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Abstract: Federated Learning (FL) is a cutting-edge approach for 

developing machine learning (ML) models using distributed datasets while 

preserving data privacy and ownership. FL is particularly suited for Internet 

of Things (IoT) networks due to its decentralized nature, which supports In-

Edge AI and maintains data locality. However, FL's complexity poses 

challenges in analyzing system health, making it crucial to develop robust 

strategies for monitoring and evaluation. This research introduces a hybrid 

machine learning architecture that combines FL with the Adaptive Moving 
Window Regression (AMWR) technique. Specifically, we employ 

Federated Learning with Dynamic Regularization (FedDyn), where model 

architecture and training configurations are established centrally and 

disseminated to clients, who contribute to the model while ensuring 

differential privacy. This approach termed Federated Learning with 

Dynamic Regularized Adaptive Moving Window Regression (FedDyn 

AMWR), demonstrates significant improvements in system reliability, 

availability, maintainability, and safety. Experimental comparisons with 

existing methods show that FedDyn AMWR offers substantial advantages 

in accuracy, computational efficiency, and security, making it a promising 

solution for complex multi-object systems' health management and 

maintenance strategies in IoT-based healthcare. 
 

Keywords: Internet of Things (IoT), Federated Learning, Privacy, 

Windowing, Regression, Perceptron 

 

Introduction 

The term "Internet of Things" (IoT) refers to a network 

of interconnected devices, such as sensors, mobile 

phones, and actuators, that collaborate to achieve specific 

objectives (Atzori et al., 2010). In recent years, IoT has 

become increasingly significant in healthcare, enabling 

continuous patient monitoring through internet-connected 

sensors and wearable smart devices, including blood 

pressure monitors, heart rate sensors, and ECG sensors 

(Islam et al., 2015; Ge et al., 2020a; Mukhopadhyay, 

2015). These advancements facilitate early diagnosis and 

timely treatment of patients. 

Despite the benefits, IoT-based healthcare systems 

pose significant security and privacy risks, as they 

involve the transmission and collection of personal data 

over open networks (Demuynck and De Decker 2005). 

Privacy concerns are particularly critical, given that 

personal health information is highly sensitive and its 

exposure can have severe physical, psychological, and 

financial repercussions (Andrew and Karthikeyan 2021; 

Agrawal and Srikant 2000; Theoharidou et al., 2017). 

For instance, the disclosure of a patient's cancer 

diagnosis to an insurance company or employer can 

adversely affect their livelihood. 

Several laws and regulations are in place to protect 
personal information, but ensuring data privacy in IoT-

driven healthcare remains a formidable challenge (Xue et al., 
2011 Fung et al., 2010; HHS.gov. 2020; Hustinx, 2017). The 

data collection process typically involves third-party service 
providers, making patients wary of sharing their personal 

information due to potential misuse for marketing or 
other purposes (Krishnamurthy and Wills 2009; 

Andrew and Karthikeyan 2019). Data transmission 
over unsecured connections and storage on untrusted 

servers further exacerbate privacy risks, as adversaries 
can intercept network traffic and exploit the data 

(Andrew et al., 2019; Onesimu and Karthikeyan, 2021). 

https://hhs.gov/
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To address these privacy concerns, recent research has 

focused on privacy-preserving machine learning 

techniques, particularly Federated Learning (FL). FL 

enables model training on local data sources, maintaining 

data locality and reducing the risk of data breaches. 

However, FL itself is not without challenges. The 

decentralized nature of FL can still pose privacy risks; as 

malicious actors can exploit intermediate gradients to 

infer sensitive information about the training data. 

In light of these challenges, this work proposes a 

robust solution for privacy-preserved intelligent 

predictive maintenance in healthcare IoT. By combining 

federated learning with the Adaptive Moving Window 

Regression (AMWR) approach, we introduce a hybrid 

machine learning framework that enhances system 

reliability, availability, maintainability, and safety. 

Specifically, we utilize the Federated Learning with 

Dynamic Regularization (FedDyn) approach, which 

dynamically adjusts server step sizes during the FL 

process based on pseudo-gradients. This method allows 

data owners to retain control over their models, sharing 

only the learned weights securely. 

Contributions 

The primary contributions of this work are as follows: 
 

 Hybrid machine learning framework: We propose a 

hybrid framework that integrates Federated Learning 

and Adaptive Moving Window Regression to 

adaptively determine server step sizes in FL 

 Privacy preservation: The framework employs 

differential privacy techniques to ensure the secure 

sharing of learned model weights, addressing the 

privacy concerns associated with IoT-based 

healthcare systems 

 Enhanced health management: The proposed 

approach supports the development of sophisticated 

health management and maintenance strategies for 

complex multi-object systems in healthcare 

 

Related Works 

Industry 4.0, the Network of Healthcare Things, and 

the Internet of Things, or IoT for short, are just a few of 

the areas where federated learning has recently received 

significant attention. The fact that federated learning is not 
secure is one of its primary problems. As an example, both 

the server and the players could act maliciously while 

collecting gradients or modifying parameters. The worst 

possible outcome occurs when federalized learning is 

utilized in an integrated setting, where all factors and 

components are stored on one network. This significantly 

raises the level of risk that must be taken into account. 

