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Abstract: Road accidents claim approximately 1.35 million lives annually, 

as highlighted by the World Health Organization, making them a leading 

cause of death worldwide. With this sobering statistic in mind, addressing 

road safety concerns through advanced AI technologies becomes 

increasingly imperative. This research paper highlights practical implications 

for both road safety enhancement and the advancement of artificial 

intelligence technology within the automotive industry. The proposed model, 

"AI-drive assist," investigates the effectiveness of an AI-driven driving 

assistant system in improving road safety. By providing real-time auditory 

alerts to drivers, the driving assistant system facilitates a better understanding 

of road conditions and encourages the development of safer driving habits. 

The methodology entails the utilization of the You Only Look Once 

(YOLO)v8 model within a ResNet-50 CNN framework, allowing for the 

efficient extraction of relevant information from input photographs. Through 

rigorous evaluation, the system achieves an impressive precision-recall rate 

of 94% in identifying various road signs, indicating its potential to enhance 

driver awareness and promote compliance with traffic regulations. 

Additionally, data augmentation techniques are employed to diversify the 

training dataset, further improving accuracy and robustness. The findings of 

this study underscore the significant impact of AI technologies on promoting 

safer driving practices. Overall, this study contributes to the ongoing 

discourse on road safety improvement and demonstrates the tangible benefits 

of integrating AI technologies into driving assistance systems. 
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Introduction  

Missed road signs due to human errors pose a 

significant challenge to road safety despite notable 

advancements in technology. According to road accident 

statistics, speeding accounted for a substantial portion of 

incidents in 2019, contributing to 71% of accidents and 

resulting in numerous fatalities and injuries. Lane 

indiscipline and balance violations such as drunk driving 

and using mobile phones also played significant roles, 

collectively contributing to 11% of accidents and 14% of 

deaths. Additionally, distracted driving remains a 

persistent issue, especially among younger drivers, posing 

risks at any time of the day. Addressing these factors 

through stricter enforcement measures is imperative to 

improve road safety (Hugar et al., 2021). 

Efforts to address the challenges posed by 

overspeeding, lane indiscipline, and distracted driving 

must be complemented by advancements in road safety 

technology. The landscape of road safety technology has 

demonstrated notable advancements, yet persistent 

limitations in traditional automobile systems highlight the 

urgent need for innovation (Dhawan et al., 2023) Current 

technologies often struggle to promptly convey vital road 

sign information to drivers, posing significant safety risks. 

Moreover, the integration of Artificial Intelligence (AI) 

remains insufficient, hindering immediate comprehension 

of road signals and potentially leading to driver errors. 

These limitations primarily stem from inadequate 

computational capabilities and an inability to adapt 

swiftly to evolving driving scenarios. The present 

technology is constrained by two primary limitations: 
 
1. A lack of high-performance computer capabilities 

2. A restricted capacity to adjust to swiftly evolving 

driving situations 
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The main objective of AI-drive assist is to mitigate the 

risks associated with missed road signs due to human 

errors by addressing the limitations posed by a lack of 

high-performance computer capabilities and a restricted 

capacity to adjust to swiftly evolving driving situations. In 

response to the research problem, the AI-drive assist 

system emerges as a pioneering solution poised to 

revolutionize road safety. By seamlessly integrating state-

of-the-art AI technology, including the renowned You 

Only Look Once (YOLO)v8 concept, this system 

promises to address critical shortcomings in existing 

infrastructure (Flores-Calero et al., 2024). The YOLOv8 

model, celebrated for its rapid object recognition 

capabilities, offers precise detection of road signs, 

particularly crucial during high-speed driving situations. 

Moreover, to enhance the robustness of object detection, 

data augmentation techniques have been employed to 

balance class distributions, ensuring equal representation 

across various sign types.  

Beyond mere detection, the AI-drive assist system 

incorporates an innovative feature where detected road 

signs are converted into speech alerts delivered directly to 

the driver (Manawadu and Wijenayake, 2024). This 

proactive approach not only informs the driver of pertinent 

road information but also minimizes distractions, thereby 

enhancing overall safety. Central to this system is the 

seamless integration of advanced AI technology with real-

time feedback mechanisms, ensuring timely and accurate 

communication of critical information to the driver.  

The benefits of the AI-drive assist technology are 

multifaceted (Zhu and Yan, 2022). Not only does it 

provide prompt information to drivers, but it also 

possesses the agility to adapt to rapidly changing road 

conditions. This enhancement of transportation system 

intelligence optimizes efficiency and ensures heightened 

safety. With signage now incorporating advanced 

decision-making algorithms (Wan et al., 2021), proactive 

messages regarding potential hazards and evolving road 

conditions can be seamlessly integrated, further 

improving driving safety and convenience.  

The AI-drive assist system has a wide-ranging 

applicability in the whole vehicle industry and it will play 

a crucial role in enhancing road safety and efficiency in 

the future. The system's flawless incorporation of cutting-

edge AI technology facilitates a transformative shift in 

road safety, setting a precedent for the benefit of society 

at large. It establishes the conditions for a future where 

transportation and technology collaborate seamlessly, 

ushering in a new era of road safety through the deliberate 

integration of cutting-edge advancements in AI. This 

game-changing system is evidence of the covert potential 

of Artificial Intelligence (AI) to create covertly safer and 

more effective roads, paving the way for a future in which 

transportation and technology coexist peacefully for the 

covert benefit of all.  

