞 

with reduced dimension is mentioned as 𝜏𝑞  and is 

subjected to further processing. 

Disease Prediction 

Then, the 𝜏𝑞 is given to the AC-FNet for single and 

multi-leaf disease prediction. 

FractalNet predicts the results with less error. 

However, the low-level mapping of the feature increases 

the prediction time with the normal convolution in FNet. 

So, Atrous convolution is used in the FNet. The 

architecture of FNet is given in Fig. (2). 

For training the fused features of leaf images, the 
hyperparameters include depth or levels of the network, 

number of neurons, number of recursive steps, activation 

function, learning rate, batch size, weights, and biases, 

which are considered in the proposed AC-FNet model. By 

adjusting these hyperparameters, the desired outcome is 

returned by the proposed classifier. The process of the 

proposed AC-FNet for leaf disease prediction is explained 

as follows. 

Atrous convolution: The input 𝜏𝑞  is passed through 

multiple fractal blocks to produce the output disease class. 

Here, the receptive fields are widened by the Atrous 

convolution, and the data are learned more efficiently 

through the kernel function. The process in the fractal 

block v with the input is specified as 𝜍  and is defined 

based on the 𝐴𝐶(𝑒(. )) as: 
 
𝑒1(𝜍) = ∑(𝜍) ∗ 𝛤(𝐾(𝛾)) (15) 
 

Here, ∗ 𝛤  depicts the dilated convolution and 𝐾(𝛾) 

defines the kernel function. Then, the successive fractals 

(ℵ𝜉+1(𝜍)) are defined through the join operations. It is 

expressed as: 
 
ℵ𝜉+1(𝜍) = ⌊(ℵ𝜉 ∘ ℵ𝜉)(𝜍)⌋𝛩[𝑒𝑛𝑛(𝜍)] (16) 

 

where, ∘, 𝛩 denotes the composition and join operations, 

𝜉 is the index of the truncated fractal ℵ𝜉( ) and 𝛩 merges 

the two feature blobs into one. 

 
 
Fig. 2: AC-FNet 
 

Pooling: Then, the max-pooling process (𝑋𝑝𝑜𝑜𝑙)  is 

performed to process the feature maps as: 
 

𝑋𝑝𝑜𝑜𝑙 = 𝛻[
ℵ𝜉+1(𝜍)+2𝜑−𝐾

𝜓
] + 1 (17) 

 
where, 𝜑 𝑎𝑛𝑑 𝜓  are the padding and stride size, 

respectively, and 𝛻(. )  depicts the rectified linear unit. 

Finally, the prediction layer predicts the output (𝑂) after 

batch normalization as: 
 

𝑂 =
1

𝜉
∑𝑋𝑝𝑜𝑜𝑙 (18) 

 
where, 𝜉 depicts the number of layers. 

Loss function: Finally, the loss function, namely 

weighted cross-entropy loss (𝜛𝑙𝑜𝑠𝑠) (Hossain et al., 2023), 

is calculated to minimize the deviation between the predicted 

disease classes (O) and the actual disease class (𝛼). Here, the 

weighted cross entropy loss function is utilized to handle the 

variation between the actual and predicted classes. By doing 

so, the class of the leaf images is properly estimated 

regardless of the majority and minority of the features, thus 

enhancing the multi-class classification of leaf diseases. The 

𝜛𝑙𝑜𝑠𝑠 is analytically evaluated as: 
 

𝜛𝑙𝑜𝑠𝑠 = −
1

𝑑
 ∑∑𝑤𝑛

𝑁

𝑛=1

𝑑

𝑖=1

×𝑂log(𝜌(𝑂 ≈ 𝛼))         (19) 



Dhason Lita Pansy and Malaichamy Murali / Journal of Computer Science 2025, 21 (5): 1230.1241 

DOI: 10.3844/jcssp.2025.1230.1241 

 

