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Abstract: Endoscopy is the routine medical procedure to observe tumors in the 

human Gastrointestinal (GI) tract by inserting an endoscope, a thin, flexible, 

tube-like instrument with a light source and camera. Traditionally, an 

endoscopist performs the endoscopy, orients the endoscope within these 

structures and navigates this through the help of familiar anatomical landmarks 

to reach the abnormalities and mark them. Identifying landmarks and 

abnormalities is critical for the maneuver and the success of endoscopy, which 

is related to the patient’s comfort, injury and accurate diagnosis. The manual 

naked-eye-observation maneuver and examination are highly challenging, take 

a long time and often cause discomfort to the patients and the endoscopists. As 

a result, several AI-based landmark detection methods have been proposed 

recently to facilitate autonomous endoscopy examination. However, these 

methods lack accuracy and consider only limited landmarks. This study presents 

a Data-efficient image Transformer (DeiT)-based method to detect anatomical 

landmarks and anomalies for autonomous endoscopy. The proposed method 

detected 23 landmarks and anomalies from the entire GI tract with 99% accuracy 

and precision, outperforming the state-of-the-art (91%). Moreover, this method 

took only 0.045 sec to identify a landmark. The phi coefficient (0.997) indicated 

a strong positive association between the proposed method and clinical ground 

truth. Strong association, high accuracy and rapid speed ensured the reliability of 

the proposed method for autonomous endoscopy examination. 

  

Keywords: Endoscopy, Anatomical Landmarks, Transformer, Abnormality 
Detection, Computer Aided Diagnosis 

 

Introduction  

Over the past few decades, there has been a notable 

increase in Gastrointestinal (GI) related health issues 

worldwide. The World Health Organization (WHO) 

reports that colorectal and stomach cancers currently 

account for the majority of cancer cases worldwide, with 

2.8 million new cases and 1.6 million deaths from these 

cancers in 2018. GI tract-related cancers have a 

combined mortality of about 63% with 2.2 million 

deaths per year (Ferlay et al., 2015). The primary step in 

diagnosing and treating Gastrointestinal (GI) problems 

is endoscopy to examine and diagnose abnormalities. An 

endoscopist performs an endoscopy by inserting the 

endoscope into the suspected GI tract region through a 

minor incision or natural body opening, such as the 

mouth, anus, or urethra. Then, the camera attached to the 

endoscope sends the video signal, which endoscopists 

observe on a screen to examine in real time. 

Endoscopists use anatomical landmarks such as Z-line, 

pylorus, cecum, ileum and others inside the GI tract 

observed on the screen to safely navigate the endoscope 

to the region of interest during endoscopy. Anatomical 

landmarks are also used to confirm the location of a 

lesion and help follow a predetermined path for 

endoscopy. Endoscopists must also identify 

abnormalities and pathological findings such as polyps 

and hemorrhoids. Some findings are used to indicate the 

quality of views inside the GI tract. For example, the 

Boston Bowel Preparation Scale (BBPS), used to 
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indicate the degree of clean bowel or the quality of 

mucosal views, is necessary for accurate endoscopy. 

Some pathological findings include therapeutic 

interventions that show previously treated regions or 

treatment markings. For example, polyps are lifted with 

submucosal injection using a solution before 

resectioning. This finding is termed dyed lifted polyps, 

which appear blue in endoscopy. After the resection, the 

resection margins and site also appear blue, termed dyed 

resection margin. There are instances when the 

endoscopists also need to cut tissue or dilate narrow 

passages. The landmarks, abnormalities and 

pathological findings can be observed in entire GI tracts, 

which are classified according to the minimal standard 

terminology by the World Endoscopy Organization 

(Aabakken et al., 2014). This terminology provided a 

standardized model for categorizing the endoscopic 

findings. The success of the endoscopy and the comfort 

and safety of the patient depends on accurately 

identifying landmark and pathological findings and 

abnormalities. In this research, we have followed the 

guidelines of the world endoscopy organization 

(Aabakken et al., 2014) and designed the proposed 

system to classify them into 23 classes, which include 

major anatomical landmarks, abnormalities, pathological 

findings, mucosal views and therapeutic interventions, as 

shown in Fig. 1. However, for simplicity, we termed them 

as anatomical landmarks and abnormalities. 

At the moment, endoscopists use their naked eyes to 

identify landmarks and abnormalities manually. The highly 

challenging manual examination takes a lot of time and 

effort, frequently resulting in discomfort and occasionally 

causing injury. This manual examination-based endoscopy 

depends on an expert’s availability and causes delays in 

healthcare, particularly in Bangladesh, where there is a 

shortage of healthcare professionals (Hossain et al., 2022). 

Furthermore, our investigation revealed interobserver 

variability in the manual examination. In this study, three 

endoscopists were given 2272 endoscopy images and asked 

to classify them into one of the 23 classes. The results are 

presented in Table 1, which shows inter-observer variation. 

In another study, Kaminski et al. (2010) reported a 20% 

polyps miss-rate in the colon (Kaminski et al., 2010). These 

findings suggest the need for an automated endoscopy 

examination method that can improve the accuracy of 

endoscopy examination and diagnosis to reduce morbidity 

and deaths associated with GI disease. Artificial 

Intelligence (AI) has recently shown significant success in 

developing image-based automated analysis and diagnosis 

systems, which have aided medical professionals in 

delivering high-quality care to many patients in big 

hospitals and laboratories. Inspired by these studies, we 

proposed an AI-based solution for autonomous endoscopy 

examination in this study. 