Literature Survey  

The field of traffic sign detection in difficult contexts 

is explored in the 2022 research paper "M-YOLO: Traffic 

sign detection algorithm applicable to complex scenarios" 

by Liu, Y.; Shi, G.; Li, Y.; Zhao, Z., which was published 

in symmetry. Using the You Only Look Once (YOLO)v3 

algorithm, the study concentrates on identifying 11 

commonly found traffic signs throughout Europe. The 

paper utilizes a dataset acquired from front-view camera 

footage in Osijek. The collection comprises photos 

depicting many weather situations, encompassing cloudy, 

bright, rainy, and nocturnal landscapes. The collection 

comprises 5567 photos with 6751 annotated traffic signs, 

which were captured from 28 video sequences. 

Remarkably, the proposed M-YOLO method demonstrates 

exceptional performance on this vast dataset. This study 

effectively recognizes and alerts drivers to common 

European traffic signs, hence enhancing road safety and 

driver awareness (Liu et al., 2022).  

The research paper "traffic sign detection algorithm 

based on improved YOLOv4-Tiny," published in 2022 by 

Yao et al. (2022) introduces a refined method for enhancing 

traffic sign detection using the YOLOv4 tiny algorithm. The 

article, accessible on Science Direct, employs Receptive 

Field Blocks (RFB) and an Adaptive Feature Pyramid 

Network (AFPN) to augment feature fusion and extraction, 

therefore surmounting the limitations of YOLOv4-Tiny. The 

examination of the CCTSDB and GTSDB datasets 

demonstrates the effectiveness of these enhancements in 

traffic sign detection, as seen by their superior precision, 

recall, map, and competitive speed (Yao et al., 2022).  

Zhang et al. (2020) presented a real-time traffic sign 

detection technique based on YOLOv3. The study, 

published in IEEE access, concentrates on innovative 

techniques for identifying small traffic signs and attains 

commendable outcomes in terms of precision, recall, and 

map metrics. This study contributes to the development of 

real-time small-sign detection algorithms and 

demonstrates the potential of YOLOv3 in this specific 

context (Zhang et al., 2020).  

 In their 2022 research paper titled "Traffic Sign 

Detection Algorithm Based on Improved YOLOv4," Wu 

and Cao introduce an upgraded traffic sign recognition 

algorithm based on YOLOv4. The paper was published 

in the Journal of Physics: Conference series. The project 

leverages YOLOv4's efficient real-time object detection 

capabilities to enhance the ability of self-driving 

automobiles to recognize traffic signs. The effectiveness 

of their approach was proven by the exceptional 

outcomes of the two models that underwent training, one 

using the GTSDB dataset and the other using a custom 

dataset. The models attained a Mean Average Precision 

(MAP) of 94% on the German Traffic Sign Detection 

Benchmark (GTSDB) and 92% on their own custom 

dataset (Wu and Cao, 2022).  
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 Zhang X.'s work, titled "traffic sign detection based 

on YOLOv3", focuses on a more efficient version of 

YOLOv4 for identifying traffic signs in unmanned 

driving vehicles. To optimize model efficiency and 

accelerate detection, this approach replaces YOLOv4's 

feature extraction network with MobileNetV2, thereby 

reducing the number of model parameters. To enhance the 

process of extracting features and managing gradients, 

attention, and residual structures are incorporated. As a 

result, a more compact model is achieved, surpassing 

YOLOv4 in terms of overall accuracy, while 

simultaneously improving detection speed by 58.8% and 

reducing it by 2.5% (Zhang, 2023).  

 In their publication in axioms, Bai et al. (2023) 

introduce two novel YOLOv5-based models for traffic 

sign identification. The article utilizes YOLOv4, a rapid 

and real-time object recognition technology, to aid self-

driving vehicles in identifying traffic signs. Two models 

are trained on both the GTSDB and a bespoke dataset, 

resulting in an impressive performance with a 94% mean 

average precision (map) on GTSDB and a 92% map on 

their dataset. This demonstrates the efficacy of their 

technique in enhancing the efficiency of traffic sign 

detection for autonomous vehicles (Bai et al., 2023).  

The publication "traffic sign detection in an 

unconstrained environment using improved YOLOv4" by 

Saxena et al. (2024) introduces a lightweight traffic sign 

detection system that is based on YOLOv4. To enhance 

efficiency and decrease the number of parameters, the 

method employs depth-wise separable convolution and 

MobileNetv3. Additional developments include the 

incorporation of SPP modules within the feature pyramid 

and enhancements made to the MobileNetv3 network. 

According to the German Traffic Sign Detection 

Benchmark (GTSDB), the system exhibits superior 

performance in detecting traffic signs compared to 

YOLOv4. The model attains a 1.7% enhancement in 

Mean Average accuracy (MAP), reduces the number of 

parameters by 197 million, and improves processing time 

by 25% (Saxena et al., 2024).  

The 2022 study conducted by researchers from New 

York, which was published in the journal Heliyon, centers 

on the process of identifying and classifying traffic signs. 

This is achieved through the utilization of advanced 

computer vision models, specifically YOLOv4 and Faster 

R-CNN. To address issues pertaining to small signs, the 

study employs CSPDarknet53 to develop an adapted 

model based on YOLOv4 for accurate and resilient 

identification of traffic signs. By applying data 

preprocessing techniques, picture augmentation methods, 

and considering low-light conditions at night, the model 

achieves an impressive accuracy of 94.80 and 80.71% on 

the TT-100 K and MTSD datasets, respectively. The 

model's flexibility is demonstrated through cross-data 

testing on GTSDB and ITSD datasets, where it achieves 

superior performance compared to other models, with 

accuracy rates of 91.74 and 63.64%, respectively 

(Youssouf, 2022).  