1235 

where, d denotes the number of input samples, wn indicates 

the weights of the number of disease classes, 𝜌 represents 

the probability of 𝑂 ∈ 𝛼 and log denotes the logarithmic 

function. The training of the proposed AC-FNet is iterated 

(I) until the minimum variation between the predicted and 

target class is achieved. Otherwise, the hyperparameters of 

the model are adjusted and the training is repeated until 

maximum iteration (IMax). Hence, the various disease 

classes of the plant leaves are predicted using the proposed 

model. The pseudocode of AC-FNet is, 

 

Input: Fused features 

Output: Predicted disease 

Begin 

Initialize the number of layers, fractal blocks 

ℵ𝜉+1, 𝜓, 𝐾, 𝜑, maximum accuracy Zmax 

For each 𝜏𝑞 

If predicted accuracy (Xacc ≥ Zacc){ 

Return output O 

} Else { 

Update kernel 

Compute fractal blocks ℵ𝜉+1(𝜍) 

Perform ∗ 𝛤 

Obtain output after Xpool 

} 

End If 

Calculate the Loss function, 𝜛𝑙𝑜𝑠𝑠 

End for 

I→IMax 

Return O 

End 

 

Here, AC-FNet predicts corn leaf blight, corn leaf rust, 

mango phoma blight, mango red rust, tomato leaf late 

blight, tomato leaf mold, soybean rust, soybean bacterial 

blight diseases, and normal healthy leaf classes. Also, 

AC-FNet predicts multiple diseases in a single leaf. 

Downsides of the Proposed Model 

Even though all the information on leaf regions is 

effectively learned by the proposed method, it has some 

limitations. The proposed model requires prolonged 

training and causes computational complexity due to the 

processing of multiple neuron layers. 

Results  

This section comparatively analyzes the performance 
of the proposed model through the experimental results 
implemented on the MATLAB platform. The dataset used 

for experimentation is sourced from publicly available 
sources. The visual representation of sample image 
outcomes is illustrated in Fig. (3). 

Dataset Description 

To evaluate the performance of the proposed 

methodology, the hyperspectral images of leaf diseases 
are gathered from the Plant Village dataset. This dataset 
contains 20,600 leaf disease images, including Early 
blight, late blight, bacterial spot, Rust and leaf mold, along 
with the healthy leaf images of different plants. Among 
them, 80% of the data (16480 images) is used for training 
and 20% of the data (4120 images) is used for testing the 
proposed method. 

Experimental Setup 

For executing the proposed model, the MATLAB 
working platform of version 2022a, which was developed 
by MathWorks, is used. This platform is specifically 
designed to make faster and easier scientific calculations. 
Also, this programming tool has the ability to call external 
libraries, which evolve applications with the graphics user 
interface. By using the MATLAB platform, different 
applications, including matrix manipulations, plotting of 
functions and data, algorithms implementation, user 
interface creation, and interfacing with other 
programming languages, such as C, C++, C#, Java, 
Fortran, and Python, are efficiently performed. The 
configurations of the machine defined for performance 
analysis are mentioned as follows: 
 

• Processor: Intel core i5 

• CPU speed: 3.30 GHz 

• Operating system: Windows 10 

• Random Access Memory (RAM): 8 GB 
 

 
 
Fig. 3:  (a) Input image, (b) Target region identification, (c) Noise 

removal image, and (d) Image resolution  
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Performance Analysis 

In this section, the effectiveness of the proposed 

algorithms is empirically demonstrated by comparing them 
with the existing techniques through the different 
performance metrics and evaluation matrices. As every 
process contributes to the overall efficiency of the proposed 
system, the performance is assessed for each critical 
process in the proposed leaf disease detection model. 

Evaluation Performance of Target Region 

Segmentation 

Table (3) and Fig (8) reveal that for the target region 

segmentation, the JM-SLIC technique dominated the 
SLIC, Density-Based Spatial Clustering of Applications 
with Noise (DBSCAN), Fuzzy-C-Means (FCM) and k-
means algorithms by attaining the least TRIT of 672ms.  

Performance Analysis of Pixel Resolution 

Approximation 

Table (2) presents the SSIM, RAT, and PSNR 
comparisons between the proposed S-BI method and 
existing techniques like Directional Cubic Convolution 

Interpolation (DCCI), Iterative Curvature-Based Interpolation 
(ICBI), and Bi-Linear Interpolation (BLI). The S-BI 
algorithm yields an SSIM of 0.9634 and an RAT of 1.7ms.  

