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Abstract: Community discovery is the cornerstone and core of 

study in customized recommendation, assembling group features 

and social network analysis on the web of things. Conventional 

community discovery methods, however, struggle with difficulties 

including low accuracy, delayed convergence, modularity 

resolution limits and more when dealing with more complicated 

social networks. Because of this, differential evolution and 

module density are included in community discovery and a better 

differential evolution and module density community discovery 

approach is offered. The method first alters the mutation strategy 

and differential evolution parameters and then uses the module 

density as a fitness function to get beyond the restriction of 

modularity resolution improve population quality overall and 

hasten the process of global convergence. Experiments with 

various commonly used community discovery techniques using 

computer-generated network datasets and sample real-world 

network datasets. When Collective Co-Evolutionary Differential 

Evolution-based Community Detection (CCDECD) and 

Classification-based Differential Evolution algorithm for 

Modularity Optimization (CDEMO) are used simultaneously, the 

difference is optimal and the Q value increases by 3.3% compared 

to the Overlapping Community Detection algorithm based on 

Density Peaks (OCDDP) and 4.6% compared to GN. However, the 

mutual information value NMI is not optimal since the GN method 

is better suited for small-scale networks. The division result of 

Improved Differential Evolution and modularity density 

Community Detection (IMDECD) on the network is the closest to 

the actual network since the NMI is ideal, the Q value is low and 

the standard deviation is minimal. The suggested method has 

improved accuracy and better convergence performance, 

according to the experimental findings. 

 

Keywords: Modularity-Resolution, Modular Density, 

Personalized Recommendation, Web of Things, Classification-

Based Differential Evolution Algorithm for Modularity 

Optimization 
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Introduction 

A social network is a social structure composed of 

nodes and edges. Nodes represent individuals and edges 

represent various social relationships between individuals 

(such as friendship, partnership, etc.,) specific forms of 

social networking such as social networks, scientific 

research cooperation networks, etc., Community 

Discovery is Discovery Cohesion (CDDC), a subset of the 

set so that nodes within the set are more connected than 
they are to nodes outside the set. As a result, nodes are 

more connected (Rebehy and Chung, 2013). Based on the 

detected community structure, the topology and function 

of complex networks can be deeply revealed. It has been 

widely used in fields such 

as personalized recommendation of structured data 

(Trier and Bobrik, 2009; Liu et al., 2021). A subset of the 

set called community discovery is called discovery 

cohesion and it makes the nodes of the set more related to 

one another than it does to nodes outside the set. The 

architecture and purpose of complex networks can be 

fully revealed based on the community structure that has 
been observed. The community has just discovered the 

current algorithm in the semantic community of the 

information network, combining many sources. Community 

discovery algorithms can be grouped into four categories: 

Agglomerative and The algorithm of cutting (Kolli and 

Narayanaswamy, 2019; Liu et al., 2019; Bettencourt, 

2014) the algorithm based on label propagation (Hima and 

Singh, 2015; DeOrio and Bertacco, 2010; Cai et al., 2019), 

the optimization based on modularity Algorithms (Cai et al., 

2019; Gliwa et al., 2012; Evans, 2020; Qiao et al., 2018), 

algorithms based on evolutionary algorithms (Gliwa et al., 
2012; Evans, 2020; Qiao et al., 2018) in classic GN 

proposed by literature (Rebehy and Chung, 2013) The 

algorithm is an agglomerative algorithm that continuously 

removes the largest The edge betweenness of can 

accurately obtain the community with the hierarchical 

structure, but the calculation speed of the algorithm needs 

to be improved; Newman proposes a proposed 

hierarchical clustering method based on the maximization 

of network modularity (Liu et al., 2019). The algorithm 

goes in the direction that maximizes and decreases the 

modularity each time. To merge the trends, the accuracy 

of community discovery can be improved to a certain 
extent. Literature (Gliwa et al., 2012) a community 

detection combined with differential evolution is a proposed 

Algorithm (collective co-evolutionary differential evolution-

based community detection-CCDECD) introduced in the 

algorithm. The co-evolution framework combined with 

differential expansion to optimize network modularity to 

find the optimal community network; literature (Evans, 

2020). Modularity functions the local monotonicity of the 

number, combined with the genetic algorithm, which 

proposes a fast and effective algorithm. It is a partial 

search operator that can be used to solve large-scale 

community discovery problems. Although these 

algorithms have been widely used, there is still room for 

improvement in accuracy and convergence speed. In 
addition, most of the algorithms are based on 

modularity optimization algorithms (Cai et al., 2019; 

Gliwa et al., 2012; Evans, 2020; Qiao et al., 2018); there is 

a standard modularity resolution limit (Bachi et al., 2012); 

that is, some smaller communities will be merged in the 

calculation process in calculation errors. 

To overcome the modularity resolution limitation and 

improve the accuracy of community discovery accuracy 

and convergence performance, this study uses differential 

evolution with a simple structure, easy to implement, fast 

convergence, strong robustness and the introduction of 

module encryption degree (Han et al., 2018) as a fitness 

function to address the modularity resolution limitation, a 

community development method combining improved 

differential evolution and module density is proposed. 