 Comparison Analysis of YOLOv8 with State-of-

Theart Models  

In their publication in axioms, Bai et al. (2023) 

introduce two state-of-the-art models examined in this 

research that have significantly advanced traffic sign 

detection, each bringing unique contributions to the field. 

M-YOLO, leveraging YOLOv3, showcases exceptional 

performance in identifying common European traffic 

signs across varied weather conditions, bolstering road 

safety and driver awareness. Yao et al. (2022) YOLOv4-tiny 

improvement, integrating receptive field blocks and an 

adaptive feature pyramid network, demonstrates superior 

precision and recall in traffic sign detection, particularly 

evident in CCTSDB and GTSDB datasets. Similarly, 

Zhang et al. (2024) YOLOv3-based real-time detection 

technique proves effective in identifying small traffic 

signs, showcasing potential for real-time applications. Wu 

and Cao's enhanced YOLOv4 algorithm excels in real-time 

object detection, showcasing high precision on both 

standard and custom datasets, further enhancing self-

driving car capabilities.  

On the other hand, Zhang's optimization of YOLOv4 

with MobileNetV2 exhibits improved efficiency and accuracy 

in unmanned driving vehicles, presenting a more compact yet 

effective solution. Bai et al. (2023) YOLOv5-based models 

demonstrate impressive performance in aiding self-

driving vehicles, showcasing the adaptability of YOLOv4 

for traffic sign identification. Saxena et al. (2024) 

lightweight YOLOv4-based system, employing depth-

wise separable convolution and MobileNetv3, offers 

enhanced efficiency and parameter reduction, showcasing 

superior performance compared to standard YOLOv4 in 

detecting traffic signs.  

In comparison, the utilization of YOLOv8 presents a 

compelling advancement in traffic sign detection. YOLOv8 

integrates the strengths of previous models while offering 

a unified architecture for enhanced efficiency and 

accuracy. By combining the efficiency of YOLOv4 with 

the adaptability of faster R-CNN, YOLOv8 simplifies the 

research pipeline and offers scalability and generalization 

capabilities. Moreover, YOLOv8's advanced techniques, 

including CSPDarknet53 and MobileNetV2, ensure high 

accuracy even in challenging conditions, making it a 

practical choice for real-time applications. Overall, 

YOLOv8 represents a significant advancement in traffic 

sign detection technology, offering researchers a powerful 

and versatile tool for addressing real-world challenges in 

traffic management and autonomous driving systems 

(Gašparović et al., 2023).  
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Materials and Methods  

The following Fig. 1 illustrates the block diagram 

outlining the comprehensive workflow of the 

application's model.  

Data Collection and Preprocessing  

During the early development of the system, we 

utilized the LISA dataset sourced from Roboflow as the 

primary repository of traffic sign photos. The Long-term 

Infrastructure and Short-term Activities (LISA) dataset 

offers a comprehensive collection of images tailored for 

tasks involving traffic sign detection and identification. 

Covering a diverse range of real-world scenarios, this 

dataset provided a valuable resource for the development 

and evaluation of computer vision algorithms. With 

annotations for various traffic signs, including those 

pertinent to autonomous vehicles and traffic management, 

the LISA dataset proved invaluable for both system 

development and evaluation.  

Upon meticulous examination, we identified a significant 

disparity in the distribution of classes within the dataset, 

underscoring the need for a purposeful data preprocessing 

strategy. The primary objective was to enhance the dataset to 

optimize the efficacy of model training. To accomplish this, 

we leveraged the Albumentations library, a powerful tool for 

image augmentation. This framework facilitated the 

implementation of augmentation procedures aimed at 

enriching the diversity of the dataset, thereby fostering 

improved model generalization.  

The augmentation techniques employed included 

random cropping to ensure consistent dimensions of 

250250 pixels, as well as random adjustments to 

brightness and contrast with a probability of 0.2. 

Additionally, horizontal flips were integrated with a 

probability of 0.5. By deliberately introducing variability 

through these augmentation strategies, the methodology is 

aimed to artificially enrich the richness of the dataset, 

thereby enhancing the model's ability to generalize across 

different scenarios (Mumuni and Mumuni, 2022).  

Furthermore, to facilitate effective training and 

evaluation of the system, the dataset was split into distinct 

subsets. The largest portion, comprising 86% of the 

dataset, was allocated for training the image segmentation 

model. A smaller subset, accounting for 9%, served as the 

validation set to monitor model performance during 

training and prevent overfitting. Finally, a 6% portion was 

reserved as the test set for the final evaluation of the 

model's performance after training completion.  

In addition to these preprocessing steps, further 

enhancements were applied to ensure the consistency and 

reliability of the dataset. Auto-orientation was applied to 

standardize the orientation of images, while all images 

were resized to a uniform resolution of 416416 pixels to 

streamline the training process. Moreover, augmentations 

were performed on each training example, introducing 

variations to enhance the robustness of the model. 

Notably, a small amount of noise, up to 1% of pixels, was 

injected into bounding boxes to enhance the model's 

resilience to minor inaccuracies in object localization.  

By integrating these preprocessing techniques and 

dataset splits into the methodology, we aimed to lay a 

robust foundation for the subsequent training and 

evaluation of the system.  