Figure (7) reveals that the SSIM, RAT, and PSNR of 
the BI are higher than the other traditional techniques. 
However, the S-BI attained higher quality results with a 
PSNR value of 35.26 dB.  

Performance Assessment of Leaf Disease 

Identification 

The findings depicted in Fig. (4) validate that the 
proposed AC-FNet achieved a superior recognition rate of 
98.79% than existing methods like FNet, Residual-Network 
(ResNet), DCNN, and ANN. Additionally, the AC-FNet 
exhibited higher specificity, recall, precision, and f-measure 
metrics than the existing techniques.  

Table (1) reveals that the proposed AC-FNet obtained 
a lesser prediction time (13675) compared to the existing 
FNet and ANN techniques. Similarly, the proposed 
method achieves 0.0761% FNR and 0.0673% FPR.  

The results depicted in Fig (5) show the Area Under the 
Curve (AUC) values, which indicate the accurate 

prediction rates achieved by both the proposed and existing 
models. The proposed AC-FNet demonstrates an AUC 
value of 0.98, thus surpassing the AUC values of Fnet 
(0.96) and ResNet (0.94).  
 
Table 1: Prediction time results 

Techniques Prediction time (ms) FNR (%) FPR (%) 

Proposed AC-FNet 13675 0.0761 0.0673 
FNet 27643 0.094 0.0842 

ResNet 38435 0.1068 0.1043 
DCNN 57614 0.1267 0.1375 
ANN 69426 0.1573 0.1504 

Table 2: Results for SSIM, RAT and PSNR 

Techniques SSIM RAT (ms) PSNR (DB) 

Proposed S-BI 0.9634 1.7 35.26 

BI 0.9472 4.6 33.05 

DCCI 0.9261 9.7 31.86 

ICBI 0.9001 12.3 30.75 

BLI 0.8837 16.7 28.19 
 
Table 3: Target Region Identification Time (TRIT) values 

Techniques TRIT (ms) 

Proposed JM-SLIC 672 

SLIC 861 

DBSCAN 1076 

FCM 1243 

K-Means 1407 
 

 
 
Fig. 4: Performance analysis recognition rate 
 

 
 
Fig. 5: AUC analysis 
 

 
 
Fig. 6: FNR and FPR analysis 
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Fig. 7: Analysis of SSIM, RAT, and PSNR 
 

 
 
Fig. 8: TRIT analysis 
 

Figure (6) reveals that the FNR and FPR of the 
traditional prediction models are higher than the proposed 
AC-FNet. The AC-FNet attained low FNR (0.0761) and 
FPR (0.0673), even for the multi-disease prediction also. 
This proves that the disease prediction was performed 
with less error, with the AC-FNet only. 

The leaf disease classification by the proposed method is 
analyzed in Table (4) with respect to Mean Square Error 
(MSE), Mean Absolute Error (MAE), and Root Mean 
Square Error (RMSE). Here, the existing FNet attained 2.315 
MSE, ResNet attained 0.516 of MAE and ANN attained 
2.123 of RMSE, which are higher than the developed model. 
The proposed AC-FNet obtained a lower MSE, MAE, and 
RMSE of 1.031, 0.125, and 1.015, respectively.  

Statistical Analysis 

Here, the proposed model for plant leaf disease 

detection is assessed in terms of statistical measures, 

such as Mean accuracy, variance, and Standard 

Deviation (SD) for different epochs by comparing it with 

the state-of-art methods. 

The performance of the proposed method over the 

existing methods is evaluated in terms of mean accuracy 

and is represented in Table (5). The mean accuracy of the 
model increases with the increasing number of epochs. 

Here, the proposed model attained 98.79% mean accuracy 

for 100 epochs, which is reduced to 93.68% for 20 epochs. 

In the meantime, for 100 epochs, the existing FNet and 

DCNN attained lower mean accuracy of 96.54% and 

92.86%, respectively.  