Improved differential evolution and modularity density 

community detection-IMDECD). From the standpoint of 

the kind of clever devices to monitor air quality for mobile 

providers phones or automobiles. As an illustration, 

MAQA (Cosenzo and Szymanski, 2013; 

Hawryszkiewycz, 2009; Ling-Han et al., 2013; Chatterjee 

and Saha, 2019; Singh et al., 2022; 2023; Almakki et al., 

2022; Shi et al., 2018; Chen et al., 2017) has provided a 

gateway consisting of a Wi-Fi-enabled smartphone and a 

wearable CO2 detector utilizes Bluetooth to read data 

from a wearable sensor (Hawryszkiewycz, 2009). Using a 

mobile phone as a gateway to combating both air pollution 

and using a smartphone's Bluetooth and Wi-Fi network. 

The process starts with first, the differential evolution was 

improved and a new mutation strategy was designed. and 

dynamic adaptive parameter tuning for the F and CR 

variables; then as a fitness function of differential 

evolution, module density is individual evaluations; 

finally modified based on known community structure; 

includes correction operations based on community 

variables and initialization and binomial modification of 

the crossover stage. Through comparative experiments, 

the proposed calculation in this study is a verified method 

compared to the agglomerative algorithm (GN), a density 

peak-based algorithm Overlapping Community Detection 

algorithm based on Density Peaks (OCDDP), a 

combination of Differential Evolution and modularity 

method (CCDECD) and Classification-based Differential 

Evolution algorithm for Modularity Optimization 

(CDEMO), The accuracy and convergence performance of 

community discovery have been improved to a certain 

extent. A social network is a network of connections made 

up of nodes and edges. Edges are certain forms of social 

networking such as social networks and scientific 

research cooperation networks, while nodes are 

individuals and reflect various social ties between persons 
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(such as friendship and partnership). The foundation and 

center of research in personalized recommendation, 

putting together group features and social network analysis 

on the web of things is community discovery. However, 

when dealing with more complex social networks, 

conventional community-finding algorithms face challenges 

like as low accuracy, delayed convergence, modularity 

Resolution constraints and more. 

In this study, the enhanced method Image 

Enhancement Method (IMDE), which is proposed, 

performs noticeably better than the other five mutation 

strategies and achieves the best result on 80% of the test 

functions. The community discovery algorithm's 

enhancement technique is studied in this research using 

module density and the previously improved differential 
evolution. Each node in the network is first represented 

by the community identification during the initialization 

stage, after which the fitness function and module 

density are set. 

Differential Evolution 

Its powerful global optimization capability is superior 

to its algorithm. Differential evolution (Ling-Han et al., 

2013) has been used because of its simplicity and 

effectiveness. It is widely used in data mining, pattern 

recognition and other fields. It integrates it into social 

Zone discovery with the following advantages: Neither 

complex binary encoding is required nor does it need to 

use a probability density function to adapt its individuals 

(Chatterjee and Saha, 2019), let alone any prior 

knowledge of community structure. The differential 

evolution package consists of three main steps: Mutation, 

crossover and selection. 

Mutation Strategy 

The mutation strategies used in differential evolution 

mainly include the following four species: DE/rand/1, 

DE/rand/2, DE/best/1 and DE/rand-to-best/1. As shown in 

formula (1): 

 

 i

g g g g

p1 P2 P3V = x + F x x - x  (1) 

 

   i

g g g g g g

p1 P2 P3 P4 P5V = x + F x x - x + F x x - x  (2) 

 

 i

g g g g

best P2 P3V = x + F x x - x   (3) 

 

   i

g g g g g g

best best P1 P2 P3V = x + F x x - x + F x x - x  (4) 

 

where, i ∈ {1, 2, ⋯, NP}, p1, p2 and p3 are drawn from 1, 

2, ⋯, NP; Randomly selected and satisfying the condition 

p1 ≠ p2 ≠ p3 ≠ i, g is the number of iterations number, is 

the target individual, is the variant individual and NP is 

the population size. 

Crossover Operation 

Commonly used crossover methods in differential 

evolution include binomial crossover and exponential 

crossover; cross the binomial crossover scheme 

performs each of the n components row crossover; the 

exponential crossover scheme selects a segment of 

variant individuals and the segment starts with a 

random integer k of arbitrary length that can be to 

include multiple components. 
Since binomial crossover is easier to implement and 

has lower time complexity, in this study, we choose a 

binomial crossover pair for the variant individual and the 

target individual performs a crossover operation to 

generate the experimental individual. Binomial 

crossover (5) display: 

 
g

i, j
g

i, j
g

i, j

v ,if  Rand £ CR
u  = 

x , otherwise






  (5) 

 

where, i ∈ {1, 2, ⋯, NP}, j ∈ {1, 2, ⋯, n}, rand is between 

0 and 1The uniformly distributed random number of are 

the i-th target. The j-th dimension components of 

individuals, variant individuals and experimental 

individuals. 

Select Action 

The fitness function value of the individual 

experimental and the individual target. For comparison, 

the fitness function value is more significant for 

the maximization problem. Finally, the individuals enter 

the next-generation population, as shown in formula (6): 

 

   g g g

i, j l l
g + 1

i
g

i, j

u ,if  f u ³ x
x  = 

x , otherwise







 (6) 

 

Improvement of Differential Evolution 

To improve the accuracy and convergence 

performance of community discovery, this study 

improves based on existing differential evolution, the 

main improvement measures. Including mutation 

strategy improvement and dynamic adaptive parameter 
adjustment. 