 
Table 1: Comparison of proposed method with experts manual examination 

Anatomical landmarks Examination by Examination by Examination by Classification by 

and abnormalities expert A % expert B % expert C % proposed method % 

Barrett 78/86 (90) 82/86 (95) 86/86 (100) 86/86 (100) 

Barrett’s short segment 92/99 (93) 97/99 (98) 99/99 (100) 99/99 (100) 

BBPS 0-1 89/100 (89) 92/100 (92) 96/100 (96) 100/100 (100) 

BBPS 2-3 66/77 (85) 71/77 (92) 72/77 (93) 76/77 (98) 

Cecum 107/116 (92) 110/116 (95) 115/116 (99) 115/116 (99) 

Polyps 107/107 (100) 107/107 (100) 107/107 (100) 106/107 (99) 

Dyed lifted polyps 97/97 (100) 97/97 (100) 97/97 (100) 97/97 (100) 

Dyed resection margin 93/93 (100) 93/93 (100) 93/93 (100) 91/93 (97) 

Esophagitis-a 88/99 (88) 91/99 (91) 94/99 (94) 99/99 (100) 

Esophagitis b-d 96/107 (89) 97/107 (90) 99/107 (92) 106/107 (99) 

Hemorrhoids 102/102 (100) 102/102 (100) 102/102 (100) 102/102 (100) 

Ileum 93/101 (92) 95/101 (94) 98/101 (97) 101/101 (100) 

Impacted stool 96/96 (100) 96/96 (100) 96/96 (100) 96/96 (100) 

Pylorus 88/102 (86) 92/102 (90) 95/102 (93) 102/102 (100) 

Retroflex rectum 98/100 (98) 99/100 (99) 99/100 (99) 100/100 (100) 

Retroflex stomach 101/112 (90) 105/112 (94) 107/112 (95) 112/112 (100) 

Ulcerative colitis 0-1 72/81 (88) 78/81 (96) 78/81 (99) 81/81 (100) 

Ulcerative colitis 1-2 87/107 (81) 88/107 (82) 90/107 (84) 107/107 (100) 

Ulcerative colitis 2-3 101/110 (92) 105/110 (95) 104/110 (95) 110/110 (100) 

Ulcerative colitis 1 77/97 (79) 79/97 (81) 82/97 (84) 97/97 (100) 

Ulcerative colitis 2 72/78 (92) 71/78 (91) 73/78 (93) 78/78 (100) 

Ulcerative colitis 3 96/104 (92) 93/104 (89) 96/104 (92) 104/104 (100) 

Z-line 88/101 (87) 93/101 (92) 97/101 (96) 101/101 (100) 

Overall 2084/ 2272 (91) 2133/2272 (93) 2175/2272 (95) 2266/2272 (99) 
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Fig. 1: Major anatomical landmarks and abnormalities of GI tract 

 

Previously, several AI-assisted methods were 

proposed for this purpose; however, they failed to meet 

the primary requirements for the automation of endoscopy 

examination for practical use, which are accuracy, speed 

and ability to identify diverse landmarks. Most of the 

methods detected only selected abnormalities or 

conditions such as polyps. Other methods detected limited 

landmarks or abnormalities from specific parts of the GI 

tract, such as the upper or lower GI tract. These methods 

are suitable for the diagnosis of a specific condition 

(Hossain et al., 2023; Ozawa et al., 2020; Bour et al., 

2019; Tomar et al., 2021; Misawa et al., 2021; Aliyi et al., 

2023) (i.e., hyperproliferation, severe dysplasia) or cancer 

(Suzuki et al., 2021; Luo et al., 2019; Hirasawa et al., 

2018; Iwagami et al., 2021) (i.e., adenocarcinoma, 

colorectal cancer, stomach cancer), but not suitable for 

fully-automated endoscopy examination. Only a few 

methods were intended for complete autonomous 

endoscopy examination; however, they detected only 

limited landmarks or abnormalities, additionally failed to 

achieve adequate accuracy and practical usability (Che et al., 

2021; Tran et al., 2021; Ayyoubi Nezhad et al., 2022; 

Borgli et al., 2020). Che et al. (2021) proposed a method 

for detecting anatomical landmarks in the lower GI tract 

from colonoscopy videos. They trained ResNet-101, a 

CNN-based network, to detect three landmarks, which 

achieved 92% accuracy. Tran et al. (2021) proposed 

another CNN-based method for detecting anatomical 

landmarks from the upper GI tract. They have detected ten 

landmarks with 97% accuracy, suitable automated 

esophagogastroduodenoscopy. These methods Che et al. 