Table 4: Error analysis of the proposed model 

Methods MAP MAE RMSE 

Proposed AC-FNet 1.031 0.125 1.015 

FNet 2.315 0.372 1.521 

ResNet 2.847 0.516 1.687 

DCNN 3.294 0.593 1.814 

ANN 4.508 0.640 2.123 

 
Table 5: Evaluation of mean accuracy 

Methods 

  Mean accuracy (%)  

  No. of Epochs   

20 40 60 80 100 

Proposed      

AC-FNet 93.68 94.10 95.48 97.25 98.79 

FNet 92.16 93.30 94.71 96.02 96.54 

ResNet 91.57 92.84 93.56 94.92 95.47 

DCNN 88.37 89.56 90.44 91.75 92.86 

ANN  87.24  87.69  88.03  88.60  89.83 

 

 
(a) 

 

 
(b) 

 
Fig. 9: Illustration of statistical analysis; (a) Comparison 

Performance regarding variance; (b) SD evaluation 

 

Figure (9 a-b) represents the statistical outcome of 

the proposed technique with respect to variance and SD. 
The proposed model achieved minimum SD and 

variance of 0.14 and 0.02, respectively, for the 

maximum epochs. Meanwhile, for 100 epochs, the 

existing methods, namely ResNet, attained a Variance of 

0.26 and SD of 0.50 and ANN attained 0.37 and 0.61 

variance and SD, as in Fig. (9 a-b), respectively.  
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Fig. 10: Comparative analysis model 

 
Comparative Analysis 

In this section, the proposed AC-FNet is 

comparatively analyzed with the existing (Liao et al., 

2022; Wang et al., 2022; Lei et al., 2021) models. 

Figure (10) shows the superior efficiency in disease 

recognition accuracy exhibited by the proposed model 

compared to existing ones. Specifically, in single-leaf 

disease recognition, the models from (Liao et al., 2022; 

Wang et al., 2022; Lei et al., 2021) achieved accuracies 

of 8.69, 2.49 and 12.22%, respectively, which are lower 

than the proposed model. Moreover, the proposed model 

for leaf disease detection is analogized with recent works, 

including (Rahman et al., 2023 Javidan et al., 2024 and 

Mahum et al., 2023) in terms of prediction accuracy. 

Table (6) exhibits the performance of the proposed 

method regarding prediction accuracy by comparing it 

with the recent studies of leaf disease detection. The 

proposed model obtained a higher accuracy of 98.79%. At 

the same time, the existing methods (Rahman et al., 2023; 

Javidan et al., 2024; Mahum et al., 2023) attained 

prediction accuracy of 95.00, 95.58 and 97.20%, 

respectively, which are lower than the proposed model.  

Discussion 

This section aims to interpret and discuss the results of 

the proposed work. To validate the performance of the 

proposed work, the findings of the proposed approach are 

compared with several existing techniques regarding 

various quality factors. The performance analysis is done 

regarding target region segmentation, pixel resolution 

approximation, and leaf disease identification. Primarily, 

the target regions, identified from the input data using the 

proposed JM-SLIC method, are analyzed in terms of 

Target Region Identification Time (TRIT) by comparing 

it with the prevailing methods. The proposed JM-SLIC 

technique obtained minimum TRIT, ensuring the 

efficiency of target region segmentation. Further, the pixel 

resolution, which is approximated by using the proposed S-

BI technique to attain the accurate disease classification, is 

analyzed based on Structural Similarity Index Metric 

(SSIM), Resolution Approximation Time (RAT), and Peak 

Signal to Noise Ratio (PSNR). For pixel resolution 

approximation, the proposed S-BI technique performs 

better than the developed algorithms. Thus, the findings 

validate the ability of the S-BI technique to effectively 

preserve leaf structure. Further, the analysis outcomes 

proved that the S-BI technique provided better resolution. 

In the same manner, the leaf disease classified using 

the proposed AC-FNet model is analyzed in terms of 

various metrics, namely recognition rate or accuracy, 

Prediction time, False Negative Rate (FNR), False 

Positive Rate (FPR), and Area Under the Curve (AUC). 