Improvement of mutation strategy 

Equations (1-2), the basis vector of Eqs. (1-2). The 

quantity is randomly selected from the population, which 

has a strong global search ability and is not easy to trap. 
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The advantage of entering the local optimum but the 

convergence speed is slow; the Eqs. (3-4). The base vector 

is the optimal individual in the current population, so the 
local search ability is strong. The convergence speed is 

fast, but it is easy to fall into the local optimum. 

The above four mutation strategies all have the 

following problems: Performance in terms of accuracy or 

convergence. For example, formula (1) and formula (2) 

Have high accuracy, but slow convergence and Eqs. (3-4) 

are fast but easy to fall into optimal local solution, 

resulting in low accuracy. Therefore, this study will 

construct a mixed mutation strategy to balance accuracy 

and convergence speed, as shown in formula (7): 

 

 
 

   

g g g

P1 P2 P3 i
g

i
g g g g g

best best P1 P2 P3

x + F x x - x ,if  f > f

v  = 

x  + F x x - x  + F x x - x  otherwise







 (7) 

 

In formula (7), "DE/rand/1" is used to maintain the 

accuracy of the population; and randomly generate new 

individuals to prevent the people from falling into local 

optima. Then use "DE/rand-to-best/1" to use the best 

individual in the current population. The body's 

information generates new individuals to speed up the 

convergence rate. Where fi is the fitness function value for 

the target individual, if Its fitness function value is greater 
than the average of all individuals in the current 

population If the fitness value is, it is classified as an 

excellent individual and DE/rand/1 is used to prevent stop 

falling into a local optimum; otherwise, it is classified as 

an eliminated individual and the DE/rand-to-best/1 uses 

the best individual to generate new individuals. 

Dynamic Adaptive Parameter Adjustment 

There are two essential parameters in differential 

evolution: The scaling factor F-value and the Crossover 
probability CR. After experimental observation and data 

research, it has been shown that the selection of parameter 

values should be adaptively adjusted (Chatterjee and 

Saha, 2019; Singh et al., 2022). An international 

optimization algorithm is differential evolution. It belongs 

to the category of evolutionary algorithms and is related 

to others like the genetic algorithm. It was created 

expressly to operate on vectors of real-valued values 

rather than bitstrings, in contrast to the genetic algorithm. 

An individual population is processed by an 

evolutionary algorithm called DE using dimensional 

vectors of real integers. A mutant is produced using a 
differential mutation operator in each iteration, for each 

parent. 

The scaling factor F value in Eq. (7) is usually a 

constant, which plays the role of controlling the scaling 

range of the difference variable. When the F value is 

small, the population difference is reduced, the global 

search ability is reduced and local convergence is likely 

to be caused; when the F value is significant, although it 

is easy to jump out of the optimal local solution, the 

convergence speed will be slowed down. Therefore, Eq. 
(8) is used to adjust the value of F (Singh et al., 2022) 

dynamically: 

 

max min l min
min

max max min

F - F g f - f
F = F + x 2 - exp xln2 +

2 g f - f

   
    
    

 (8) 

 

where, g is the number of iterations, is the maximum 

number of iterations, = 0.3, = 0.9. 

In formula (5), CR is the crossover probability. The 

larger the CR, the faster the convergence speed, but it is 

easy to mature prematurely and fall into the local optimum. 

Therefore, the dynamic adaptive parameter adjustment 

(Ling-Han et al., 2013; Chatterjee and Saha, 2019; 

Singh et al., 2022; 2023; Almakki et al., 2022; Shi et al., 

2018; Chen et al., 2017; Fan et al., 2019; Xin et al., 2019; 

Cheng et al., 2018; 2016; Swietojanski et al., 2016) of 

the CR value is carried out by using Eq. CR with the 

best convergence, with 0.1 and 0.9 L: 
 

 

max min
min

max l

max max min

CR - CR
CR = CR +

2

g f - f
x 2 - exp xln2 +

g f - f

   
    
    

 (9) 

 
Through dynamic adaptive parameter adjustment, the 

mutation rate of the population is adaptively determined 

so that the population maintains diversity in the initial 

stage and avoids premature convergence. Gradually 

reducing the mutation rate in the later stage avoids 

destroying the optimal solution and increases the search 

for the optimal global solution possibility of the optimal 

solution. Meta-heuristic algorithms must produce a varied 

variety of solutions employing diversification or 

exploration approaches in order to explore the search 

space globally. Based on past knowledge or fresh 

information discovered throughout the search process that 

a current good answer is found in this location, an 

intensification or exploitation strategy can direct the 

individual to search in a particular region (Chen et al., 

2017; Fan et al., 2019; Xin et al., 2019; Cheng et al., 

2018; 2016; Swietojanski et al., 2016; He et al., 2018; 

2019; Zhang et al., 2020; Wang et al., 2019). 

Experimental Verification 

This study tests five commonly used standard 

benchmark functions to verify the effectiveness of the 

above improvement measures for differential evolution. 

Table 1 shows the five test functions' names, formulas, 
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search spaces and optimal values. For example, peak 

functions, F3~F5 are multi-peak functions. 