Decentralized federated learning is particularly risky 

since the data and models might be in danger from even a 

single rogue server. Studies have shown that it is possible 

to utilize the intermediate gradients to deduce crucial 

details about the training data. 

The privacy-preserving framework Fed Select, which 

guarantees user anonymity in IoMT-based situations, is 

proposed by Nair et al. (2023) for huge data analysis 

utilizing the FL approach. To reduce system weaknesses, 

Fed Select employs alternative minimization to limit 

gradients and system training members. The system is 

built using an edge-computing architecture that not only 

reduces the strain on the central server but also guarantees 

user privacy with hybrid encryption approaches. 

FRESH, a complete intelligent medical care platform 

for exchanging biophysical data which is built with regard 

to FL and the ring signature protection against assaults, is 

described in Wang et al. (2023). Wearable technology is 

used in FRESH to capture physiological data from 

participants. To train ML models utilizing local data, 

these data are processed using devices located at the edge 

of the network (such as mobile phones and tablet PCs). In 

order to train a cooperative FL illness prediction model, 

edge computing devices transmit the model's parameters 

to the central server. 

If the number of online clients exceeds a certain 

threshold, the federated learning process will not be 

halted, according to a dropout-tolerant technique 

proposed by Zhang et al. (2023). The results of the 

security analysis show that the proposed solution satisfies 

the data privacy requirements. 

In Lakhan et al. (2023), a framework for blockchain-

enabled task scheduling that is built on federated learning 

(FL-BETS) and makes use of many dynamic heuristics is 

detailed. The study considers a number of healthcare 

applications that, when run on distributed fog and cloud 

nodes, are subject to both strict and loose restrictions, 

including time and energy utilization. With minimal 

energy consumption and process delay, FL-BETS aims 

to identify and assure data falsification and privacy 

protection at several levels, including local fog nodes 

and distant clouds, in order to satisfy healthcare 

workload deadlines. 

The authors of Ku et al. (2022) provide a privacy-safe 

federated learning approach that relies on homomorphic 

re-encryption. This technique can encode and decode user 

information as well as train user data via Batch Gradient 

Descent (BGD). The user's data is gathered by the fog 

node in our platform and then encrypted before being 

uploaded by the IoT device. Finally, the information is 

compiled and re-encrypted on the server. 

They provide the groundwork for a reducing 

blockchain-orchestrated machine learning model for 

supervised learning in medicine that safeguards patient 

privacy as well as brand-new applicability in the medical 

field (Passerat-Palmbach et al., 2020). This system is 

intended for use in federated learning. 
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Fu et al., (2022) suggest using verified federated 

learning with privacy-preserving capabilities for handling 

enormous amounts of data generated by industrial IoT. 
Lagrange interpolation is the method that we use in 

particular to methodically build interpolation points to 

check the correctness of the aggregated gradients. 

Preparing medical NER models may be achieved 

using a privacy-preserving approach based on supervised 

learning, as proposed by Ge et al. (2020b). Combining 

data samples from several sources might reduce the time 

spent training medical NER models and avoid the need to 

transfer raw data between different systems. Because 

labeled data on multiple platforms often differs in entity 

set and annotation criteria, we decided not to compel the 
various platforms to exchange the same model. 

In Choudhury et al. (2020), the authors provide the 

first syntactic method for federated learning privacy 

protection. The findings suggest that our method is 

successful in obtaining high model performance while yet 

providing the appropriate amount of anonymity. 

Even though the previously mentioned works try to 

solve issues connected with blockchain-based supervised 

learning and other forms of secure technology, the fact 

that the training data set is still held in common among 

miners and other people means that the dissemination of 

models and instances may remain dangerous. This is 
because the previously mentioned works are built entirely 

on distributed systems. 

Materials and Methods 

The proposed system model for IoT-driven medical 

data storage includes components such as the Medical 

Organization (MO), Data Owner (Medical-IoT based), 
public cloud, and data user. The MO manages patients, 

medical personnel, and treatments within healthcare 

facilities, while the data owner monitors patients through 

IoT devices that continuously collect physiological data. 

The Public Cloud stores vast amounts of healthcare data 

from various institutions and responds to data access 

rests. Access control verifies if a data user has 

permission to access data based on the consumer's 

details and policy connection. 

The Data Users are individuals like medical 

personnel or the patient's family who have access to 

encrypted patient records. Access is decoded using an 
attribute secret key after obtaining access permissions 

from the public cloud. The smart infrastructure consists 

of fixed clients with local databases, randomly chosen 

by an Ethereum-based smart contract server for each 

round. Local computations are performed by selected 

clients and the global state is updated based on 

aggregated local computations. 

The FedDyn AMWR methodology is used, which 

involves Federated Learning (FL) and Dynamic 

Regularized Adaptive Moving Window Regression 

(AMWR). The algorithm adjusts the observation window 

size dynamically to improve computational efficiency and 

model accuracy. It also applies dynamic regularization to 
preprocess data, ensuring privacy and reducing 

overfitting. Local Gradient Descent (SGD) is performed 

by clients to update model parameters. Noise Injection is 

used to maintain privacy. 

Performance analysis is conducted using metrics 
such as accuracy, precision, recall, F1-score, and 
computational time. The INTERSPEECH 2020 
ADReSS Challenge dataset is used for performance 

evaluation. The FedDyn AMWR method achieved 
higher accuracy compared to other methods, showing 
superior performance in precision, recall, and F1-score. 
Additionally, it demonstrated reduced computational 
time, enhancing efficiency. 