To verify the efficiency of the proposed model, the 

performance is evaluated by comparing it with the 

existing techniques, which already performed a similar 

prediction task. The improved outcomes in both single 

and multiple-leaf detections can be attributed to the 

resolution approximation within the identified target 

regions. Thus, the analysis shows the suitability of the 

proposed model for effective multi-disease prediction in 

plant crops. Due to the incorporation of AC, the proposed 

AC-FNet achieved minimum prediction time. This 

demonstrates the time efficiency achieved by the 

proposed algorithm. Moreover, the proposed AC-FNet 

obtained lower FPR and FNR than the existing networks. 

Likewise, the AUC analysis proves that AC-FNet adeptly 

predicts both diseased and healthy leaves. 

The traditional methods attained sub-optimal outcomes 

with more error due to insufficient quality and feature 

analysis performed on the leaf images. However, the 

proposed method classified the leaf diseases by focusing on 

the target regions, preprocessing, pixel resolution, 

chlorophyll content-based VI indices, and image features. 

Additionally, the fusing of both the indices and image 

features with reduced dimension prior to the training aids in 

classifying the leaf diseases with lower MSE, MAE, and 

RMSE. Hence, the performance of the proposed technique is 

enhanced by negligible error compared to the existing 

techniques. As the proposed network analyzed the low-level 

mapping of the features without the inclusion of additional 

parameters, it better predicted leaf diseases than the other 

methods. Thus, the performance of the proposed model is 

enhanced than the existing techniques. Also, the statistical 

analysis is carried out in the proposed work. Generally, the 

lower values of the variance and SD among the data depict 

the improved efficiency of the model. The proposed work 

had impressive performance due to the unmixing of 

spectral bands and the feature fusion processes carried out 

prior to training. Overall, it is observed that the statistical 

performance is improved using the proposed technique 

over the other prevalent techniques.  



Dhason Lita Pansy and Malaichamy Murali / Journal of Computer Science 2025, 21 (5): 1230.1241 

DOI: 10.3844/jcssp.2025.1230.1241 

 

1239 

Table 6: Comparative analysis model with recent work 

Authors Technique used 
Prediction 

accuracy (%) 

Proposed AC-FNet 98.79 

(Rahman et al., 2023) 
Support Vector Machine 

(SVM) 
95.00 

(Javidan et al., 2024) 
Weighted ensemble 

learning 
95.58 

(Mahum et al., 2023) DenseNet 201 97.20 
 

To prove the model’s significance, the proposed work 

is compared with the prevailing state-of-the-art works. The 

comparative analysis (Table 6) proved the better efficiency 

of the proposed work. As the low-level features are 

effectively captured by the dilated convolution form of the 
utilized Atrous convolution, the proposed model predicted 

leaf disease with a higher accuracy. Since the low-quality 

images are trained without analyzing the VI-based leaf 

features, the existing techniques produced lesser prediction 

accuracy. Hence, these results underscore the enhanced leaf 

disease prediction efficiency achieved by the proposed 

model. Thus, the comparative analysis exhibited that the 

proposed work had better results than prior frameworks.  

Practical Applications and Limitations 

By deploying the proposed model in real-time 

applications, the leaf diseases will be deeply analyzed 

based on their vegetation indices and leaf image features. 

So, the farmers' intervention in detecting the leaf nature 

with the naked eye and the difficulties behind the direct 

investigation are neglected. Further, the leaf diseases from 

the farmers' crops are more accurately predicted by the 

proposed model. This aids in controlling the spread of leaf 

disease through the incorporation of necessary pesticides 

and fungicides in advance to improve crop production and 

food security. However, some notable limitations occurred 

while localizing the proposed model in practical life. The 
DL-based proposed network requires higher computational 

resources with super-efficient hardware setup, expanded 

storage space, and prolonged time consumption for 

training. It also requires proper maintenance to consistently 

deliver accurate predictions. Moreover, the farmers are not 

very aware of these advanced techniques; thus, prior 

teaching about the model should be presented to them. 