The improved strategies this study are combined, 

named Improved Differential Evolution (IMDE) and 

compared with the mutation strategies of Eqs. (1-4) 

(Singh et al., 2022; 2023; Almakki et al., 2022) in the 

mutation strategy DE_version 1 for comparison, in which 

the F value of each mutation strategy and the CR value in 

the crossover operation is calculated by Eqs. (8-9). The 

experimental results are shown in Table 2 and the results 

include the mean and standard deviation of 30 

independent running tests (data in parentheses in Table 2 

are standard deviations). In the experiments, the same 

experimental parameters as the mutation strategy DE 

version 1 are chosen: Population size NP = 100, dimension 

size D = 30, F ∈ [0.3, 0.9] and CR ∈ [0.1, 0.9]. The 

dynamic mutation method solves problems by 

automatically applying a number of mutation operators. 

To create the following generation, it employs more than 

one mutation operator. The SM-GA is more flexible and 

has a wider variety of constitutive properties. It also 

outperforms traditional genetic algorithms in terms of 

computing speed and convergence stability. These 

debates support and advance current intelligent 

optimization theory and techniques and they have a wide 

range of potential applications in the management of 

production, the optimization of complex systems and 

other areas. 

Table 2 compares the six mutation strategies in 

accuracy and convergence performance. The average 

value reflects the accuracy and the standard deviation 

reflects the convergence performance. The optimal 

solution in each case is shown in bold. In this study, the 

proposed improved strategy IMDE significantly 

outperforms the other five mutation strategies and obtains 

the optimal solution on 80% of the test functions. 

 

Table 1: Benchmark functions (Singh et al., 2023) 

Function Name Formula Search space Optimal solution 

F1 Sphere   
D

2

1 i

i=1

F x = x  [-100,100] 0 

F2 Schwefel  
2

D i

2 j

i=1 j=1

F x = x
 
 
 

    [-100,100] 0 

F3 Rosenbrock      
D

2 22

2 1 i+1 1

i=1

F x = 100 x - x + x - 1   [-100,100] 0 

F4 Rastrigin     
D

2
2

4 i i

i=1

F x = x - 10cos 2πx +10  [-5.12,5.12] 0 

F5 Ackley 

 

 

D
2

5 i

i=1

D

i

i=1

1
F x = -20exp -0.2 x -

D

-0.2 cos 2πx +20+e

 
 
 
 

 
 
 





 [-32,32] 0 

 

Table 2: Performance comparison of different mutation strategies 

    De/rand 

Function De/rand/1 De/rand/2 De/best/1 -to-best/1 De_version1 De_version1 

F1 6.480e-37 3.689 4e-14 2.154e-105 4.543e-52 4.543e-52      1.300 7e-302 

 (2.116e-37) (1.367e-13) (1.080e-103) (1.237e-51) (1.237e-51) (0.000e+00) 

F2 6.660e-37 6.749e-01 6.225e+00 1.027e-04 1.027e-04 1.696e-105 

 (2.116e-37) (1.97e-01) (4.59e-01) (3.26e-04) (3.26e-04) (6.159e-105) 

F3 4.646e-01 5.680e-01 1.140e-15 5.198e-01 5.198e-01 3.214e-18 

 (3.570e-00) (9.040e-00) (3.767e-12) (3.120e-00) (3.120e-00) (1.394e-16) 

F4 2.659e+01 7.319e+01  3.487e+01 9.714e+01 9.714e+01 7.242 6e-04 

 (6.14e-00)  (8.84e-00)  (5.77e-00) (3.83e-00) (3.83e-00) (3.22e-00) 

F5 2.679e+01 -5.878e-06  -7.594e-06 -3.467e-06 -3.467e-06 -4.818e-06 

 (6.14e-00)  (3.66e-06)  (1.44e-06) (2.19e-06) (2.19e-06)  (3.412e-06) 
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It can be seen from Table 2 that the standard deviation 

of IMDE and Eq. (1) DE/rand/1 are compared separately 

and the standard deviations of the four functions F1~F4 are 

significantly improved, which verifies that IMDE adopts 

"DE/rand-to-best/1” can speed up the convergence speed; 

compared with Eq. (4) DE/rand-to-best/1 separately, the 

accuracy of the solution on the four functions F1~F4 has 

been significantly improved, which verifies that IMDE 

adopts “DE/rand-to-best/1”. /rand/1” can prevent the 

population from falling into local extremes and improve 

the ability of the differential evolution algorithm to solve 

the global extremum. 

Initialization 

For a complex network G = (V, E) with n nodes, the 

k-th individual in the population consists of Eq. (10): 
 

K 1 2 nx ={c , c ,......, c }  (10) 

 

Among them, ci represents the community to which 

node i belongs, the community identifier. When IMDECD 

is initialized, the community to which each node belongs 

is randomly assigned, so there are at most n communities 

in G. The maximum value of the community identifier is 

n. 

For example, Fig. 1(a) shows a network with seven 

nodes. According to the definition of community 

structure, the network is divided into two communities 

represented by nodes of different colors. Figure 1(b) is a 

vector representation based on community identifiers. 

Along with high resolution, vectors or feature vectors 

(sequences of integers) in a vector space (metric space) 

also offer multidimensional comparability. This is crucial 

because it enables high-resolution searching inside a huge 

data set. Additionally, by describing instances as vectors, 

it is possible to calculate their similarity automatically in 

terms of distance rather than having to expensively record 

this knowledge through symbolic representations. 