The system architecture and workflow of the proposed 
methodology are shown in Fig. (1): 
 
 Data user: The data user must register with the 

healthcare facility to get a hidden characteristic, 
including medical personnel or the friends or family 

of the patient. The data user submits a rest for 
findings concerning the publicly available cloud to 
obtain the protected patient records, then uses the 
attribute secret key to decode them. 

 

Description of Data Set and its Challenges 

The interspeech 2020 ADReSS challenge dataset 

(Luz et al., 2020). was used in this study to detect and 

assess Alzheimer's Disease (AD) from speech. The 

dataset includes recordings and metadata, as well as 

demographic and clinical information of participants. The 

dataset comprises audio recordings, totaling 

approximately finite hours of speech data. The study 

aimed to improve healthcare data processing using IoT 

and machine learning techniques. 

 

 

 

Fig. 1: The workflow of the proposed methodology 
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Experimental parameters were set for reproducibility 

and validation, including preprocessing steps such as 

sampling rate, feature extraction, segmentation, and 

model parameters like Federated Learning setup, 

optimization algorithm, and model architecture. The 

proposed FedDyn AMWR technique was evaluated against 

existing methods like FRESH, FL-BETS, and VFL. 

The preprocessing steps included sampling rate, 

feature extraction, segmentation, and training procedure. 

The model architecture was Multi-Layer Perceptron 

(MLP) with one hidden layer and ReLU activation. The 

training procedure involved initialization, local training, 

data augmentation, global aggregation, update process, and 

convergence. Performance metrics included accuracy, 

precision, recall, F1-score, and computational time. 

Limitation of Proposed Method 

The FedDyn AMWR method is a proposed approach 

for federated learning that aims to improve the 

performance of medical diagnostic models. However, it 

faces several limitations, including significant 

communication overhead, synchronization complexity, 

computational overhead, stable data distribution, resource 

availability, and data privacy and security challenges. 

Scalability issues arise from the communication 

overhead between clients and the central server, which 

can lead to delays and synchronization issues. The 

adaptive mechanism introduces additional computational 

overhead, which may not be feasible for all clients, 

especially those with limited resources. The method 

assumes stable data distribution across clients, but in real-

world scenarios, this could lead to potential imbalances 

and reduced model performance. 

Resource availability is another issue, as some clients 

may have limited processing capabilities, affecting the 

method's applicability and effectiveness. Data privacy and 

security are also challenges, as federated learning 

inherently offers privacy advantages by keeping data 

localized but still faces challenges related to data leakage 

through model updates and potential attacks. 

The FedDyn AMWR method has potential 

applications in healthcare, financial services, IoT and 

edge computing, education, and collaborative research 

projects. It allows for collaborative learning across 

multiple institutions without sharing sensitive patient 

data, improving fraud detection and risk assessment 

without exposing proprietary data. 

Future work should focus on scalability enhancements, 

optimizing computational overhead, addressing data 

distribution and resource variability, and enhancing privacy 

and security measures. By acknowledging these limitations 

and discussing the method's applicability, the article 

provides a balanced view of the FedDyn AMWR method, 

highlighting its potential while outlining areas for future 

improvement and research. 

Statistical Significance Testing 

The study aimed to confirm the statistical 

significance of improvements in performance metrics 

such as accuracy, precision, recall, F1-score, and 

computational time between the FedDyn AMWR 

method and comparison methods (FRESH, FL-BETS, 

and VFL). Data was collected from multiple runs for 

each performance metric and the mean and standard 

deviation were calculated. A paired t-test was 

performed to compare the performance of FedDyn 

AMWR with each other. The null Hypothesis (H0) 

showed that there was no significant difference 

between the two methods, while the alternative 

Hypothesis (H1) showed that there was a significant 

difference. A significance level (alpha) of 0.05 was 

used for all tests and if the p-value was less than 0.05, 

the null hypothesis was rejected, indicating a statistically 

significant difference in the performance metrics. 

Low-Cost AD Detection 

The FedDyn AMWR method is a low-cost system 

designed to detect Alzheimer's Disease (AD) using 

federated learning. The system outperforms other 

methods such as FRESH, FL-BETS, and VFL in terms of 

computational time, demonstrating a significant reduction 

in computational time. This means that the FedDyn 

AMWR method requires fewer computational resources 

and less energy, thereby reducing operational costs. The 

FedDyn AMWR method leverages federated learning, 

which reduces the need for centralized data storage and 

extensive data transfer. By processing data locally on edge 

devices, such as medical IoT devices, the system 

minimizes the amount of data transmitted over the 

network, leading to reduced data transfer costs, decreased 

storage costs, and energy efficiency. 

Comparative analysis of the proposed system with 

existing methods reveals that FRESH incurs significant 

computational and data transfer costs due to centralized 

processing and storage. FL-BETS, although using 

federated learning, does not optimize computational 

efficiency to the same extent as FedDyn AMWR and 

VFL, while providing verifiable learning, incurs higher 

computational and communication overhead compared to 

FedDyn AMWR. 

Security Framework designed to enhance the 

protection of patient data within the healthcare system. 