Conclusion 

This article introduces an AC-FNet-based approach 

for multi-leaf disease prediction within UAV 

hyperspectral images. To identify target regions and 

enhance resolution, novel techniques like JM-SLIC and S-

BI are proposed and subsequently evaluated against 

existing methods. The AC-FNet model achieved a 

remarkable recognition rate of 98.79% for both single and 

multiple disease predictions. Additionally, JM-SLIC 

efficiently identified target regions within a shorter 

duration of 672ms. Moreover, the PSNR and SSIM 
metrics confirmed the effectiveness of S-BI. 

Future Work 

Although the plant diseases are efficiently detected by the 

proposed model, the limitation arises when inexperienced 

farmers interpret leaf diseases in real-time. To address this, 

future work will integrate the IoT edge technology with the 

proposed model to store and retrieve disease information. By 

using IoT technology, the sensor devices in the form of 

sensor cameras are deployed to examine the leaf structure. 

These sensors will regularly capture the characteristics of the 

leaf, including the leaf color, texture, and other significant 

factors. Further, the sensor-collected leaf information is 

transmitted through any communication protocols, such as 

Wireless-Fidelity (Wi-Fi), Zigbee, Low Power Wide Area 

Networking (LPWAN), and so on. Afterwards, the collected 

information is applied to the proposed model and the leaf 

diseases are predicted based on the trained database. This 

integration could facilitate easier access and comprehension 

of predicted diseases for budding farmers. Hence, leaf 

diseases are identified in real-time by continuous monitoring 

of plant leaves through IoT-based sensor devices. Thus, the 

farmers proceed to ensure the plant's health and stimulate 

crop production. 

Acknowledgment 

We thank the anonymous referees for their useful 

suggestions. 

Funding Information 

This study has no funding resources. 

Author’s Contributions 

Dhason Lita Pansy: The first draft of the manuscript, 

contributed to the study conception and design. Material 

preparation, data collection, and analysis were performed.  
Malaichamy Murali: Contributed to the study 

conception and design.  

Ethics 

This article does not contain any studies with human 

participants or animals performed by any of the authors. 

Conflict of Interest 

The authors declare that they have no conflict of interest. 

Availability of Data and Materials 

Data sharing is not applicable to this article as no datasets 
were generated or analyzed during the current study. 

Competing Interests 

The authors have no competing interests to declare 

that are relevant to the content of this article. 



Dhason Lita Pansy and Malaichamy Murali / Journal of Computer Science 2025, 21 (5): 1230.1241 

DOI: 10.3844/jcssp.2025.1230.1241 

 

1240 

References 

Abade, A., Ferreira, P. A., & de Barros Vidal, F. (2021). 

Plant Diseases Recognition on Images Using 

Convolutional Neural Networks: A Systematic 

Review. Computers and Electronics in Agriculture, 

185, 106125. 

https://doi.org/10.1016/j.compag.2021.106125 

Ahmad, A., Saraswat, D., & El Gamal, A. (2023). A 

Survey on Using Deep Learning Techniques for Plant 

Disease Diagnosis and Recommendations for 

Development of Appropriate Tools. Smart 

Agricultural Technology, 3, 100083. 

https://doi.org/10.1016/j.atech.2022.100083 

Ashwini, C., & Sellam, V. (2023). EOS-3D-DCNN: 

Ebola Optimization Search-Based 3D-Dense 

Convolutional Neural Network for Corn Leaf 

Disease Prediction. Neural Computing and 

Applications, 35(15), 11125–11139. 

https://doi.org/10.1007/s00521-023-08289-3 

Chakraborty, A., Kumer, D., & Deeba, K. (2021). Plant 

Leaf Disease Recognition Using Fastai Image 

Classification. 2021 5th International Conference on 

Computing Methodologies and Communication 

(ICCMC), 1624–1630. 

https://doi.org/10.1109/iccmc51019.2021.9418042 

Du, K., Jing, X., Zeng, Y., Ye, Q., Li, B., & Huang, J. 