Model Selection and Training  

A comprehensive evaluation was carried out on 

multiple object detection architectures, such as faster R-

CNN, SSD, RetinaNet, EfficientDet, and Mask R-CNN, 

throughout the crucial stage of Model Selection and 

Training. Every option was carefully examined for its 

unique advantages and disadvantages. Although Faster R-

CNN was a popular model because of its multi-stage 

approach, it had disadvantages because it was slower at 

inference than the selected YOLOv8. YOLOv8 

outperformed SSD in real-time object detection due to its 

better speed-accuracy balance, which is especially 

important for real-time traffic sign detection. In the intended 

domain, RetinaNet's capacity to manage imbalanced classes 

was not superior to YOLOv8's performance. Even while 

algorithms like Mask R-CNN and EfficientDet were more 

effective, YOLO-especially the YOLOv8s variant was the 

best option. YOLOv8 showed an unparalleled balance 

between speed and accuracy, allowing it to smoothly adapt to 

the real-time requirements of the AI-drive assist system's 

traffic sign detection (Zhang and Zhao, 2022).  

The Table 1 shows that the comparative analysis of 

object detection algorithms, Python programming 

language was employed alongside prominent deep 

learning frameworks such as TensorFlow and PyTorch. 

These frameworks facilitated the implementation of 

various state-of-the-art algorithms, including R-CNN, 

SSD, RetinaNet, EfficientNet, Mask R-CNN, and YOLOv8 

(Lou et al., 2023). The implementation process included 

loading pre-trained models available within each 

framework and conducting inference on the test dataset. 

This dataset comprised diverse real-world images and 

OpenCV was utilized for image processing tasks and 

model evaluation. To assess the effectiveness of the 

algorithms, performance metrics such as speed measured in 

Frames Per Second, (FPS), mean Average Precision 

(mAP), and inference time (measured in milliseconds) were 

computed. These metrics provided insights into the 

efficiency and accuracy of each algorithm in detecting 

objects within the images (Ahmad et al., 2020).  

The YOLOv8 model, a focus of the analysis, was 

trained on the Google Colab platform using the Tesla T4 

GPU for enhanced computational power. The training 

process spanned 25 epochs to ensure the model's 

optimization for reliable results.  



Lazeen Manasia et al. / Journal of Computer Science 2024, 20 (8): 885.897 

DOI: 10.3844/jcssp.2024.885.897 

 

889 

Table 1: Comparative analysis of algorithms  

  Metrics for evaluation 
  ---------------------------------------- 

 Speed Mean Average Inference 

Algorithms (FPS) Precision (mAP) % time (ms) 

R-CNN  1-2 25-30 500-600 

SSD  15-20 30-35 50-60 
RetineNet 5-7  35-40 150-200 

EfficientNet  20-25 40-45 40-50 

Mask R-CNN  1-2 30-35 500-600  

YOLOv8  30-40 50-55 25-30  

 

 
 
Fig. 1: Block diagram of a methodology of AI drive assist 

 

This version is designed to respond quickly to the 

changing road environment by meeting the real-time 

requirements of traffic sign detection. The model uses 

gradient descent and backpropagation to fine-tune its 

parameters throughout 25 epochs of training. The model 

training utilized 25 epochs with images resized to 

640640 pixels. The optimizer employed was the Adam 

optimizer, while the loss function used was the detection 

loss function. Data augmentation techniques included 

random cropping, as well as brightness and contrast 

adjustments, with probabilities of 0.2 and 0.5, respectively. 

Gradient descent iteratively optimizes parameters to 

minimize the detection loss function, while 

backpropagation computes and modifies parameter 

gradients to enable enhanced prediction capabilities. The 

care taken in the selection and training phases 

demonstrates the dedication to developing a highly 

accurate and performant model for the AI-drive assist 

system's real-time traffic sign identification.  

Integration with Python Program  

Owing to the flexible OpenCV library, the trained 

YOLOv8 model converges smoothly with a Python-

based architecture. With the help of this integration, 

camera feeds are processed in real-time and the YOLOv8 

model performs in-depth analysis on each collected 

frame to detect road signs. By using the pyttsx3 library, 

the system's responsiveness is increased even further by 

producing audio alarms that are precisely timed to coincide 

with the model's detections (Wang et al., 2023). This audio 

response, which is closely connected to the traffic signs 

that are being seen, provides a quick and efficient means 

of informing the driver of important directions and 

information. The Python program's integration of these 

technologies creates a dynamic and responsive AI-drive 

assist system that improves user awareness and makes a 

substantial contribution to the overall safety and 

intelligence of driving (De Pra and Fontana, 2020).  

System Operation  

The front camera, which is placed inside the car in a 

strategic way to take a constant stream of pictures of the 

surrounding road scene, is activated first by the AI-drive 

assist system. The basis for real-time monitoring and 

analysis of the dynamic road environment is laid by this 

continuous image capture.  

YOLOv8 Model Processing  

Using the state-of-the-art YOLOv8 model, which is 

well known for its effectiveness in object detection, the 

collected images go through a complex processing stage. 

One of YOLOv8 key differentiators is its ability to 

analyze the full image in a single pass, which is essential 

for quick response in a real-time traffic scenario driving 

(Zhang et al., 2023).  