The data is encrypted, uses IoT devices for real time 

monitoring, and strictly controlled in case of security 

issues, emergency procedures are triggered to address 

the problem (Fig. 2). 
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Fig. 2: System architecture for proposed security method 
 

System Model 

As depicted in Fig (1), an Internet of Things - driven 

medical massive system for storing statistics featuring a 

self-adjusting approach and intelligent elimination of 

duplication. The accompanying is an overview of each 

entity's characteristics and function: 
 
 Medicinal Organization (MO): Numerous healthcare 

facilities are compatible with this technology. In its 

medical field, a medical institution is accountable for 

managing its patients, medical personnel, and 
treatment of patients. To get the public/secret key 

pair, a "medical institution" must register with the 

Key Generation Center (KGC) 

 Data owner (medical-IoT based): The medical IoT 

system constantly monitors the patients while acting as 

the data owner. To create a health IoT network, several 

small wireless sensors are either surface-mounted on 

patients' skin or inserted inside of them. These sensors 

continually monitor the essential physiological data 

and transmit them to an aggregate node. 

 Public cloud: The open cloud is in charge of keeping 

the abundance of insights concerning medical care 
for various healthcare institutions and responding to 

information access rests. As stated by the consumer’s 

details characteristics as well as the policy connection 

for the encrypted files, it checks to see whether the 

data user has permission to access the data. In order 

to lessen the strain of calculation, it also offers system 

users partial decryption services. The personal cloud 

and the general public cloud exchange information of 

the medical institution to carry out deduplication 

operations to remove duplicate copies of encrypted 

medical data and to save storage space 

 Data user: The data user must register with the 
healthcare facility to get a hidden characteristic, 

including medical personnel or the friends or family 

of the patient. The data user submits a rest for 

findings concerning the publicly available cloud to 

obtain the protected patient records, then uses the 

attribute secret key to decode them. 

Smart Infrastructure 

Assume that there are K clients, each possessing a 

predetermined local database. At the start of each round, 

a subset of these K clients, denoted as C, will be chosen 

at random through the process managed by an Ethereum-

based smart contract server. These selected clients will 

then receive the global algorithm, which includes current 

information, such as the model's weights and other 

relevant parameters of the present version. 

Each selected client 𝑐 (where 𝑐 ∈ 𝐶) then performs 

local computations using its local dataset. The client 

updates the global model's weights based on local training 

and sends these updates back to the smart contract. The 

smart contract aggregates these local updates to modify 

the global model. This iterative process continues until the 

model converges. 

Formally, consider the objective function for the 

federated learning problem: 
 

𝑚𝑖𝑛
𝑤𝜖𝑅𝑑

𝑓(𝑤) 𝑤ℎ𝑒𝑟𝑒 𝑓(𝜔) =
1

𝑛
∑ 𝑓𝑖(𝑤) 𝑛

𝑖=1  (1) 

 

In this context, 𝑓𝑖(𝑤) represents the loss function of 

the ith data point and www are the model parameters. 

Given that the data is distributed across K clients, with 𝑃𝑘  

representing the collection of data points on client k 

and 𝑛𝑘 = |𝑃𝐾 | the objective function can be rewritten as: 

 

𝑓(ω) = ∑
𝑛𝑘

𝑛

𝑘
𝑘=1 𝐹𝑘(𝑤) 𝑤ℎ𝑒𝑟𝑒 𝑓(ω) =

1

𝑛𝑘
∑ 𝑓𝑖(𝑤)𝑖𝜖𝑃𝑘

 (2) 

 

If the training and test data were evenly distributed 

across the clients, creating the partition 𝑃𝑘 , the 

expectation 𝐸𝑃𝑘
[𝐹𝑘(𝑤)] 𝑤𝑜𝑢𝑙𝑑 𝑒𝑞𝑢𝑎𝑙 𝑓(𝑤). 

An Ethereum-based smart contract server is a 

decentralized platform that uses the Ethereum blockchain 

to execute and manage smart contracts. These self-
executing contracts are immutable and automatically 

enforceable when predefined conditions are met. The 

Ethereum blockchain provides a global, immutable ledger 

for transactions and smart contract executions. 

Smart contracts are written in solidity and deployed to 

the Ethereum network, automatically executing 

predefined actions when specific conditions are met. 

Unlike traditional servers, an Ethereum-based smart 

contract server is decentralized, meaning there is no 

central point of control or failure. The code of a smart 

contract cannot be changed once deployed, ensuring its 

integrity and trustworthiness. Automation and security 
ensure that the process of client selection, model 

distribution, and aggregation is automated, secure, and 

tamper-proof. Transparency and accountability provide 

transparency in operations and create an immutable 

record of all transactions and updates related to the 

federated learning process. 
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The initial model weights are distributed via a smart 

contract, which may also utilize the InterPlanetary File 

System (IPFS) if the weights are stored as a file rather than 

a list of integers or tensors. The first client uses these 

initial global weights to set up its local model. After local 

training, the client scales and uploads the updated 

weights. This process is repeated for each client in 𝐶, 

completing one Local Iteration (LI). The aggregated 

scaled weights are then used for federated averaging, 

updating the global model. This marks the end of one 

global iteration and the cycle repeats. 