(2023). An Improved Approach to Monitoring Wheat 

Stripe Rust with Sun-Induced Chlorophyll 

Fluorescence. Remote Sensing, 15(3), 693–867. 

https://doi.org/10.3390/rs15030693 

Gao, D., Li, M., Zhang, J., Song, D., Sun, H., Qiao, L., & 

Zhao, R. (2021). Improvement of Chlorophyll 

Content Estimation on Maize Leaf by Vein Removal 

in Hyperspectral Image. Computers and Electronics 

in Agriculture, 184, 106077. 

https://doi.org/10.1016/j.compag.2021.106077 

Görlich, F., Marks, E., Mahlein, A.-K., König, K., Lottes, 

P., & Stachniss, C. (2021). UAV-Based 

Classification of Cercospora Leaf Spot Using RGB 

Images. Drones, 5(2), 34–53. 

https://doi.org/10.3390/drones5020034 

Hossain, Md. I., Jahan, S., Al Asif, Md. R., Samsuddoha, 

Md., & Ahmed, K. (2023). Detecting Tomato Leaf 

Diseases by Image Processing Through Deep 

Convolutional Neural Networks. Smart Agricultural 

Technology, 5, 100301. 

https://doi.org/10.1016/j.atech.2023.100301 

Hua, S., Xu, M., Xu, Z., Ye, H., & Zhou, C. (2022). Multi-

Feature Decision Fusion Algorithm for Disease 

Detection on Crop Surface Based on Machine Vision. 

In Neural Computing and Applications (Vol. 34, 

Issue 12, pp. 9471–9484). 

https://doi.org/10.1007/s00521-021-06388-7 

Javidan, S. M., Banakar, A., Vakilian, K. A., & 

Ampatzidis, Y. (2024). Tomato Leaf Diseases 

Classification Using Image Processing and Weighted 

Ensemble Learning. In Agronomy Journal (Vol. 116, 

Issue 3, pp. 1029–1049). 

https://doi.org/10.1002/agj2.21293 

Kundu, R., Dutta, D., Nanda, M. K., & Chakrabarty, A. 

(2021). Near Real Time Monitoring of Potato Late 

Blight Disease Severity using Field Based 

Hyperspectral Observation. In Smart Agricultural 

Technology (Vol. 1, p. 100019). 

https://doi.org/10.1016/j.atech.2021.100019 

Lay, L., Lee, H. S., Tayade, R., Ghimire, A., Chung, Y. 

S., Yoon, Y., & Kim, Y. (2023). Evaluation of 

Soybean Wildfire Prediction via Hyperspectral 

Imaging. In Plants (Vol. 12, Issue 4, pp. 901–974). 

https://doi.org/10.3390/plants12040901 

Lei, S., Luo, J., Tao, X., & Qiu, Z. (2021). Remote 

Sensing Detecting of Yellow Leaf Disease of 

Arecanut Based on UAV Multisource Sensors. In 

Remote Sensing (Vol. 13, Issue 22, pp. 4562–4728). 

https://doi.org/10.3390/rs13224562 

Liao, K., Yang, F., Dang, H., Wu, Y., Luo, K., & Li, G. 

(2022). Detection of Eucalyptus Leaf Disease with 

UAV Multispectral Imagery. In Forests (Vol. 13, 

Issue 8, pp. 1322–1339). 

https://doi.org/10.3390/f13081322 

Mahum, R., Munir, H., Mughal, Z.-U.-N., Awais, M., Sher 

Khan, F., Saqlain, M., Mahamad, S., & Tlili, I. (2023). 

A Novel Framework for Potato leaf Disease Detection 

using an Efficient Deep Learning Model. In Human and 

Ecological Risk Assessment: An International Journal 

(Vol. 29, Issue 2, pp. 303–326). 

https://doi.org/10.1080/10807039.2022.2064814 

Ngugi, L. C., Abelwahab, M., & Abo-Zahhad, M. (2021). 