Object Detection in YOLOv8  

YOLOv8, expanding upon its original processing, 

creates a grid of cells out of the input image and gives 

each one the job of estimating bounding boxes and class 

probabilities for items that might be inside its spatial 

bounds. By incorporating anchor boxes, the model 

improves bounding box predictions by using 

predetermined forms that change dynamically as the 

model is trained.  

Confidence Scores and Class Probabilities  

YOLOv8 creates several bounding boxes, each with a 

confidence score and a class probability, inside each grid 

cell. Class probabilities measure the chance that an object 

will belong to a specific predefined class, whereas 

confidence ratings indicate the model's certainty that an 

object exists within a given bounding box.  

Non-Maximum Suppression  

A crucial post-processing technique called Non-

Maximum Suppression (NMS) is used to improve the 

forecasts. In this step, redundant or low-confidence 

bounding boxes are progressively filtered out, leaving just 

the most accurate and confident predictions. The result 

doesn't get cluttered with overlapping or less certain 

forecasts thanks in large part to NMS.  
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Alert Trigger Mechanism  

After NMS, predictions pass via a thresholding 

process that determines if the road signs it detects are 

important enough to pay attention to. If the answer is yes, 

a voice alarm is set off, which is intended to quickly notify 

the driver of the type of traffic sign that has been spotted 

as well as any relevant instructions.  

Driver Notification  

The system rapidly notifies the driver following a 

positive determination from the thresholding process. The 

driver is guaranteed to receive up-to-date information on 

the identified road signs either the vehicle's audio system 

or a dedicated alert system. Overall road safety and the 

driver's situational awareness are greatly enhanced by this 

open communication.  

Continuous Operation  

All steps of the process run smoothly in an ongoing 

cycle. As the car travels down the road, the front camera 

continuously takes pictures and the YOLOv8 model 

continuously reads, interprets, and categorizes traffic signs. 

This constantly active system architecture guarantees a 

continuous, real-time awareness of road signs, encouraging 

the user to drive defensively and safely.  

Handling Imbalanced Dataset  

To address the intrinsic class imbalance present in the 

LISA dataset, the methodology employed a methodical 

preprocessing strategy that mostly relied on data 

augmentation approaches. The Albumentations library 

was a key component of this plan, acting as a flexible 

instrument to add much-needed variability, especially for 

underrepresented classes. This intentional decision was 

made with the dual goals of strengthening the durability 

of the dataset as a whole and increasing the exposure of 

underrepresented classes. The choice to utilize data 

augmentation alone, without including other methods, 

emphasizes the dedication to a focused and efficient 

approach that puts simplicity and efficacy first. Although 

there is room for future iterations to investigate more 

sophisticated techniques to address class imbalance, the 

existing methodology is a testament to the strong 

effectiveness of data augmentation (Shorten and 

Khoshgoftaar, 2019). We purposefully highlight this 

method in order to provide the groundwork for 

demonstrating its adaptability and efficacy as the main 

strategy for attaining class parity in the complex 

environment of road sign recognition. In addition to 

improving model generalization, the intentional 

introduction of variability through augmentation is in line 

with the overall objective of creating a dependable and 

flexible traffic sign-detecting system.  

Evaluation and Optimization  

To ensure the efficacy and efficiency of the model, a 

multidimensional approach is used in the rigorous 

evaluation and optimization phase of the AI-drive assist 

system (Rathod and Wankhade, 2020). Evaluation metrics 

function as quantitative measures to evaluate the 

performance of the model. Examples of these metrics are 

precision, recall, and F1 score. Recall evaluates the model's 

ability to catch all pertinent cases, whereas precision shows 

how accurate positive detections are. The F1 score offers a 

thorough insight into the model's overall efficacy by striking 

a balance between precision and recall.  

It is essential to optimize the AI-drive assist system 

continuously. Through careful modifications to the model 

architecture, this iterative method makes use of insights 

gleaned from evaluation metrics. Furthermore, 

sophisticated methods are investigated to extend the limits 

of detection powers. Hyperparameters are adjusted to 

improve the system's overall accuracy and efficiency. With 

unmatched accuracy and dependability, the AI-drive assist 

system can adapt and withstand changing traffic conditions 

thanks to its dynamic optimization technique.  

Implementation  

The following architecture diagram given in Fig 2. 

illustrates the overall implementation of the system.  

The incorporation of the AI-drive assist system into a 

car camera requires a sophisticated strategy that includes 

both software and hardware setups. The vehicle 

environment needs to be equipped with an advanced 

camera system that can record footage in real-time. 

Simultaneously, the necessary software stack, which 

includes the OpenCV library, the Python runtime 

environment, and model dependencies, needs to be 

installed on the car's embedded computer system.  

On the vehicle computer unit, the pre-trained 

YOLOv8s model for real-time traffic sign detection is 

installed. A custom Python application is carefully written 

to interact with the live video stream, making use of the 

OpenCV package to process video. The YOLOv8s model 

is smoothly integrated by this application to perform 

object detection on the incoming video frames.  

Predictions are then evaluated and if relevant traffic 

signs are identified, audio alarms are initiated. Through 

the audio system of the car, the auditory alert system 

provides the driver with timely and relevant feedback 

(Sahithi et al., 2023).  