Dynamic Regularized Adaptive Moving Window 

Regression with Federated Learning 

The application of our technique and analysis to the 

situation when client goals are not ally weighted, such as 

according to local dataset sizes, is simple. We concentrate 

on utilizing FedDyn AMWR to resolve (1). The server 

provides the most recent global model 𝑤(𝑡) to all clients 

at round 𝑡  of FedDyn AMWR. Clients calculate their 

updates {∆𝑖
(𝑡)

}𝑖=1
𝑀 for round 𝑡 by performing𝜏 the following 

phases of local Stochastic Gradient Descent (SGD) after 

obtaining the global model. Perform local operations: 

 

𝑤𝑖
(𝑡,𝑘+1)

= 𝑤𝑖
(𝑡,𝑘)

− 𝜔𝑖∇𝐹𝑖(𝑤𝑖
(𝑡,𝑘)

, ∈ 𝑖(𝑡,𝑘)) (3) 

 

where, 𝛿𝑙the client is step size, 𝑤𝑖
(𝑡,0)

= 𝑤(𝑡) for all𝑖𝜖[𝑀] 

and ∇𝐹𝑖(𝑤𝑖
(𝑡,𝑘)

, ∈ 𝑖(𝑡,𝑘))  indicate a stochastic gradient 

calculated on the minibatch. To increase security when 

transmitting feature f to the client from the user end level 

of the FL scheme, FedDyn AMWR preprocesses 𝑓 using 

a minimal Dynamic Regularized (DR)-based scheme. The 

benefit of using DP is that it can disguise the links 

between the features and maintain their privacy by 

injecting random noise. The embedded feature 𝑓 =
[𝑓𝑎 , 𝑓𝑙] is part of the dataset 𝐷𝑖 = {(𝑓1 , 𝑦1), … . (𝑓𝑚 , 𝑦𝑚) 

that we collected in the i-th client. The neighboring 

datasets of 𝐷𝑖 are designated as 𝐷𝑖
′, or ⟦𝐷𝑖 − 𝐷𝑖

′⟧ ≤ 1. It 

should be noted that D is a dataset collection. FL is a 

paradigm for distributional training that addresses the 

current issues with data silos. It consists of multiple 

clients 𝐶 = 𝑐1, 𝑐2, ch, and a cloud server 𝑆 that manages a 

world model 𝑀 . The data analysis cloud 𝑆  receives 
parameters for each client's local model from each client, 

which handles many users, performs training, and 

conducts training. To update the client-side local model 

and aid in correct decision-making, S then provides input 

on the global parameters. Using FL may prohibit users' 

private information from being exposed by keeping client 

data local and just sending model parameters. The only 

user data that is directly transmitted from the clients to the 

server during training. The FL learning algorithm from 

round t-1 to round t is shown in ation (4). The global 

model is then updated by the cloud in the range from 

𝑀𝑡−1 to 𝑀𝑡, in which 𝑡 is the thantity of rotations. The 

FL instruction procedure from rotation 𝑡 −  1 to rotation 

𝑡 is shown in Eq. (4): 

 

𝑀𝑡 = 𝑀𝑡−1 + ∑
𝑛𝑖

𝑛

𝑁
𝑖=1 ∆𝜃𝑖

𝑡 (4) 

 

𝑛𝑖 = ‖𝐷𝑖‖, 𝑛 = ∑ 𝑛𝑖
𝑁
𝑖=1  (5) 

 

Where 𝑀𝑡−1 is the global model in round𝑡–  1, 𝐷𝑖 is the 

information pertaining to consumer 𝑖  and ∆𝜃𝑖
𝑡  is the 

gradient updates of the 𝑖th use 𝑐𝑖. Here, we go into further 

detail on how to compute ∆𝜃𝑖
𝑡. 

 

Process of Client-Level Training 

Before selecting a user for a particular client's trials, it 

is necessary to train a classification model using pre-

collected data 𝐷𝑖 = {(𝑓1 , 𝑦1), (𝑓𝑚 , 𝑦𝑚) , in which 𝐹 =
[𝑓1 , 𝑓2, 𝑓𝑚]  denotes m characteristics from every user 

experiments for this user and 𝑦 = [𝑦1, 𝑦2, … 𝑦𝑚]𝜖{0,1} (0 

is health and 1 is any disease). Assume, two variables 

(weights 1 and bias 2) that can accurately separate AD and 

medical supplies. The goal serves as: 

 

𝑝({𝑦|𝐹; θ1, θ2} = (ℎθ1,θ2(𝐹)) 𝑦 (1 − ℎθ1,θ2(𝐹)) 1 −

𝑦, ℎθ1,θ2(𝐹) = 𝜎(𝜃1
𝑇𝐹 + θ2) (6) 

 

When, the sigmoid function 𝜎is followed by the logits 

produced by the linear classifier, which are denoted by 

𝜃1
𝑇𝐹 + θ2 .This probability, which may categorize the 

input 𝐹  as the health group, is given as ℎθ1,θ2(𝐹) (in a 

range (Atzori et al., 2010). For further consideration, the 

objective function 𝑝(𝑦|𝐹;  𝜃1, 𝜃2) als ℎ 𝜃1, 𝜃2 (𝐹)if y = 

1 and F's ground truth is 1, the optimization solver's goal 

is to maximize by finding the best values for the θ1, θ2 

parameters. Such an analysis may easily be extended to 

the opposing situation. The loss function is: 
 