(2021); Tran et al. (2021) were trained and tested using 

locally collected data. Ayyoubi Nezhad et al. (2022) 

proposed a method for detecting landmarks from the 

entire GI tract. This method also relied on the CNN-based 

network to detect three landmarks with 99% accuracy. This 

method was trained on the Kvasir dataset (Pogorelov et al., 

2017), a public dataset containing ten anatomical 

landmarks and abnormalities of the GI tract. Despite being 

developed for the entire GI tract, this method only 

considered three landmarks, making it impractical; also, the 

CNN model was trained for a limited number of epochs, 

resulting in an over-fitted network. Borgli et al. (2020) 

prepared a dataset called hyper kvasir to facilitate the 

development of autonomous endoscopy examination 

methods and proposed a CNN-based method for landmark 

and abnormality detection that works for the entire GI 

tract. Hyper kvasir is currently the largest dataset with the 

most landmarks and abnormalities. Borgli et al. (2020) 

combined two CNN-based models, ResNet-152 and 

DenseNet-161, to predict the final class. However, this 

method only achieved an average accuracy of 91% for 

detecting 23 landmarks. Even though its accuracy is 

insufficient, this method was developed to identify 

landmarks and abnormalities from the entire GI system 

and detected diverse landmarks of 23 types, which aligns 

with the goal of this study. 

All the abovementioned methods considered only a 

few landmarks for detection, except Borgli Hanna’s 

method (Borgli et al., 2020). Moreover, none of these 

methods underwent an analysis to determine their 

feasibility for practical use. Thus, these systems are not 

suitable for complete autonomous endoscopy 

examination. This study aims to develop a method for 

autonomous endoscopy examination for the entire GI 

tract. The major contributions of this study include (1) 

The development of an AI-assisted landmark and 

abnormality classification method for autonomous 

endoscopy examination, (2) A comparison of CNN and 

transformer-based networks for endoscopic landmark 

classification with limited data and (3) Feasibility analysis 

of the proposed method for practical use. 
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Methods 

Data Collection, Evaluation and Balancing 

Several datasets of the GI tract are available; however, 

most of these datasets have limited landmarks or 

abnormality images. Most of them only contained polyps 

images, the most common abnormality. Hyper kvasir 

(Borgli et al., 2020) is the largest dataset with the most 

landmarks suitable for developing an AI-assisted 

autonomous system. Therefore, we have used and 

enhanced the hyper kvasir dataset for our experiment. The 

images of hyper kvasir were collected from routine 

clinical examinations performed at the department of 

gastroenterology of Baerum hospital, Vestre Viken 

hospital trust, Norway, from 2008-2016. 

The endoscopy was performed using standard 

Olympus and Pentax endoscopy machines. The images 

were extracted from the endoscopy videos and labeled by 

experienced gastrointestinal endoscopists. 

As illustrated in Fig. 2, the hyper kvasir dataset had 

10,662 labeled images of 23 different types, which 

included anatomical landmarks, pathogenic findings, 

therapeutic actions and typical abnormalities. The images 

manifest findings from the lower and upper GI tracts, 

including three anatomical landmarks from each GI tract, 

four pathological findings from the upper and eight from 

the lower GI and two therapeutic interventions and three 

mucosal landmarks from the lower GI tract. Upper GI tract 

anatomical landmarks include the pylorus, z-line and 

retroflex stomach. Barretts, Barrett’s short segment, 

esophagitis a and esophagitis b-d are pathological findings 

of the upper GI tract. The cecum, ileum and retroflex 

rectum are the anatomical landmarks of the lower GI tract. 

Polyps, hemorrhoids, ulcerative colitis 1, ulcerative colitis 2, 

ulcerative colitis 3, ulcerative colitis 0-1, ulcerative colitis 

1-2 and ulcerative colitis 2-3 are pathological findings of 

lower GI. Lower GI therapeutic interventions include dyed 

lifted polyps and resection margins, whereas mucosal 

landmarks include BBPS 0-1, BBPS 2-3 and impacted 

stool. For simplicity, we have termed these as anatomical 

landmarks and abnormalities in this study. 

The number of images per class in the hyper kvasir 

dataset is not balanced; also, just a few images are 

available for several classes such as Ileum, hemorrhoids, 

ulcerative colitis 0-1, ulcerative colitis 1-2, ulcerative 

colitis 2-3 and Barretts. It is challenging to train AI 

models with skewed data. Furthermore, some classes have 

fewer than ten images, making balancing the dataset using 

augmentation approaches impractical. Over-fitting occurs 

when a model is trained with augmented images generated 

from a small set. As a result, in this study, we initially 

enhanced the quantity of images for minority classes by 

including images from a local hospital. The images were 

captured using a Pentax endoscopy machine. The images 

collected from the local hospital were included only in the 

test dataset to evaluate the robustness of the models. 

Following that, each class had at least 200 images. The 

dataset was then augmented by flipping and rotating the 

images. In the third step, we evaluated the quality of the 

images for which we performed focus blur detection and 

black pixel and white pixel estimation. If an image suffers 

from focus blur or mainly contains black or white pixels, 

it is eliminated for the analysis. This three-step image 

augmentation and verification resulted in a balanced and 

expanded dataset of 23,000 images where each class has 

1000 images, as illustrated in Fig. 2

 

 
 

Fig. 2: Adjusting the number of images per class to balance the dataset 
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The images were then used to train, validate and test 

machine learning models to find the most suitable 

network for the proposed system. 13800 (60%), 4600 (20) 

and 2300 (10%) of the 23,000 images were used for 

training, validation and testing of the machine learning 

networks, respectively. Each set has the same number of 

images for each class. Additionally, we prepared a 

separate test set, which had 2272 images for the 23 classes, 

collected from the local hospital. The number of images 

was different for the classes in this test dataset. 