The system's operating paradigm is a never-ending 

loop that guarantees road sign processing always occurs 

while the car is moving. Thorough testing protocols, 

calibration of the system, and possible user interface 

integrations all help to realize a stable AI-drive assist 

system that blends in well with the vehicle camera system, 

improving road safety and driver awareness.  
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Fig. 2: Architecture diagram 

 

Furthermore, the AI-drive assist system acknowledges 

the dynamic nature of road situations and places a high 

priority on adaptability and scalability. The YOLOv8 

model is updated and improved upon continuously and 

these updates and improvements are easily included into 

the system, guaranteeing its adaptability to changing 

traffic conditions and new road sign regulations. 

Because of the software architecture's ability to support 

remote updates, the most recent developments in 

computer vision and machine learning may be 

incorporated without the need for human participation.  

Moreover, the AI-drive assist system incorporates 

sophisticated decision-making algorithms, which go beyond 

the recognition of traffic signs. The system can deliver 

anticipatory alerts for potential risks, fluctuating speed limits, 

and changing road conditions by analyzing the contextual 

information collected from the camera feed. This 

comprehensive strategy promotes a symbiotic interaction 

between cutting-edge technology and human intuition on the 

road, improving both road safety and the driving experience 

by making it more comfortable and informed.  

Results and Discussion  

The ensuing presentation outlines the results, 

depicting the comprehensive workflow of the 

application's model.  

In binary classification, the F1 confidence curve is a 

useful visual aid that illustrates the complex relationship 

between the F1 score and confidence thresholds. With 

the use of this graphical depiction, practitioners can 

investigate the effects of changing confidence thresholds 

on the balance between recall and precision. The curve 

illustrates the F1-score over a range of confidence levels 

and sheds light on the dynamics of the model's 

performance. It helps identify the ideal threshold that 

minimizes both false positives (precision) and false 

negatives (recall), enabling practitioners to make well-

informed decisions regarding the deployment and tuning 

of the model for particular use cases. The confidence 

threshold, or the lowest degree of confidence needed for 

a detection to be regarded as a positive prediction, is 

shown by the x-axis of the F1 confidence curve graph. 

Figure 3 gives that the F1 score, which is the harmonic 

mean of recall and precision, is represented on the y-axis. 

When the confidence level is set to 0.709, the F1-score 

for all classes is 0.94. This results in a high F1-score, 

indicating that the model's predictions are very accurate 

at a particular confidence level. At a given confidence 

threshold, a higher F1-score denotes a better balance 

between precision and recall; the curve can be used to 

determine the confidence value that optimizes the model's 

overall performance.  

Additionally, the F1 confidence curve provides 

valuable insights into the trade-off between precision and 

recall, allowing practitioners to make informed decisions 

about the model's performance in real-world scenarios. By 

analyzing this curve, stakeholders can fine-tune the 

model's threshold to meet specific requirements and 

optimize its performance for different applications.  

A precision-confidence curve is a graphical depiction 

that helps assess how different confidence levels affect 

prediction precision by showing the relationship between 

precision and varying confidence thresholds in a 

classification model. With the confidence level set at 1.00, 

the precision of the model for all classes is 0.98. The 

precision for each class is shown by the y-axis, while the 

confidence threshold is represented by the x-axis. When the 

confidence criterion is set to 1.00 in this instance, the 

precision for every class is 0.98. This results in a high 

precision score, indicating that the model's predictions are 

quite accurate at a particular confidence level. A model that 

scores higher on precision is more likely to produce fewer 

false positive predictions. As a result, the precision 

confidence curve graph is useful for choosing a confidence 

threshold that maximizes the overall precision of the model.  

Figure 4 shows a precision-recall curve, which is a 

common metric used to evaluate the performance of 

object detection models. The curve illustrates the tradeoff 

between precision (the proportion of true positives among 

all predicted positives) and recall (the proportion of true 

positives among all actual positives) for a given object 

detection model. In this case, the curve represents the 

performance of the model on all classes (all classes). The 

mAP@0.5 value, which is also indicated on the curve, 

represents the mean Average Precision (mAP) calculated 

at an Intersection over Union (IoU) threshold of 0.5. This 

metric provides a single value to summarize the overall 

performance of the model across all classes and IoU 

thresholds. As can be seen from the figure, the model 

achieves a high mAP@0.5 value of 0.968, indicating good 

overall performance. The curve also shows that the model 
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has a high precision at all recall levels, which means that 

it is able to correctly identify most of the objects it detects. 

However, the recall is not as high as the precision, 

especially at lower recall levels. This suggests that the 

model may miss some of the smaller or more difficult-to-

detect objects which is given in Fig. 5.  

Overall, the precision-recall curve shows in Fig.6 

demonstrates that the object detection model has good 

performance on the given dataset. The high mAP@0.5 value 

and the high precision at all recall levels indicate that the 

model is able to accurately detect most of the objects. 

However, the lower recall at lower IoU thresholds 

suggests that there is still room for improvement in 

detecting smaller or more challenging objects.  

A confidence level of 0.5, the mean Average Precision 

(mAP) for all classes is 0.968. The best confidence 

threshold at which the model performs at its best can be 

found by combining the precision and recall metrics into 

a single metric called mean average precision. The model 

performs well generally across all classes, as indicated by 

the mAP of 0.968 at a confidence level of 0.5. This 

measure is frequently employed to assess how well object 

detection models perform.  

The training process of the system was monitored 

by tracking three loss functions: Box loss (Plot 1), DFL 

loss (Plot 2), and classification loss (cl) (Plot 3), 

visualized in Figs. 7-8.  