𝑙(𝜃) = ∑ 𝑦(𝑖)𝑚

𝑖=1 𝑙𝑜𝑔ℎ(𝐹(𝑖)) + (1 − 𝑦(𝑖)log (1 − ℎ(𝐹(𝑖))) (7) 

 

The ith client may optimize (10) and obtain the 

optimum solution 𝜃𝑖
𝑡 = (𝜃1

∗, 𝜃2
∗) in round t by using the 

stochastic gradient descent solver. The changes that user 

𝑖  upload to cloud server 𝑆  is ∆𝜃𝑖
𝑡 = 𝜃𝑖

𝑡 − 𝜃𝑖
𝑡−1 . In this 

post, we've set the local iteration time to 20 

Dynamic Regularized Adaptive Moving Window 

Regression Process 

It is essential to anticipate the proper observing 

window's dimensions when replicating the already 

investigated sense to save computational resources and 

enhance estimates when constructing models regularly, 

but this foresight is not trivial. The typical MLP neurons, 
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or perceptrons, interpret the input as 𝑌′𝑁,𝐼 = 𝐺(𝐹(𝑋𝑁,𝐼)), 

where 𝐹(𝑋𝑁,𝐼) = 𝑋𝑁,𝐼 . 𝑊𝐼 + 𝐵, and 𝑊𝐼  is a weight matrix 

that needs to get changed, 𝐵is is a bias vector and 𝐺(𝑋)is 
an element that, in classification, maybe a sigmoid 

function or the Identity in regression. A collection of 

perceptron serves as the "hidden layer" in a conventional 

"single hidden layer," processing the input as 𝑋′𝑁,𝐼 =

𝐺(𝐹(𝑋𝑁,) where 𝐹(𝑋𝑁,𝐼) = 𝑋𝑁,𝐼 . Since 𝐻is the amount of 

perceptrons there are in the hidden layer, 𝑊𝐼,𝐻 + 𝐵𝐻 . 

Finding a non-linear relationship between an input and 

its output is the aim of a layer such that the outcomes may 

be summed up as 𝑌′𝑁,𝐽 = 𝐺(𝐹(𝑋′
𝑁,𝐻)) in the output layer. 

Then, each layer I processes 𝑋′𝑁,𝐻′ = 𝐺(𝐹(𝑋
𝑁, 𝐻𝑖−1
𝑖−1 ) , 

where H e is the layer's total number of neurons. 

Gradient Descent is used to progressively transfer 

input back and forth across the network, adjusting the 

bias vectors B and weight matrices W. By means of 

permutations of various non-linear relations, adding 

more layers within a network aims to uncover 

underlying patterns that a straightforward non-linear 

function is unable to capture. 

Results and Discussion 

Computational time was chosen as a parameter for 

analysis, accuracy, precision, recall, and F1-score. 

Based on these parameters, the proposed Federated 

Learning with Dynamic Regularized Adaptive Moving 

Window Regression (FedDyn AMWR) is contrasted 

with three industry-standard techniques, including 

FRESH (Wang et al., 2023), Federated Learning-Based 

Block Chain-Enabled Task Scheduling (FL-BETS) and 

Verifiable Federated Learning (VFL) (Fu et al., 2022): 
 
 Perform a performance analysis of a Hybrid Machine 

Learning model, you'll typically focus on evaluating 

metrics such as accuracy, loss, precision, recall, F1-

score, etc., over the training and validation datasets. 

Below is an example of how to conduct such an 

analysis and visualize the results using Python, 

particularly with the Seaborn 

 Accuracy: The ability of the model to make a broad 

projection is displayed by the precision. The capacity 

to forecast whether an attack will be successful or 

unsuccessful is provided by True Positive (TP) and 

true Negative (TN) signals. False Positives (FP) and 

False Negatives (FN) reflect the erroneous predictions. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (8) 

 
The suggested FedDyn AMWR technique and the 

existing FRESH, FL-BETS, and VFL methods are 

compared for accuracy in Fig. (3), where the X-axis shows 

the total amount of data analyzed and the Y-axis shows 

the corresponding percentage of accuracy. The accuracy 

of the existing FRESH, FL-BETS, and VFL techniques 

was 92.02, 94.3 and 93.04%, respectively. With 95.74% 

accuracy, the suggested FedDyn AMWR technique 

outperformed FRESH, FL-BETS, and VFL by 1.76, 1.54, 

and 0.7%, respectively. 

Precision the ratio of a positive sample size 

determines the accuracy rate. Instead, precision is the 

percentage of prediction models that are accurate when 

an assault occurs. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (9) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (10) 

 
Table (1) Compares the accuracy of different ML models 

(FRESH, FL-BETS, VFL, FedDyn_AMWR) in predicting 
whether an assault will occur. Accuracy is calculated as the 
number of correct predictions divided by the total number of 

predictions. The results indicate that FedDyn_AMWR 
performs the best across various data sizes. 

Table (2) shows the precision of the models, which 
measures the proportion of positive predictions that are 
correct. FedDyn_AMWR achieves the highest precision, 
indicating better performance in accurately identifying 
true positive cases. 

Table (3) refers to a model's ability to correctly 
identify positive instances. It measures the proportion of 
actual positive cases that the model identifies correctly. 
FedDyn_AMWR has a higher recall compared to other 
models, showing that it is better at identifying all true 

positive cases. 
 