Endoscopists utilized these for manual examination. The 

best DeiT, ViT and CNN-based networks were evaluated 

using this test set and the results were compared to the 

results of the manual examination. This is a 

heterogeneous test set, with images captured using a 

different endoscopy machine in the local hospital. 

However, as shown in green in Fig. 2, some images 

captured in this hospital were included in the training 

dataset, marginally compromising the heterogeneity of 

this test set. Both test sets were unseen while the models 

were being trained and validated. 

Image Quality Assessment 

Image quality is crucial for training machine learning 

models because it affects their stability, robustness, 

practical applicability and generalization capability. 

High-resolution images are often a fundamental 

prerequisite for achieving good accuracy of machine 

learning models in computer vision and related fields, 

especially for medical image analysis (Hossain et al., 

2018). The major issues related to the quality of 

endoscopy images are focus problems, noise, brightness 

and color (Nishitha et al., 2022). Accurate diagnosis and 

treatment would be compromised in images impacted by 

these problems. Black and white areas of endoscopic 

images are additional problems associated with training 

machine learning models. Machine learning algorithms 

are confused by dark, black and excessively sharp or 

mostly white parts that primarily belong to the 

background. Therefore, the proposed method was 

designed to eliminate images that contained mostly black 

or white areas. The proposed system’s method for 

evaluating image quality begins with identifying black or 

white regions. In a grayscale image, a pixel with an 

intensity value less than 50 is regarded as black. In 

contrast, a pixel is considered white if its intensity exceeds 

200. An image is rejected for further examination if it 

contains more than 50% black or white pixels. 

Subsequently, the images’ focus issues and noise are 

identified. To identify focus error and noise, the proposed 

method utilized the reference-less image quality 

evaluation method proposed by Shakhawat et al. (2020). 

This method incorporated the subjective evaluation of 

medical practitioners with the objective evaluation to 

justify their image quality assessment method, which is 

significant to ensure the practical usability of the method 

for other medical imaging-related applications. Moreover, 

this method is reference less and suitable for our work, as 

finding an ideal endoscopy image is challenging. We 

utilized this method and estimated the width of the edges 

as the difference between its local maxima and local 

minima for the endoscopy images. The sharp edges had a 

low difference value compared to the blurred edges. Then, 

the average edge width was calculated for the images. An 

image was considered blurry or out of focus if its average 

edge width exceeded five. We considered pixel noise if its 

intensity value is random and independent from its 

neighboring pixels for noise detection. Firstly, we 

produced a blurry version of the original images by 

applying a Gaussian blur filter to the original images. 

Then, the blurred version of the image is subtracted from 

the original one. After that, the minimum difference of 

pixel values in a 33 window was calculated for all the 

pixels of the resultant images. The minimum difference 

value is high for a noise pixel with an independent 

neighborhood value. Finally, the average minimum 

difference value of the images was used as the noise 

indicator. An image with an average minimum difference 

value higher than ten was eliminated as a noisy image. 

Finally, an image not affected by black pixel, white pixel, 

blur, or noise artifacts was utilized for the proposed method 

and transformed to the sRGB color space from RGB. The 

color transformation was performed to compensate for the 

color variation. The image quality assessment approach 

ensured that only good-quality images were used for 

landmark detection. Moreover, this is crucial to ensure the 

method’s robustness regardless of the endoscopy machines. 

Model Training, Evaluation and Selection 

Achieving good accuracy in multi-class classification 

problems is challenging. Classifying a new instance into one 

of the many classes is more complex than making the same 

decision where there are fewer classes (Moral et al., 2022). 

Therefore, in this study, we undertook an exhaustive search 

to select the best deep-learning network to classify 

anatomical landmarks and abnormalities from one of the 

23 classes. This process involved intensive data curation, 

model selection, network tuning, demonstration and careful 

evaluation. This study examined the performance of CNN 

and transformer-based deep learning models for multi-class 

landmark detection when trained using a limited dataset. The 

exemplary CNN-based networks used the VGG16, VGG19, 

InceptionV3, ResNet101, EfficientNet and DenseNet169 

models. For the transformer model, ViT and DeiT-based 

networks were utilized. In the case of ViT, two different base 

models were utilized. Fine-tuned networks of these models 

were developed by optimizing the hyper-parameters and 

training them using the training dataset. Then, the fine-tuned 

networks of all models were tested for the same test data and 
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compared in terms of their accuracy, precision, recall, 

F1-score and Area Under the Curve (AUC). 

CNNs are explicitly designed for image processing and 

found effective in medical image analysis. CNN-based 

models mainly comprise convolutional and pooling 

operations layers, followed by fully connected layers. 

Convolutional layers capture local features and pooling 

layers help reduce spatial dimensions. On the other hand, 

transformers were originally developed for natural 

language processing, utilizing a self-attention mechanism. 

This self-attention technique was later found highly 

effective in understanding dependencies between image 

patches, which is not possible using CNN-based 

architecture. Consequently, the ViT model outperformed 

the CNN models for various medical imaging 

applications. However, the ViT required a significantly 

large amount of data to train and when trained using a 

small dataset, it often fails to achieve adequate accuracy. 