 

 
(a) 

 

 
(b) 

 

Fig. 1: Vectorization representation of individuals 

Fitness Function Settings 

The fitness function usually has two types: 

Modularity and module density. The modularity Q 

function is a milestone in community discovery 

algorithm research history. It is widely used in 

community detection because of its ease of 

implementation. The algorithm based on 

modularity optimization has become a community 

discovery algorithm. A field of study in algorithms. 

However, Q has several drawbacks: 

First, maximizing the Q value turns out to be an NP 

problem. Second, large Q-values do not always make 

sense and there are cases where random networks without 

community structure can have large Q-values. Finally, Q 

has a resolution limit and maximizing Q cannot find a 

community with a smaller community size. The 

expression of the Q value is shown in Eq. (11): 

 

 
 

 

 

2
m

l f 1

i=1

L V ,V L V ,V
Q = -

L V,V L V,V

  
      

  (11) 

 

To overcome the resolution limitation of modularity 

and improve the algorithm's accuracy, literature (Han et al., 

2018). Proposed a module density calculation method 

after a series of theoretical derivations and practical 

tests, as shown in Eq. (12). Furthermore, the 

experimental verification by literature. Bachi et al. 

(2012) confirm the effectiveness of the module density 

in solving the resolution limitation problem. Therefore, 

the module density is chosen as the fitness function in 

this study: 

 

     m ii i i

λ

i=1 i

2λ V ,V - 2 1 - λ L VV
D =

V

 
 
 
 

  (12) 

 

Among them, m is the number of communities after 

the division is completed, λ is a number between 0 and 1, 

is the sum of degrees between nodes in the sub-network 

and is the number within. The sum of the degrees of the 

node and other nodes except the number of nodes. 

Modification Based on Community Structure 

Since there are differences in the function solution and 

community discovery of differential evolution, this study 

uses the known community structure to make the 

following modifications to improve the accuracy of the 

calculation when combining and improving differential 

evolution and module density. 
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Community Variable CV (i) 

In the iterative process of community discovery, some 

nodes may be put into the wrong community and these 

errors will weaken the algorithm's ability to find the 

optimal solution and reduce the accuracy. 

To solve the above problems, this study adopts the 

correction operation based on the community variable CV 

(i) proposed by literature (Shi et al., 2018) to reduce the 

situation that the nodes are assigned incorrectly. CV (i) is 

defined as the ratio of the number of node i and 

its neighbor nodes not in the same community to the 

degree of node i, as shown in Eq. (13), where deg(i) is the 

degree of the i-th node, ci is the community containing the 

i-th node: 

 

 
 

 
i jj c ¹ c

CV i
deg i


 (13) 

 

The correction operation process is as follows: 

First, some nodes are randomly selected. Then, its 

community variable is calculated for each node and 

compared with a threshold, a predefined constant 

obtained after repeated experiments, which is taken as 

0.3 in this experiment. If the community variable of the 

node is more significant than this threshold, the node 

and all its neighbors will be put into the same 

community and the new community will be the 

community that contains the most significant number 

of nodes among the neighbor nodes. Otherwise, the 

node will do nothing. 

Through the correction operation based on community 

variables, every time a node is assigned, 

its neighbor nodes are considered, reducing node 

assignment errors and improving accuracy. 

Initialization Stage (IS) 

During initialization, each node is randomly assigned 

to a community; however, this may result in some 

unconnected nodes being given to the same community. 

To reduce the amount of computation, 

the initialization phase is modified. 

The modified initialization process is as follows: Once 

an individual is generated, nodes in the individual are 

randomly selected, their community identifiers are 

assigned to their neighbor nodes, an initial population is 

generated and each node and its neighbor nodes are in the 

same community in the initialization phase. Through this 

operation, the space of possible solutions is limited, 

unnecessary iterations are eliminated and the convergence 

speed of the IMDECD algorithm is improved. 

Binomial Crossover Stage (BCS) 

Since each assignment of the community identifier 

is random, the following situation may arise: For two 

individuals {1,1,1,2,3} and {3,3,3, 2,1}, node i is 

assigned multiple times assigned to the same 

community, but the corresponding community 

identifiers are different each time, that is, there is no 

one-to-one correspondence between communities and 

community identifiers. If the community identifier 

counts which community node i is assigned to, an 

erroneous result will occur, resulting in node i being 

given to the wrong community. In this case, if you want 

to get the correct statistical results, the algorithm must 

judge whether different identifiers correspond to 

the same community according to the neighbor nodes 

and community structure, which will decrease the 

efficiency of searching for the optimal solution. Based 

on the above considerations, the following 

modifications are made to the crossover operation 

according to Chatterjee and Saha (2019). 

Modification of the binomial crossover procedure: First, 

set the experimental individual for each i ∈ {1,2, ⋯NP}. 

Then, for each j ∈ {1,2, ⋯, n} consider the j-th component 

in and the variant individual. If rand ≤ CR, find all nodes 

whose community identifiers are vi, j and then assign the 

community identifiers of the corresponding nodes in as, to 

implement the correspondence; otherwise, no operation will 

be performed on. 

The modified binomial cross enables each 

community to have a unique identifier corresponding 

to it, so there is no situation where nodes are assigned 

to the same community but correspond to different 

identifiers. Therefore, the statistical function can be 

completed only through the community identifier, thus 

improving the algorithm's efficiency in searching for 

the optimal solution. 