Box Loss (Box_Loss)  

The difference between the ground-truth and 

anticipated bounding boxes is measured by this loss 

function. It is employed to train the model so that it can 

correctly forecast where items will be found in the 

pictures. The number of training epochs, or iterations, is 

shown on the x-axis. The value of the box loss function at 

each iteration or epoch is shown on the y-axis. The box 

loss curve exhibits a steady decrease from an initial value 

of around 0.18 to a minimum of approximately 0.12 by 

epoch 20. This decline indicates that the model effectively 

learned to localize objects accurately throughout the 

training process. Primarily between epochs 20 and 25, 

slight fluctuations are observed in Table 2.  

Classification Loss (CLS_Loss)  

The difference between the ground truth and predicted 

class labels is measured by this loss function. It is 

employed to educate the model so that it can correctly 

identify the things in the pictures. The number of training 

epochs, or iterations, is shown on the x-axis. The value of 

the classification loss function at each iteration or epoch 

is shown on the y-axis. The classification loss curve 

demonstrates a consistent downward trend, starting from 

around 0.32 and steadily decreasing to reach a minimum 

value of approximately 0.25 by epoch 20. This continuous 

improvement signifies that the model's ability to 

distinguish between different object classes consistently 

improved throughout the training process. There is a 

slight increase towards the end, reaching a value of around 

0.27 by epoch 2, it shows in Table 3.  

 

 
 
Fig. 3: F1-confidence curve 

 

 
 

Fig. 4: Precision-confidence curve 

 

 
 
Fig. 5: Recall-confidence curve 
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Fig. 6: Precision-recall curve 
 

 
 
Fig. 7: Train results 
 

 
 
Fig. 8: Validation results 
 
Table 2: Training results  

 Loss function  

 ---------------------------------------------------------- 

Epoch Box loss    Box loss  

  1  1.22 1 1.22 

  5  0.87 5 0.87 

10  0.78 10 0.78 

15  0.71 15 0.71 

20  0.63 20 0.63 

25  0.57 25 0.57   

 

Table 3: Validation results  

 Loss function 

 -------------------------------------------------------------- 

 Box Classification Distribution focal  

Epoch loss loss loss 

  1  0.93 1.44 0.92 

  5  0.79 0.56 0.87 

10 0.72 0.46 0.85 

15 0.68 0.40 0.84  

20  0.65 0.34 0.83 

25 0.63 0.32 0.83 

Distribution Focal Loss (DFL_Loss)  

Table 3 explores the Distribution Focal Loss 

(DFL_loss) is a newly proposed loss function tailored to 

tackle class imbalance issues encountered in object 

detection. It builds upon the foundation laid by Focal 

Loss, incorporating distributional insights to better handle 

varying densities of examples within each class. 

Strategically assigning higher weights to challenging 

instances, enabling the model to focus on learning 

discriminative features crucial for precise object 

detection. This augmentation empowers the model to 

better differentiate between easy and hard examples, 

thereby enhancing its overall performance in detecting 

objects accurately. The DFL loss curve follows a similar 

pattern to the box loss, starting from around 0.35 and 

gradually decreasing to nearly 0.3 by epoch 20. This trend 

suggests that the model successfully addressed class 

imbalance and diverse object shapes during training. 

To enhance the model's performance during training, 

these loss functions are computed and modified at each 

epoch. Keeping an eye on these loss functions can assist 

in pinpointing problem areas and enhance the 

functionality of the model. A model may not be 

functioning effectively in a particular area if one of its loss 

functions is consistently higher than the others. In this 

case, the training configuration or hyperparameters may 

need to be changed to improve the model's performance.  

In Table 2, the box loss values, classification loss 

values, and distribution focal loss values are demonstrated 

as observed during the training of the system for the given 

epoch values.  

The testing process of the system was monitored by 

tracking three loss functions: Box loss (Plot 1), DFL loss 

(Plot 2) and classification loss (cl) (Plot 3), visualized.  

Validation Box Loss (Val/Box_Loss)  

The first graph, labeled 'val/box_loss', shows a rapid 

decrease in loss from the initial epoch to around the fifth 

epoch, followed by a more gradual decline. The loss 

stabilizes after approximately 20 epochs, indicating that 

the model's ability to predict bounding boxes has 

plateaued. This loss function calculates the percentage of 

inaccuracy in estimating bounding box coordinates during 

validation. As a result, the model is encouraged to match 

the projected bounding boxes with the ground truth boxes. 

The number of validation epochs, or iterations, is shown 

on the x-axis.  

Validation Classification Loss (Val/Cls_Loss)  

The second graph, labeled 'val/cls_loss', depicts a 

similar trend with a sharp decline in classification loss 

within the initial epochs, followed by a steady 

convergence to a lower loss value. This suggests that the 

model's classification accuracy is improving and 
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stabilizing as training progresses. During the validation 

phase, this loss function measures the mistake in 

guessing the object class for each bounding box. It 

guarantees that the category of the object is correctly 

identified by the model. The number of validation 

epochs, or iterations, is shown on the x-axis. The value 

of the classification loss function at each validation 

iteration or epoch is shown on the y-axis. 

Validation Distribution Focal Loss (Val DFL_Loss)  

The third graph, labeled 'val/dfl_loss', also shows a 

decrease in loss, but the trend is less steep compared to the 

other two. The 'dfl_loss' metric appears to converge slowly, 

suggesting that whatever aspect of the model's performance 

it measures is more challenging to optimize. The number of 

validation epochs, or iterations, is shown on the x-axis. The 

value of the distribution focal loss function at each 

validation iteration or epoch is shown on the y-axis.  