The data requirement of ViT becomes more critical for 

multi-class problems, especially when the number of 

classes is as large as 23. In the absence of adequate data, 

the performance of ViT falls significantly. With the 

exception of an additional distillation token in the input 

token part, DeiT is a more contemporary transformer 

model with the same architecture as ViT. Unlike ViT, 

which requires a large dataset for training, DeiT is better 

suited for computer vision applications with limited data. 

DeiT is more suitable for data-efficient computer vision 

applications, unlike ViT, which requires large datasets. 

DeiT achieves data efficiency through a combination of 

techniques and architectural choices, which include 

knowledge distillation-based regularization, pre-training 

with ’noisy student,’ and data augmentation. DeiT 

employs substantial data augmentation during training, 

exposing the model to a wide range of data variations to 

make it more resilient. DeiT is prepared using “noisy 

student," which learns from a wide range of noisy or 

incorrectly labeled images. This allows the model to 

capture general features and representations. 

The deep learning models were fine-tuned for different 

combinations of hyperparameters by varying the epoch, 

batch size, optimizer, loss function, learning rate and dropout 

values, as shown in Table 2. We utilized the pre-trained 

weights of these models for fine-tuning using our dataset. 

The models were pre-trained using the image net dataset 

(Deng et al., 2009). In total, 3,888 networks from six 

CNN and three transformer models were developed and 

fine-tuned using 18,400 images of 23 classes, among which 

13,800 images were used for training and 4,600 for 

validation. After that, the networks were tested using 

2,300 unseen test images. The best network of these models 

was compared to select the best network for the proposed 

system. The comparative results of the best networks of 

the CNN and transformer-based models are shown in 

Figs. 4-8 and Table 5.  

The DeiT-based network outperformed the other 

networks in these evaluations and was consequently 

selected for the proposed system. Furthermore, a 

separate test set of 2,273 images was prepared, which 

were examined manually by three experts individually to 

label the class of each image. Then, these images were 

also classified using the best DeiT, ViT and CNN-based 

network separately. The selected DeiT-based network 

was found to be more accurate and stable when 

compared to the subjective examination. Figure 3 shows 

the architecture of the proposed DeiT-based method for 

landmark and abnormality classification. 

This architecture consists of multiple linear layers 

with batch normalization, ReLU activation and dropout 

regularization. These layers sequentially extract features 

and introduce non-linearity. The final linear layer 

produces the output with a size of 23, representing the 

classes. The output of the teacher-student network first 

passes through a linear layer, which applies a linear 

transformation to produce a tensor of 2048 in size. The 

result of the linear layer is then normalized using 

BatchNorm. Non-linearity is introduced by applying 

ReLU, which sets negative values to zero while 

preserving positive values. 
 

Table 2: List of hyperparameters and their values explored to 

fine-tune the CNN and transformer networks 

Criteria Search space 

Models [VGG16, VGG19, inceptionv3, 

 ResNet101, EfficientNet,  

 DenseNet121, ViT-B/16, 

 ViT-B/32, DeiT] 

Epochs [50, 75, 100] 

Batch sizes [16, 32, 64] 

Optimizers [SGD, Adam, AdamW, RMSProp] 

Loss functions [Categorical cross entropy] 

Learning rates [0.01, 0.001, 0.0001] 

Dropouts [0.5, 0.6, 0.7, 0.8] 

 

 
 
Fig. 3: Architecture for proposed DeiT-based network for 

landmark and abnormality classification 
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Fig. 4. Training and validation accuracy curves of the models 

 

 
 

Fig. 5: Training and validation loss curves of the models 

 

 
 

Fig. 6: ROC of machine learning models 
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Fig. 7: Grad-Cam representation of best fine-tuned 

 

 
 

Fig. 8: Comparison of machine learning models using boxplot 

 

Dropout is utilized after ReLU to prevent overfitting 

by randomly deactivating a percentage of input units 

during training. The output of the first block is 

subsequently processed by the second linear layer, which 

has an output size of 1024, following the same sequence 

of operations: BatchNorm1d, ReLU and dropout. This 

process is repeated for the third block, where a linear layer 

outputs a size of 512. Finally, the output of the third block is 

fed into the final linear layer, generating a final output of size 

23 representing the network’s prediction for each class. 

Results  

Anatomical Landmark and Abnormality Classification 

This study fine-tuned and examined the performances 

of popular CNN-based models, self-attention-based 

vision transformer model, ViT (Dosovitskiy et al., 2020) 

and recently proposed data efficient transformer model, DeiT 

(Touvron et al., 2021) for classifying anatomical landmarks 

and abnormalities of GI tract from endoscopy images. For 

CNN, VGG16 (Simonyan and Zisserman, 2015), VGG19 

(Simonyan and Zisserman, 2015), inceptionv3 

(Szegedy et al., 2015), ResNet101 (He et al., 2016), 

EfficientNet (Tan and Le, 2019) and DenseNet169 

(Huang et al., 2017) models were used considering their 

efficiency for medical image analysis. The models were 

customized by varying the values of hyperparameters, as 

listed in Table 2 and then trained using 13800 images and 

validated using 4600 images. Figures 4-5 show the 

accuracy and loss curves for the best networks of each 

model for training and validation. Further, these networks 

were tested on 2300 unseen images to derive the average 

accuracy, precision, recall, F1-score and Area Under the 
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Curve (AUC) for 23 classes, as listed in Table 3. The 