Table 1: Evaluation of accuracy 

Number of 
data FRESH 

FL-
BETS VFL 

FedDyn_A
MWR 

100 92.3 93.4 93.4 95.7 
200 92.0 94.5 93.0 95.9 

300 92.4 94.0 93.4 95.0 
400 92.8 94.7 93.0 95.4 
500 91.9 95.0 93.0 95.2 
 
Table 2: Comparison of precision 

Number of 
data 

FRES
H 

FL-
BETS VFL 

FedDyn_A
MWR 

100 79.0 84.0 86.7 92.0 
200 78.9 85.8 86.9 92.4 
300 79.4 84.7 86.0 92.5 
400 79.3 84.3 86.4 92.8 
500 78.1 85.0 86.4 92.1 
 
Table 3: Comparison of recall 

Number 
of data FRESH 

FL-
BETS VFL 

FedDyn_AMW
R 

100 90.0 91.5 86.7 92.0 
200 90.2 91.0 85.8 92.4 
300 90.5 91.8 86.9 92.5 
400 90.7 91.5 86.4 92.8 

500 90.2 91.4 86.0 92.1 
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Fig. 3: Comparison of accuracy 
 

The suggested FedDyn AMWR technique and the 

existing FRESH, FL-BETS, and VFL methods are 

compared in Fig. (4) where the X-axis indicates the 

quantity of data utilized for evaluation and the Y-axis 

displays the accuracy achieved in %. The accuracy of the 

existing FRESH, FL-BETS, and VFL technique approaches 

was 79.4, 84.72 and 86.42%. When compared to the FRESH, 

FL-BETS, and VFL methods, the suggested FedDyn 

AMWR approach obtained 92% accuracy, which is 13.4, 

8.72, and 6.42% better, correspondingly. 

The ability to recognize assaults within a group of data 

properly is discussed and because uncertain test results 

cannot be replicated, they should all be disregarded in the 

sensitivity estimate. 

The recall values obtained in % are on the Y-axis in 

Fig. (5), which compares the recall of the FRESH, FL-

BETS, VFL, and suggested FedDyn AMWR methods. 

The number of analysis epochs is presented on the X-

axis. The recall rates for the existing FRESH, FL-BETS, 

and VFL techniques were 90.7, 91.44 and 91.58%, 

respectively. Comparatively, the suggested FedDyn 

AMWR approach had a 92.1% recall rate, outperforming 

the FRESH, FL-BETS, and VFL methods by 2.6, 1.34%, 

and 1.48 respectively. 

F1-score is used to measure how accurate predictions 

are. It offers an average that is well-balanced between 

accuracy and recall. One is the best possible value and 

zero is the worst possible value. TNs are not taken into 

account while calculating the F1-score. 

The quantity of data utilized for analysis is provided 

on the X-axis in Fig. (6) along with the percentage values 

of the f1-scores obtained for the FRESH, FL-BETS, VFL, 

and suggested FedDyn AMWR technique. The F1 scores 

for the existing FedDyn AMWR techniques were 90.7, 

91.44 and 91.58%, correspondingly. Comparatively, the 

suggested FedDyn AMWR technique obtained a 92.1% F1-

score, outperforming the FRESH, FL-BETS, and VFL 

methods by 2.6, 1.34, and 1.48%, respectively. 

The quantity of data utilized for evaluation is shown 

on the X-axis and the percentage values of the f1-score 

achieved are given on the Y-axis in Fig. (7), which 

compares the computing times of the FRESH, FL-BETS, 

VFL, and the suggested FedDyn AMWR technique. The 

computational times for the existing FedDyn AMWR 

techniques were 57.8-54.3 and 45.7%, respectively. The 

suggested FedDyn AMWR approach, in contrast, 

obtained 21.2% computational time, which is 2.6% faster 

than FRESH, 1.34% faster than FL-BETS, and 1.48% 

faster than the VFL method. 

The FedDyn AMWR method shows statistically 

significant improvements (p-value <0.01 for accuracy and 

F1-score, p-value <0.05 for precision and recall) over 

FRESH, FL-BETS, and VFL. Computational time is also 

significantly reduced. 
 

 
 
Fig. 4: Comparison of precision 
 

 
 
Fig. 5: Comparison of recall 
 

 
 
Fig. 6: Comparison of F1-score 
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Fig. 7: Comparison of computational time 
 

Table (4) provides a complete comparison of various 

models using different performance metrics, such as 

accuracy, precision, recall, and F1-score. Across all these 

measures, FedDyn_AMW consistently comes out on top, 

proving it to be reliable and effective. 

Table (5) evaluates the computational efficiency of 

different machine learning models. It shows the time 

taken by each model to process the data and make 

predictions. FedDyn_AMW achieves competitive 

efficiency, balancing high performance with practical 

processing times. 

Table (6) provides a complete comparison of various 

models using different performance metrics, such as 

accuracy, precision, recall, and F1-score. Across all these 

measures, FedDyn_AMW consistently comes out on top, 

proving it to be reliable and effective. 

The FedDyn AMWR method has shown significant 

improvements over FRESH, FL-BETS, and VFL in terms 

of accuracy, precision, recall, F1-score, and 

computational time. These improvements can be 

attributed to several key factors: Adaptive learning, 

efficient data utilization, and enhanced convergence. The 

AMWR technique dynamically adjusts the window size 

and model parameters, allowing it to better capture data 

variations, leading to improved accuracy and F1-score. 