Algorithm Description 

Combined with the community structure, the specific 

execution steps of the IMDECD algorithm are as follows: 

 

1. Initialize the relevant parameters NP, n and of the 

IMDECD algorithm; see Chapter 5 experimental 

parameter settings for details 

2. According to the modified initialization process, NP 

n-dimensional vectors are generated to form an initial 

population = {, ⋯,}, where each is represented by Eq. 

(10). Calculate the module density value of each 

individual and save the current optimal individual 

and its corresponding module density value 

3. If (g <) Then 
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1. The adaptive mixed mutation strategy is 

composed of Eqs. (7-8) performs mutation 

operation on each individual in the population to 
generate the corresponding mutant individual; 

performs the correction operation in Eq. (13) to 

correct in offset vector 

2. The adaptive crossover strategy is composed of 

Eqs. (5 and 9) performs the modified binomial 

crossover operation on each individual in the 

population to generate the corresponding 

experimental individual; performs the correction 

operation in Eq. (13) and corrects the offset vector 

3. Using the greedy selection strategy of formula (6), 

the target individuals in the population are compared 

with their corresponding experimental individuals 

respectively and the better individuals among them 

are selected to form the next generation population. 

The fitness function in Eq. (6) uses the module 

density given in Eq. (12) g = g + 1; At the end of the 

algorithm operation, the output of the complex 

network community structure is the optimal division 

result and the corresponding module density value 
 
Time Complexity Analysis 

Assume that the number of nodes in the community 

network is n, the number of edges is t, the number of 

communities after division is m, the population size is 

NP and the number of iterations is g. For a community 

network with n nodes, the time complexity of the module 

density function in this study is O (× NP × m). The time 

complexity of the mixed mutation strategy of Eq. (7) and 

the greedy selection strategy of Eq. (6) are both and the 

time complexity of the adaptive crossover strategy of 

formula (5) is O (× NP × n), so the time complexity of 

the algorithm in this study is O (× NP × (n + m), the time 

complexity comparison with other algorithms is shown 

in Table 3. 
 
Table 3: Comparisons of time complexity 

Algorithm Time complexity 

Gn   
2 3

g g g g

l p1 p pV = x + F x x - x   

Ocddp  
 

 

2 3

4 5

g g g g

l p1 p p

g g

p p

V = x + F x x - x

+F x x - x

 

Ccdecd   
2 3

g g g g

l best p pV = x + F x x - x  

Cdemo  
 

 

g g g g
P1l best best

g g
P2 P3

V = x + F x x - x

+F x x - x

 

Imdecd  
 

 

j ci ¹ cj
CV i =

deg i

    

Materials and Methods 

This study takes advantage of the above-improved 

differential evolution, combined with module density, 

to study the improvement strategy of the community 

discovery algorithm. First, in the initialization stage, 

each node in the network is represented by the 

community identifier; then, the fitness function is set 

and the module density is used to replace the module 

for the resolution limitation problem of the module 

degree as a fitness function; finally, using the known 

community structure, conduct modification operations, 

including those based on community variables and 

initial modification of initialization and binomial 

crossover stages. 

Results 

The experimental hardware environment in this study 

is Intel® Pentium, CPU 3.0 GHz, memory 8.0 GB and the 

simulation software is Windows 10 system and MATLAB 

R2017a. In this study, computer-generated networks and 

five real-world networks of different scales are selected to 

conduct experiments and the proposed algorithm is 

compared with GN (Rebehy and Chung, 2013), OCDDP 

(Singh et al., 2022), CCDECD (Gliwa et al., 2012) and 

CDEMO (Ling-Han et al., 2013) algorithms. The algorithm 

was independently run 30 times on each dataset to 

reduce statistical error. The mean value was selected 

for comparison and all algorithms' experimental 

parameter settings and environment configurations 

were the same. 

Set the parameters according to the size of the 

dataset. In the Karate network, set the population size 

NP to 20 and the maximum number of iterations to 50; 

in the football network, set the NP to 30 and the 

maximum number of iterations to 300; in the jazz and 

US air-lines networks, set the NP to is 30 and the 

maximum number of iterations is 600; in the Polblogs 

network, NP is set to 60 and the maximum number of 

iterations is 600. 

In this study, the modularity Q value shown in Eq. (11) 

and the mutual information value NMI shown in Eq. (14) 

(Ling-Han et al., 2013; Chatterjee and Saha, 2019; 

Singh et al., 2022; 2023; Almakki et al., 2022) are 

selected as the evaluation function: 

 

 

A A
N

A B

c c
ij

ij

i=1 j=1 i j

c c
ji

i j

i=1 j=1

c
-2 c lb

c c
NBI A,B =

cc
c lb + c lb

N N

 
 
 
 

  
  

   



 
  (14) 
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Computer Generated Network 

This study uses the artificial computer-generated 

network literature (Singh et al., 2023) proposed 
by Lanc Chinetti to verify the performance of the 
IMDECD algorithm to detect network community 
structure. There are 128 nodes in the GN benchmark 
network and they are divided into 4 communities with 
32 nodes in each community. 

The mixing parameter μ in the above network is 

mainly used to determine the shared edge between any 

node in a community and the nodes of other communities. 

The mixing parameter μ in the above network is mainly 

used to determine the relationship between any node in a 

community and other communities. Edges are shared 

between nodes. 