DeiT-based network achieved accuracy, precision, recall 

and F1-score over 99%, outperforming the ViT and CNN-

based networks with significant differences. The AUC 

was 100% in the Receiver Operating Characteristic 

(ROC) plot for the DeiT, indicating its strength in 

distinguishing between the different classes. Figure 6 

shows the ROC curves for the networks. The proposed 

DeiT-based method was also compared with the 

endoscopist’s manual evaluation. For this purpose, a 

separate test set of 2272 images of 23 classes was 

prepared. Then, three endoscopists manually examined 

the images and compared them to the proposed DeiT-

based method, shown in Table 1. The proposed method 

achieved 99% accuracy, outperforming the experts. The 

DeiT-based method was also compared to the CNN and 

ViT for the same test set, shown in Table 5. These results 

explain that the DeiT-based network yielded the highest 

accuracy and lowest loss; thus, the DeiT-based network 

was selected for the proposed method. 
 
Table 3: Evaluation of transformer and CNN-based models using test dataset 

Networks Average accuracy Average precision Average recall Average F1-score Average AUC 

VGG16 89.57 89.50 89.56 89.56 99.60 

VGG19 88.96 88.65 88.90 88.66 99.52 

InceptionV3 80.04 80.25 80.00 79.97 98.73 

ResNet101 84.26 84.57 84.25 84.25 98.91 

EfficientNet 88.91 88.99 88.91 88.86 99.40 

DenseNet169 88.17 88.09 88.17 87.91 99.60 

ViT 88.19 88.30 88.21 88.52 99.41 

DeiT 99.65 99.34 99.34 99.35 100.00 
 
Table 4: Comparison between existing automated methods and the proposed method 

 Proposed Borgli et al. Che et al. Tran et al. 

Criteria method (2020) (state of the art) (2021) (2021) 

Dataset Hyper kvasir + Local Hyper kvasir (23  Local hospital data Local hospital data 

 Hospital data (23 landmarks landmarks from entire  (3 landmarks from (10 landmarks from 

 from entire GI tract) GI tract) lower GI tract) upper GI tract) 
Accuracy 99.650 91.00 92.03 97.43 
Precision 99.340 91.00 92.34 97.43 
Recall 99.340 91.00 91.01 97.43 
F1-score 99.350 91.00 91.57 - 
AUC 100.000 - - - 
Phi-coefficient 99.700 90.20 - - 
Time (second/image) 0.045±0.005 - - - 

 

Table 5: Class-wise accuracy of CNN, ViT and DeiT networks for the selected test images 

Anatomical landmarks and abnormalities ViT accuracy % CNN accuracy % DeiT accuracy % 

Barrett 82/86 (96) 86/86 (100) 86/86 (100) 

Barrett’s short segment 95/99 (96) 99/99 (100) 99/99 (100) 

BBPS 0-1 96/100 (96) 98/100 (98) 100/100 (100) 

BBPS 2-3 73/77 (95) 74/77 (96) 76/77 (98) 

Cecum 97/116 (84) 100/116 (86) 115/116 (99) 

Polyps 85/107 (80) 87/107 (81) 106/107 (99) 

Dyed lifted polyps 73/97 (76) 83/97 (85) 97/97 (100) 

Dyed resection margin 73/93 (78) 77/93 (82) 91/93 (97) 

Esophagitis-a 70/99 (70) 79/99 (79) 99/99 (100) 

Esophagitis b-d 93/107 (86) 87/107 (81) 106/107 (99) 

Hemorrhoids 102/102 (100) 102/102 (100) 102/102 (100) 

Ileum 101/101 (100) 101/101 (100) 101/101 (100) 

Impacted stool 95/96 (98) 95/96 (99) 96/96 (100) 

Pylorus 101/102 (99) 100/102 (98) 102/102 (100) 

Retroflex rectum 92/100 (92) 96/100 (96) 100/100 (100) 

Retroflex stomach 110/112 (98) 110/112 (98) 112/112 (100) 

Ulcerative colitis 0-1 80/81 (99) 80/81 (99) 81/81 (100) 

Ulcerative colitis 1-2 107/107 (100) 107/107 (100) 107/107 (100) 
Ulcerative colitis 2-3 110/110 (100) 109/110 (99) 110/110 (100) 
Ulcerative colitis 1 73/97 (75) 70/97 (72) 97/97 (100) 
Ulcerative colitis 2 49/78 (62) 43/78 (55) 78/78 (100) 
Ulcerative colitis 3 98/104 (94) 94/104 (90) 104/104 (100) 
Z-line 77/101 (76) 78/101 (77) 101/101 (100) 
Overall 2032/2272 (89) 2055/2272 (90) 2266/2272 (99) 
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Finally, we compared the results of the proposed 

method derived from the test data with the relevant 

existing automated endoscopy image classification 

methods, as shown in Table 4. The proposed method 

classified the maximum classes and tested on the most 

diverse and heterogeneous dataset collected from two 

labs and captured using two separate machines. Despite 

that, the proposed method outperformed the existing 

methods in all criteria. Furthermore, we applied gradient-

weighted class activation mapping (Selvaraju et al., 2017) 

(grad-CAM) on the images to interpret the network’s 

intelligence, as shown in Fig. 7. 