Recent Advances in Image Processing Techniques 

for Automated Leaf Pest and disease Recognition – 

A Review. In Information Processing in Agriculture 

(Vol. 8, Issue 1, pp. 27–51). 

https://doi.org/10.1016/j.inpa.2020.04.004 

Ouhami, M., Hafiane, A., Es-Saady, Y., El Hajji, M., 

& Canals, R. (2021). Computer Vision, IoT and 

Data Fusion for Crop Disease Detection Using 

Machine Learning: A Survey and Ongoing 

Research. Remote Sensing. 

https://doi.org/10.3390/rs13132486 

Qi, H., Wu, Z., Zhang, L., Li, J., Zhou, J., Jun, Z., & Zhu, 

B. (2021). Monitoring of Peanut Leaves Chlorophyll 

Content Based on Drone-Based Multispectral Image 

Feature Extraction. In Computers and Electronics in 

Agriculture (Vol. 187, p. 106292). 

https://doi.org/10.1016/j.compag.2021.106292 

https://doi.org/10.1016/j.compag.2021.106125
https://doi.org/10.1016/j.atech.2022.100083
https://doi.org/10.1007/s00521-023-08289-3
https://doi.org/10.1109/iccmc51019.2021.9418042
https://doi.org/10.3390/rs15030693
https://doi.org/10.1016/j.compag.2021.106077
https://doi.org/10.3390/drones5020034
https://doi.org/10.1016/j.atech.2023.100301
https://doi.org/10.1007/s00521-021-06388-7
https://doi.org/10.1002/agj2.21293
https://doi.org/10.1016/j.atech.2021.100019
https://doi.org/10.3390/plants12040901
https://doi.org/10.3390/rs13224562
https://doi.org/10.3390/f13081322
https://doi.org/10.1080/10807039.2022.2064814
https://doi.org/10.1016/j.inpa.2020.04.004
https://doi.org/10.3390/rs13132486
https://doi.org/10.1016/j.compag.2021.106292


Dhason Lita Pansy and Malaichamy Murali / Journal of Computer Science 2025, 21 (5): 1230.1241 

DOI: 10.3844/jcssp.2025.1230.1241 

 

1241 

Rahman, S. U., Alam, F., Ahmad, N., & Arshad, S. 

(2023). Image Processing Based System for the 

Detection, Identification and Treatment of Tomato 

Leaf Diseases. Multimedia Tools and Applications, 

82(6), 9431–9445. 

https://doi.org/10.1007/s11042-022-13715-0 

Shahi, T. B., Xu, C.-Y., Neupane, A., & Guo, W. (2023). 

Recent Advances in Crop Disease Detection Using 

UAV and Deep Learning Techniques. Remote 

Sensing, 15(9), 2450–2481. 

https://doi.org/10.3390/rs15092450 

Srivastava, P. K., Gupta, M., Singh, U., Prasad, R., 

Pandey, P. C., Raghubanshi, A. S., & Petropoulos, G. 

P. (2021). Sensitivity Analysis of Artificial Neural 

Network for Chlorophyll Prediction using 

Hyperspectral Data. Environment, Development and 

Sustainability, 23(4), 5504–5519. 

https://doi.org/10.1007/s10668-020-00827-6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tetila, E. C., Machado, B. B., Menezes, G. K., Da Silva 

Oliveira, A., Alvarez, M., Amorim, W. P., De Souza 

Belete, N. A., Da Silva, G. G., & Pistori, H. (2020). 

Automatic Recognition of Soybean Leaf Diseases 

Using UAV Images and Deep Convolutional Neural 

Networks. IEEE Geoscience and Remote Sensing 

Letters, 17(5), 903–907. 

https://doi.org/10.1109/lgrs.2019.2932385 

Wang, Y., Chen, Y., & Wang, D. (2022). Convolution 

Network Enlightened Transformer for Regional Crop 

Disease Classification. Electronics, 11(19), 3174–3260. 

https://doi.org/10.3390/electronics11193174 

Zamani, A. S., Anand, L., Rane, K. P., Prabhu, P., Buttar, 

A. M., Pallathadka, H., Raghuvanshi, A., & 

Dugbakie, B. N. (2022). Performance of Machine 

Learning and Image Processing in Plant Leaf Disease 

Detection. Journal of Food Quality, 2022, 1–7. 

https://doi.org/10.1155/2022/1598796 

https://doi.org/10.1007/s11042-022-13715-0
https://doi.org/10.3390/rs15092450
https://doi.org/10.1007/s10668-020-00827-6
https://doi.org/10.1109/lgrs.2019.2932385
https://doi.org/10.3390/electronics11193174
https://doi.org/10.1155/2022/1598796