These loss functions are computed and updated 

throughout validation to assess the model's performance 

on hypothetical data. Keeping an eye on these loss 

functions can assist in pinpointing problem areas and 

enhance the functionality of the model.  

In Table 3, the box loss values, classification loss 

values, and distribution focal loss values are demonstrated 

as observed during the validation of the system for the 

given epoch values.  

Precision (B)  

In order to evaluate the model's capacity to prevent 

false positives, precision measures the percentage of true 

positives among all positive predictions for a given class 

(B). In order to compute it, divide the number of True 

Positive detections (TP) by the number of False Positive 

detections (FP), or TP/(TP + FP). The graph indicates an 

initial increase in precision, followed by some 

fluctuations and eventual stabilization, suggesting that the 

model is maintaining a high precision rate after a certain 

number of epochs.  

Recall (B)  

For a given class (B), recall quantifies the percentage 

of real positive detections among all of the bounding 

boxes. It is computed as TP/(TP + FN), where TP is the 

number of true positive detections and FN is the number 

of false negative detections. It is also referred to as 

sensitivity or true positive rate. The recall value increases 

sharply at the beginning and then plateaus, indicating that 

the model is consistently identifying a high proportion of 

the actual positive cases as the training progresses.  

mAP50 (B) 

Mean average precision for a given class (B) at an 

Intersection over Union (IoU) criterion of 0.50. It is an 

indicator of how accurate the model is when simply taking 

into account "easy" detections. The graph shows a rapid 

increase to a high mAP50 score, which then levels off, 

demonstrating that the model achieves a strong performance 

in detecting objects with a moderate IoU threshold.  

mAP50-95 (B)  

The mean Average Precision (mAP) for a specific 

class is calculated by evaluating the precision of the 

model's detections across various Intersections over 

Union (IoU) thresholds, typically ranging from 0.50-0.95. 

This comprehensive analysis provides a detailed 

understanding of how well the model performs at different 

levels of detection precision.  

The trend observed in the mAP curve for Class B is 

similar to that of mAP50, which mainly focuses on a 

single IoU threshold of 0.50. Initially, there's a rapid 

increase in the mAP as the IoU threshold increases, 

followed by a stabilization indicating a consistent 

performance across a range of IoU thresholds. 

However, it's noteworthy that the final mAP values 

obtained for Class B are typically lower than mAP50. 

This difference is expected due to the increased 

difficulty of achieving high precision across a broader 

range of IoU thresholds.  

These metrics, including mAP and class-specific 

mAPs, serve as fundamental tools for assessing the 

efficacy of object detection models. They offer valuable 

insights into the model's ability to accurately identify 

objects of interest under various conditions and are 

essential for making informed decisions about model 

optimization and deployment.  

In Table 4, the precision (B), Recall (B), mAP50 (B), 

and mAP50-95 (B) values are demonstrated as observed 

for the given epoch values.  

Figure 9, the system accurately detects the school sign 

with an accuracy of 0.60.  

Figure 10, the system accurately detects the stop sign 

with an accuracy of 0.88.  

Figures 11-12, the system accurately detects the signal 

ahead sign with an accuracy of 0.59.  

 

Table 4: Results  

 Metric for evaluation epoch 

 ----------------------------------------------------------------------------- 

 Precision(B)  Recall(B)  mAP50(B)  mAP50-95(B)  

  1  0.64 0.26 0.32 0.24 

  0.83 0.64 0.77 0.62 

  5  0.83 0.92 0.94 0.78  

  0.85 0.94 0.95 0.80  

10  0.94 0.94 0.97 0.82 

  0.94 0.94 0.97 0.83  
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Fig. 9: Metrics for evaluation 

 

 
 
Fig. 10: Detection of school road sign 

 

 
 
Fig. 11: Detection of stop road sign 

 

 
 
Fig. 12: Detection of signal ahead road sign 

Conclusion  

This study describes the successful implementation 

of a real-time traffic sign identification and 

interpretation system employing text-to-speech 

synthesis and the You Only Look Once (YOLO) object 

detection paradigm. The goal of the article was to 

develop an intelligent system that could identify 

different traffic signs from a live video stream and speak 

instructions according to the signs it identified. With the 

help of the YOLO model, the system was able to detect 

objects in video frames in real-time, which made it 

possible to recognize traffic signs without sacrificing 

system performance. By mapping the model's output to 

human-readable traffic sign labels, the identified signs 

were made easier to interpret. In order to guarantee that 

the user received appropriate and pertinent instructions, 

conditional statements were utilized to dynamically 

construct spoken instructions based on the indicators 

that were observed. Text-to-speech synthesis was 

integrated into the system to provide audible 

communication of recognized signs, making it 

accessible and user-friendly.  

However, some of the limitations include the inability 

to detect partially occluded signs, limited detection under 

varying lighting conditions, and misclassification of signs 

with similar structures. The probable cause for 

misclassification is believed to be the smaller model size 

and insufficient training data under various real-world 

conditions. The future scope would be to better deal with 

cluttered scenes and partially occluded objects and use 

larger YOLOv8 models such as YOLOv8 and YOLOv8l 

instead of YOLOv8 (which is limited to 11.2 million 

parameters), on better hardware to capture more detail of 

the road signs. The use of datasets such as Tsinghua-

Tencent 100 k is recommended since it is much larger and 

contain images with large variations in illuminance and 

weather conditions.  
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