Analysis of CNN and Transformer for Endoscopy 

Examination 

The ViT (Dosovitskiy et al., 2020) model’s self-

attention technique was recently found to be highly 

effective in understanding dependencies between regions 

of pathological images and outperformed the 

conventional CNN models. However, training the ViT 

and CNN models to achieve an accurate and stable 

predictive network requires large data, particularly when 

the number of classes to predict is high. Moreover, these 

models lose accuracy and stability as the number of 

classes increases. Unlike CNN and ViT, the DeiT is 

claimed to be data efficient by the author Touvron et al. 

(2021). In this study, we trained the CNN, ViT and DeiT 

using the same data and compared their performances. 

Preparing a large dataset is one of the main challenges for 

training AI for medical imaging analysis. This study 

examined how well the models performed when trained 

using a smaller dataset, with an average of 320 images per 

class before augmentation. Considering that there are up 

to 23 classes, this is remarkably low. 

The ViT failed to achieve stability in 100 epochs, as 

shown in Fig. 4. Although the accuracies of CNN-based 

networks were comparable to ViT, they were primarily 

over-fitted, as indicated by their loss curves in Fig. 5. 

Table 3 shows ViT was marginally outperformed by the 

VGG architecture-based networks VGG16 and VGG19, 

indicating that ViT is confined to applications with large 

amounts of data. In the comparison using a separate test 

set of 2272 images, shown in Table 5, the CNN-based 

network (90.44%) marginally outperformed the ViT 

(89.43%) while the DeiT achieved the highest accuracy of 

99.73%. Further, we plotted the test accuracies for the best 

network of each model using a boxplot, shown in Fig. 8. 

The DeiT had the highest median value, which is the mid-

point of the data, indicated by an orange horizontal line. 

The boxplots also showed that the DeiT has a narrow 

accuracy spread over the images, demonstrating that DeiT 

is more consistent than other models. The comparative 

results of CNN, ViT and DeiT demonstrated that, when 

trained on a comparatively smaller dataset for 23 classes, 

the DeiT-based method yielded the best results for 

classifying landmarks and abnormalities. The tendency of 

CNN-based networks to overfit may be attributed to the 

fact that the original image counts in the training dataset 

were much lower for some classes, such as those related 

to Ulcerative Colitis. The CNN and ViT-based networks 

also resulted in most misclassification for these classes. 

However, DeiT was not affected by such a problem. 

We also plotted the grad-CAM for the models, which 

helped to visualize how the networks are using the image 

to predict its class by using a layer’s gradient to get the 

layer’s attention. The grad-CAM utilized the last 

convolutional layer for the CNN. The gradient of the last 

attention layer was utilized for the ViT and DeiT with no 

convolutional block. Fig. 7 shows the grad-CAM 

representation for ten major classes, visualizing how each 

model utilized the image to determine its class. Regions 

with higher network priorities for predictions are 

highlighted in red color. It indicates that the DeiT 

outperformed ViT and CNN in locating the image’s 

critical areas for the prediction. The transformer’s 

comprehension of pixel dependencies can be explained by 

the fact that CNN incorporates more background or 

irrelevant pixels than ViT and DeiT. DeiT was found to 

be more aggressive and precise in prioritizing the regions 

of the image for predicting its class. The DeiT failed to 

link the image information like human experts for 

hemorrhoids and esophagitis. Nevertheless, it succeeded 

in identifying the classes accurately despite the fact. The 

DeiT model did not fully exploit esophageal ulcer pixels 

in the case of esophagitis images. This also applies to 

CNN and ViT models. 

Based on the findings above, this study concludes that 

the DeiT-based network is more suited for the proposed 

system since it is more appropriate than CNN and ViT for 

data-efficient image classification problems, which is our 

case in this research. 

Feasibility of Proposed Method for Clinical Use 

We assessed the feasibility of the proposed method for 

clinical use in terms of its accuracy, speed and 

diverseness. The accuracy of the proposed was compared 

with both objective scores of existing relevant automated 

methods and subjective evaluation scores of experts. 

Table 4 shows the comparison with the automated 

methods. Table 1 shows the comparison with the experts' 

results. For this subjective evaluation, three experts 

manually examined the 2,272 endoscopy images 

individually on a computer screen. These 2,272 images 

were clinically diagnosed previously to establish the 

ground truth. In this experiment, the endoscopy images 

were provided randomly to the experts through a website 

to assign a label from one of the 23 classes. The website 

had the facility to zoom and pan the images. It also 
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allowed the experts to provide comments on the images. 

The proposed method was tested for the same test set. 

Finally, the results were compared in Table 1. The 

proposed DeiT method classified 2266 (99.73%) images 

correctly out of 2272 images, where experts A, B and C 

identified 2084 (91.72%), 2133 (93.88%) and 2175 

(95.73%) images, respectively. It has been observed that 

significant misclassification occurred for the different 

grades of ulcerative colitis. A few cecum images were 

misidentified as ileum and BBPS 0-1 images as BBPS 2-3 

by the experts. However, such a misidentification pattern 

was not observed for the proposed method. We also 

estimated the Phi coefficient, known as the Matthew 

correlation coefficient, for the proposed method and 

experts by comparing them with the clinical ground truth. 