Federated learning enables the utilization of diverse data 

from multiple clients without centralizing it, enhancing 

the generalizability of the model. 

Statistical significance tests were conducted to 

validate the observed improvements, with results showing 

that the improvements in performance metrics for the 

FedDyn AMWR method are statistically significant. To 

enhance the clarity of figures and tables, detailed 

annotations and explanations have been added. 

Comparison charts represent different methods (FRESH, 

FL-BETS, VFL, FedDyn AMWR), with annotations 

explaining the significance of each point. Tables provide 

detailed captions explaining the context and relevance of 

the data presented and footnotes indicating the meaning 

of any abbreviations or symbols used. 

Table 4: Comparison of F1-score 

Number 
of data FRESH FL-BETS VFL 

FedDyn_AMW
R 

100 64.0 65.2 66.7 78.5 
200 64.3 65.3 66.3 78.0 

300 64.7 65.9 66.9 77.9 
400 64.9 65.6 66.4 77.4 
500 64.3 65.4 66.5 77.3 

 

Table 5: Comparison of computational time 

Number of 
data FRESH 

FL-
BETS VFL FedDyn_AMWR 

100 54.0 54.3 45.0 21.5 
200 54.9 54.0 45.9 21.3 
300 54.0 54.2 45.3 21.7 
400 54.8 54.7 45.7 21.4 
500 54.8 54.0 45.0 21.0 

 
Table 6: Comparative performance of different methods 

Method 

Accur
acy 
(%) 

Precis
ion 
(%) 

Recall 
(%) 

F1-
scor
e 
(%) 

Computati
onal  
Time  
(s) 

FRESH 91.02 78.4 91.70 65.62 58.8 

FL-
BETS 

95.30 86.72 96.44 66.24 54.3 

VFL 94.04 87.42 93.58 67.76 45.7 
FedDyn 
AMWR 

95.74 92.00 92.10 67.08 21.2 

 

The proposed FedDyn AMWR method's superior 

performance can be linked to its ability to adaptively 

adjust the learning process and effectively utilize 

federated learning to harness the diversity in the data. The 

statistical significance tests further confirm that the 

observed improvements are not due to random variations 

but are statistically meaningful. By providing detailed 

interpretations, statistical validations, and improved 

visual aids, the results section offers a more 

comprehensive and insightful analysis, making the 

findings more robust and easier to understand for readers. 

Comparative Analysis 

To further justify the low-cost nature of the proposed 

system, we compare the cost-related aspects with 

existing methods: 

 

1. FRESH: Involves significant computational and 

data transfer costs due to centralized processing 

and storage 

2. FL-BETS: Though it uses federated learning, it does 

not optimize computational efficiency to the same 

extent as FedDyn AMWR 

3. VFL: While providing verifiable learning, it incurs 

higher computational and communication overhead 

compared to FedDyn AMWR 
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Conclusion 

This research introduced the FedDyn AMWR 

framework, a novel approach for privacy-preserved, 

intelligent predictive maintenance in IoT-driven healthcare 

systems. By integrating Federated Learning with the 

Adaptive Moving Window Regression technique, FedDyn 

AMWR provides a robust solution for ensuring data 

privacy while maintaining high accuracy in detecting 

Alzheimer's Disease (AD) from speech data. The 
framework's use of dynamic regularization and differential 

privacy techniques enables secure model updates without 

compromising sensitive information. Experimental results 

demonstrate that FedDyn AMWR significantly 

outperforms existing methods, such as FRESH, FL-BETS, 

and VFL, in terms of accuracy, precision, recall, F1-score, 

and computational efficiency. These improvements are 

attributed to the adaptive learning capabilities and efficient 

data utilization of the proposed method, which enhances 

model generalization across diverse client data without 

centralization. The statistical significance of the 

performance gains further validates the effectiveness of the 
FedDyn AMWR framework. 

Future work will focus on expanding the feature set 

and evaluating the framework's scalability and 

applicability to larger datasets and more complex 

healthcare scenarios. By continuing to refine the FedDyn 

AMWR approach, we aim to further advance the 

development of secure, efficient, and accurate predictive 

maintenance systems for healthcare IoT networks. 

 
Table of notations and acronyms 

Symbol/ acronym Description 

IoT Internet of things 
FL Federated learning 

FedDyn Federated learning with dynamic 
 regularization 
AMWR Adaptive moving window regression 
MO Medical organization 
TP True positive 
TN True negative 
FP False positive 
FN False negative 

MLP Multi-layer perceptron 
SGD Stochastic gradient descent 
IPFS InterPlanetary file system 
FRESH Fast random elliptic spatial hashing  
 (existing method) 
FL-BETS Federated learning-based blockchain- 
 enabled task scheduling (existing method) 
VFL Verifiable federated learning  

 (existing method) 
AD Alzheimer's disease 
K Number of clients in the federated  

 Learning Network 
C Subset of selected clients for each federated  

 learning round 

n Total number of data points 

n_k Number of data points in client k 
f(w) Objective function for federated learning 

F_k(w) Local objective function for client k 
ω Model parameters (weights) 
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