Figure 2 shows the change of NMI between the 

IMDECD algorithm and other comparison algorithms on 

the GN benchmark network as the value of μ increases. 

As can be seen from Fig. 2, compared with the other four 

algorithms, with the continuous increase of μ, the 

performance advantage of the IMDECD algorithm becomes 

more and more apparent. When the mixing parameter μ is 

equal to 0.7, the decline begins to appear and the results 

verify the effectiveness of the IMDECD algorithm. 

Real World Networks 

This section uses five representative real network 

datasets of different sizes for testing. The details of each 

dataset are shown in Table 5, including the Karate Club 

network (Almakki et al., 2022) (Karate), American 

college students' 2000 season American football league 

network (Rebehy and Chung, 2013) (football), jazz 

musicians cooperative network (Shi et al., 2018) (jazz), 

American airlines network (Chen et al., 2017) (US 

Airlines) and the 2004 US election political blog network 

(Fan et al., 2019) (Polb-logs). Table 4 illustrates the scale 

of the dataset: The number of nodes and edges. 

Regarding the module density, λ takes the value 

λ ∈ (0,1). To analyze the influence of λ on the community 

discovery results of the algorithm in this study, we take 

the influence of the modularity Q value and the mutual 

information value NMI of the community discovery 

results under different values of λ. Figure 3 shows the 

Karate network's community discovery results as a 

function of the λ value. 

As can be seen from Fig. 3, in the Karate network, 

when λ = 0.3, NMI = 1, Q = 0.3728, the result of the 

community division is the same as the real network 

community, but the Q value is lower; when λ = At 0.6, 0.7 

and 0.8, the Q values are all 0.419 8, but the NMI values 

are 0.735 3, 0.6388 and 0.655, respectively. Therefore, in 

the Karate network, when λ = 0.6, NMI = 0.735 3, Q = 

0.4178, both are higher values. 

Figure 4 shows that the community discovery 

results of the Football network vary with the value of 

the λ result. 

Figure 4, in the football network, when λ = 0.4~0.8, the 

Q value does not change much, all-around 0.6056 and the 

NMI value changes greatly. When λ = 0.6, the NMI value 

is the largest at 0.9354. Therefore, in the Football 

network, when λ = 0.6, NMI = 0.9354 Q = 0.6066, both 

are higher values.  

Since Karate and football networks have known 

community structures, the results of community division 

can be measured by the modularity Q value and mutual 

information value NMI; while Jazz, US airlines and 

Polblogs networks have no known community structure; 

therefore, it can only be measured by the modularity Q 

value. Figure 5 shows the community discovery results of 

the other three networks as a function of the λ value. It can 

be seen that when λ = 0.6, the Q value is higher, so the λ 

in the module density, takes the value of 0.6.  

 

 

 
Fig. 2: Average NMI of IMDECD and other algorithms 

 

 

 
Fig. 3: Effect of λ on Q and NMI in Karate network
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Table 4: Average NMI of IMDECD and other algorithms 

Mutual Information NMI IMDECD CDEMO CCDECD OCDDP GN 

0.1 1.0000 1.0000 1.000 1.000 1.00 
0.2 1.0000 1.0000 1.000 1.000 1.00 
0.3 1.0000 1.0000 1.000 1.000  1.00 
0.4 1.0000 1.0000 0.095 0.935 0.85 
0.5 1.0000 1.0000 0.084 0.077 0.07 
0.6 1.0000 1.0000 0.066 0.605 0.55 
0.7 1.0000 0.6072 0.552 0.506 0.46 
0.8 0.6468 0.0462 0.042 0.385 0.35 
0.9 0.3696 0.0264 0.024 0.022 0.02 

1.0 0.2772 0.0198 0.018 0.165 0.15 

 
Table 5: Real number dataset 

Data set Node Number of sides 

Karate 35 75 
Football 116 615 
Jazz 199 2745 
US Airlines 335 2125 
Polblogs 1498 19095 

 

 
 
Fig. 4: Effect of λ on Q and NMI in football networks 

 

 
 
Fig. 5: Effect of λ on Q in other networks 

 
Table 6: Effect of λ on Q and NMI in the Karate network 

Modularity Q-value and 
Mutual Information NMI Q-value NMI 

0.1 0.00 0.00 

0.2 0.00 0.00 
0.3 0.00 0.00 
0.4 0.04 0.01 
0.5 0.44 0.07 
0.6 0.04 0.08 
0.7 0.46 0.65 
0.8 0.48 0.55 
0.9 0.45 0.06 

1.0 0.42 0.05 

Table 7: Effect of λ on Q and NMI in football networks 

Modularity Q-value and 

mutual information NMI Q-value NMI 

0.45 0.55 0.07 
0.50 0.58 0.75 
0.55 0.06 0.08 
0.60 0.63 0.85 
0.65 0.58 0.09 
0.70 0.55 0.95 
0.75 0.52 0.75 
0.80 0.05 0.07 
0.85 0.48 0.75 
0.90 0.45 0.85 
 
Table 8: Effect of λ on Q in other networks 

Modularity 
Q-value Jazz Us air-lines Polblogs 
0.00 0.00 0.04 0.01 
0.05 0.01 0.08 0.08 
0.01 0.03 0.01 0.05 
0.15 0.27 0.12 0.04 
0.02 0.25 0.15 0.13 
0.25 0.33 0.18 0.04 
0.03 0.45 0.03 0.43 
0.35 0.04 0.27 0.38 
0.04 0.35 0.15 0.03 
0.45 0.12 0.05 0.08 
 

Table 6 we have to mention value parameter in the 

NMI is karate network and the Q value and standard 

deviation are low, which indicates that the division result 

of IMDECD on the karate network than table Football 

network and Table 7 is the closest to the football network 

Effect of λ on Q and NMI in football networks. However, 

the lower value also shows that the IMDECD algorithm 

than Table 8 Effect of λ on Q in other networks division 

result of IMDECD on the network. 