The Phi coefficient is a more reliable statistical measure 

that produces a high score only if the method performs well 

in all four confusion matrix indexes: True positives, false 

negatives, true negatives and false positives (Chicco and 

Jurman, 2020). The Phi coefficients for experts A, B and C 

were 0.913, 0.936 and 0.950, respectively. The coefficient 

was 0.997 for the proposed method, indicating higher 

reliability than the existing manual examination. 

Further, the time complexity of the proposed method 

was estimated to determine its suitability for practical use. 

The proposed method took an average of 100±20 sec 

to classify 2300 images. A personal computer with an 11th-

generation Intel Core i5 2.40 GHz processor and 8 GB RAM 

was used to estimate the time. The experts’ manual 

examination time was far longer than the proposed 

method and the state-of-the-art did not disclose its time. 

The proposed method can classify 23 images on average 

in a second. It follows that the proposed method is 

accurate, rapid and diverse enough for autonomous 

endoscopy examination in clinical practice.  

Discussion 

Endoscopy is a challenging, invasive procedure that 

depends on various factors, including the type of 

endoscopy, the specific organ being examined, the 

patient's condition and the endoscopist's experience and 

skill. The endoscopist has to continuously identify 

different landmarks and abnormalities from the video to 

make appropriate navigation, diagnosis and surgery 

decisions in real time. An automated method for detecting 

and classifying landmarks and abnormalities can 

significantly ease the task for endoscopists and improve 

patient experience. In this study, we present an AI-assisted 

landmark and abnormality detection method for 

automated endoscopy examination to assist endoscopists 

in endoscopy. The proposed system is designed to identify 

23 landmarks and abnormalities, the highest number of 

classes any study considered. This method achieved 99% 

accuracy when tested on two heterogeneous datasets, 

which is 8% higher than the current state of the art. 

Additionally, this method was compared with experts’ 

manual examination results in which it outperformed the 

experts. Therefore, it can be concluded that the proposed 

method enables more accurate and reliable endoscopy 

examination with less effort. The proposed system can 

examine 2300 images in less than 120 sec, which ensures 

its rapidness. The high accuracy and rapid detection time 

suggest that the existing manual examination can be 

replaced with the proposed automated method. Another 

essential aspect of this study is that the proposed method 

not only improves the accuracy of the diagnosis but also 

enables the endoscope to be maneuvered more 

effectively, improving patient comfort and lowering the 

risk of injury. This study also evaluated the performance 

of CNN and transformer models using limited images. 

The results revealed that the DeiT, a knowledge 

distillation-based transformer, is more suitable for 

computer vision applications with relatively small 

datasets than CNN and other transformers, which is 

another important finding of this study. 

There are some challenges and limitations of this study. 

One of the significant challenges was handling the image 

artifacts. Major artifacts found in the endoscopy image 

were cyan marks, text marks and white and black pixels. 

Artifacts mislead AI models and result in wrong diagnoses. 

Therefore, the proposed system was designed to detect 

the white and black pixels to eliminate images highly 

affected by these artifacts. Black backgrounds are the 

most troublesome artifact for training the AI model as 

they are similar to blood regions or hemorrhoids. The 

proposed system did not include cyan marks detection, a 

limitation to be fixed soon. Another challenge of this 

study was that certain classes had significantly fewer 

images than others, making the dataset unbalanced. We 

augmented the images to balance the dataset and then 

trained the models using the balanced dataset. However, 

an augmented dataset generated from minimal original 

images risks the generalization ability of the AI models. 

Therefore, we tested the proposed method on a separate 

dataset to ensure its generalization ability and robustness, 

in which it achieved 99% accuracy. Nonetheless, a small 

number of images captured at the same hospital were 

included in the training dataset. This slightly impacted the 

robustness and heterogeneity since the test and train 

dataset had different images prepared at the same hospital 

for a few classes. However, given the quantity of images, 

this can be disregarded. The proposed method does not 

correlate the image pixels like experts do for some 

landmarks. As demonstrated in Fig. 7, the esophageal 

ulcer shown in the image, for instance, lacks a 

corresponding red heat map indicating esophagitis. This is 

a drawback of the suggested approach. However, the 

accuracy of the proposed method in identifying esophagitis 
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is adequate. In some situations, it is not feasible to map the 

precise relationships between how AI-based techniques 

and human specialists analyze visual data. 

The results of this study demonstrate that the 

proposed method will improve diagnosis accuracy, 

enable better navigation and enhance patient comfort. 

The proposed method can be extended for the 

autonomous navigation of endoscopy. 

Conclusion 

In this study, we proposed an image transformer-based 

method for detecting anatomical landmarks, abnormalities 

and pathological findings to guide endoscopists for better 

movement of the endoscope and precise diagnosis. The 

effectiveness of the proposed method was validated using 

objective measures and subjective evaluation by expert 

endoscopists. This system will facilitate autonomous 

endoscopy examination, reducing time and labor and 

improving patient satisfaction. 
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