Analysis of Results 

According to the above research, Tables 9-10 are the 

experimental results after each algorithm is independently 

run 30 times on 5 data sets; the table includes the average 

value of modularity Q, the value of mutual information 

NMI the standard deviation and the number of 

communities. Description of the data format in the table: 

0.419 8/4, where 0.419 8 represents the degree of 

modularity and 4 represents the number of communities; 

(0.00E-00) represents the standard deviation of 30 runs. 
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Table 9: Comparison of NMI and modularity between Karate and football network 

Data set Algorithm Modularity Q Mutual information NMI 

Karate IMDECD 0.429 8/4 (0.00E-00) 0.725 4 
  CDEMO 0.429 8/4 (0.00E-00)  0.698 3 
  CCDECD 0.429 8/4 (0.00E-00)  0.687 1 
  OCDDP 0.416 3/4 (2.61E-04)  0.673 3 
  GN 0.407 3/2  0.840 1 
Football IMDECD 0.614 0/10 (2.8E-04) 0.935 5 
  CDEMO 0.614 6/10 (0.00E-00)  0.918 7 
  CCDECD 0.614 6/10 (8.90E-04)  0.917 2 
  OCDDP 0.610 4/12 (1.86E-03) 0.910 4 

  GN 0.607 3/12  0.930 1 

 
Table 10: Comparison of modularity of other networks 

Algorithm Jazz US Airlines Polblogs 

IMDECD 0.443 7/7 (3.03E-03) 0.306 0/16 (3.67E-03) 0.306 0/16 (3.67E-03) 
CDEMO 0.443 7/5 (9.57E-03) 0.293 3/11 (2.63E-03) 0.293 3/11 (2.63E-03) 
CCDECD 0.439 2/4 (6.32E-03) 0.299 1/11 (5.97E-03) 0.299 1/11 (5.97E-03) 
OCDDP 0.384 8/21 (1.24E-02) 0.176 4/12 (8.45E-02) 0.176 4/12 (8.45E-02) 
Proposed 0.405 0/39 0.140 0/124 0.140 0/124 

 

As can be seen from Tables 9-10, compared to other 

algorithms, IMDECD has promising results on five real 

network datasets. Table 9, the Q-values and criteria of 

IMDECD in the Karate network. The difference is 

optimal with CCDECD and CDEMO at the same time 

and the Q value is increased by 3.3% compared with 

OCDDP and 4.6% compared with GN; the mutual 

information value NMI is not optimal because the GN 

algorithm is more suitable for small-scale networks; In 

the Football network, the NMI is optimal and the Q value 

and standard deviation are low, which indicates that the 

division result of IMDECD on the Football network is 

the closest to the actual network. However, the lower 

value also shows that the IMDECD algorithm is 

unsuitable for smaller networks. 

Table 10, the Q value and standard deviation of 

IMDECD in the three networks of Jazz, US Air-lines and 

Polblogs are the best, which shows that the IMDECD 

algorithm proposed in this study is more suitable for more 

extensive networks. Therefore, compared with the other 

four algorithms, the algorithm proposed in this study has 

higher accuracy and better convergence performance in 

community discovery. 

Regarding the resolution limit, among the four 

comparison algorithms, the CCDECD and CDEMO 

algorithms are based on modularity optimization. In the 

Football, Jazz, US Air-Lines and Polblogs networks, the 

number of communities divided by the IMDECD 

algorithm is more significant than that of the CCDECD 

and CDEMO algorithms, indicating that the IMDECD 

algorithm using the module density can divide more 

communities; that is, it can distinguish smaller Community. 

Discussion 

According to the above research, Tables 9-10 are 

the experimental results after each algorithm is 

independently run 30 times on 5 data sets; the table 

includes the average value of modularity Q, the value 

of mutual information NMI the standard deviation and 

the number of communities. Description of the data 

format in the table: 0.419 8/4, where 0.419 8 represents 

the degree of modularity and 4 represents the number 

of communities; (0.00E-00) represents the standard 

deviation of 30 runs. 

Conclusion 

To overcome the limitation of modularity resolution 

and improve community discovery's accuracy and 

convergence performance, this study proposes a 

community discovery algorithm that combines 

improved differential evolution and module density. 

By Using the algorithm first adjusts the differential 

evolution mutation strategy and dynamically adapts the 

F and CR variables. Then second given the resolution 

limitation of modularity, the module density is used as 

the fitness function of differential evolution to evaluate 

the individuals in the population; finally, it is modified 

based on the known community structure, including the 

correction operation based on community variables and 

corrections in the initialization and binomial crossover 

stages. Comparative experiments show that the 

IMDECD algorithm proposed in this study has higher 

community discovery accuracy, better convergence 

performance, more vital optimization ability and 

robustness and can effectively detect community 

structures in real-world networks. 
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