

© 2024 Arnaud Nguembang Fadja, Giuseppe Cota, Francesco Bertasi, Fabrizio Riguzzi, Enzo Losi, Lucrezia Manservigi, Mauro

Venturini and Giovanni Bechini. This open-access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

 Journal of Computer Science

Original Research Paper

Machine Learning Approaches for the Prediction of Gas

Turbine Transients

1Arnaud Nguembang Fadja, 2Giuseppe Cota, 2Francesco Bertasi, 3Fabrizio Riguzzi,
1Enzo Losi, 1Lucrezia Manservigi, 1Mauro Venturini and 4Giovanni Bechini

1Department of Engineering, University of Ferrara, Via Saragat 1, 44122, Ferrara, Italy
2Exalens Srl, Via Aldo Moro 6, 45100, Rovigo, Italy
3Department of Mathematics and Computer Science, University of Ferrara, Via Machiavelli 30, 44121, Ferrara, Italy
4Siemens Energy, Srl, Via Vipiteno, 4, 20128, Milan, Italy

Article history

Received: 7-11-2022

Revised: 06-11-2023

Accepted: 15-12-2023

Corresponding Author:

Arnaud Nguembang Fadja

Department of Engineering,

University of Ferrara,Via

Saragat 1, 44122, Ferrara

Email: ngmrnd@unife.it

Abstract: Gas Turbine (GT) emergency shutdowns can lead to energy

production interruption and may also reduce the lifespan of a turbine. In order

to remain competitive in the market, it is necessary to improve the reliability

and availability of GTs by developing predictive maintenance systems that are

able to predict future conditions of GTs within a certain time. Predicting such

situations not only helps to take corrective measures to avoid service

unavailability but also eases the process of maintenance and considerably

reduces maintenance costs. Huge amounts of sensor data are collected from

(GTs) making monitoring impossible for human operators even with the help

of computers. Machine learning techniques could provide support for handling

large amounts of sensor data and building decision models for predicting GT

future conditions. The paper presents an application of machine learning based

on decision trees and k-nearest neighbors for predicting the rotational speed of

gas turbines. The aim is to distinguish steady states (e.g., GT operation at

normal conditions) from transients (e.g., GT trip or shutdown). The different

steps of a machine learning pipeline, starting from data extraction to model

testing are implemented and analyzed. Experiments are performed by applying

decision trees, extremely randomized trees, and k-nearest neighbors to sensor

data collected from GTs located in different countries. The trained models

were able to predict steady state and transient with more than 93% accuracy.

This research advances predictive maintenance methods and suggests

exploring advanced machine learning algorithms, real-time data integration,

and explainable AI techniques to enhance gas turbine behavior understanding

and develop more adaptable maintenance systems for industrial applications.

Keywords: Gas Turbines, Multi-Variate Time Series, Decision Tree, Extra

Trees, K-Nearest Neighbour, Transient Prediction

Introduction

Gas Turbines (GTs), also known as combustion

turbines, are used to convert energy by means of

monitoring GTs not only help in making the service

turbomachinery. The extracted energy is made available

in always available but also reduces the number of failures

in the form of electricity, compressed air, thrust, or a

combination thereof and is used in planes, trains and

ships, diagnosing GTs requires techniques of machine

learning generators, tanks and many more. In order to

guarantee the availability and reliability of GT assets, a

robust, efficient, and flexible maintenance strategy should

be designed and implemented (Tahan et al., 2017).

Monitoring GTs not only helps in making the service

turbomachinery. The extracted energy is made available in
always available but also reduces the number of failures a

GT asset due to unpredictable situations. Monitoring and

diagnosing GTs requires techniques of machine learning or

data mining to predict their future conditions using a large

set of current and past operating data.

The predictive system can exploit data provided by

many sensors of many GTs in different years, thus

posing big data challenges. Building such predictive

systems helps in understanding the degradation trend

of some components of GTs and therefore allows

engineers to pay more attention to machines that have

symptoms of degradation. In addition, understanding

Arnaud Nguembang Fadja et al. / Journal of Computer Science 2024, 20 (5): 495.510

DOI: 10.3844/jcssp.2024.495.510

496

the machine degradation behavior can also help in the

design of future GT components.

The term big data generally indicates a collection of data

so extensive in terms of volume, speed, and variety that

specific technologies and analytical methods are required for

extracting value or knowledge (De Mauro et al., 2016). A

recent study (Tahan et al., 2017) demonstrated that analytics

methods based on large amounts of data collected from GTs

can lead to significant savings in the oil and gas sector.

Data mining (Fu, 1997) and Machine Learning (ML)

(El Naqa and Murphy, 2015) have been successfully

applied to predictive maintenance systems whose aim is

to evaluate the health state of equipment by performing

regular condition monitoring. They rely on the past and

actual state of the equipment to predict future conditions.

Many of these methods have been applied successfully to

energy-based systems using large volumes of sensor

data. Zhao et al. (2019a) the authors present a large

range of ML techniques for health monitoring as well as

ML-based methods for analyzing health data. Further

applications of ML for predicting the remaining useful

life are presented by Zhang et al. (2018); Yang and Wu

(2006). Naderi and Khorasani (2018) the authors outline

a process that relies on Markov parameters to detect,

isolate, and estimate faults on actuators and sensors in

GT systems. A study by Taylor et al. (2019) examined

the effects of damaged blades on compressor

performance using ML. Wong et al. (2014) a real-time

fault diagnostics of GTs using ML is presented. The

diagnosis is done by extracting useful patterns from vibration

signals. Zhao et al. (2019b) an improved extreme learning

machine tool detects the faults of an aircraft engine.

The current paper investigates different ML models

based on Decision Trees (DTs) and K-Nearest Neighbors

(KNNs) to predict the future trend of the rotational speed,

with an advance of 4 h. Analyses are performed without

and with feature engineering and provide efficient and

explainable models. Unlike other approaches, we propose

an efficient preprocessing pipeline in order to not only

clean the data but also to improve the prediction accuracy.

The preprocessing pipeline includes efficient data

extraction and selection of transient and state steady-state

examples, custom stratifying sampling methods, and a

broad set of feature engineering steps.

In the framework of an extended research activity

conducted by the authors about the prediction of GT

future operations (Losi et al., 2021a-b; Bechini et al.,

2022) the current paper tackles the same challenge from a

different perspective. The paper (Losi et al., 2021a) develops

a methodology suitable to classify transients into two clusters

(i.e., shutdown or trip). The methodology is applied to field

data covering three years of operation and the obtained

values of precision, recall, and accuracy are higher than

90% in almost all cases. The paper Losi et al. (2021a-b)

presents a methodology dealing with data selection and

feature engineering, which allows the identification of the

best target examples and set of features for the setup of an

ML model aimed at predicting GT trips. Such a model was

developed by Losi et al. (2022a-b) as a random forest

model, which predicts gas turbine trips based on

information gathered during a timeframe of historical data

acquired from multiple sensors. The model is tested by

means of field data taken during three years of operation

of two fleets of GTs located in different regions. In this

case, precision, recall, and accuracy values are in the range

of 75-85%. The paper (Losi et al., 2022a-b) investigates the

fusion of five data-driven base models by means of voting

and stacking, in order to increase model accuracy and

improve prediction robustness. The five ML classifiers

are K-nearest neighbor, support vector machines, naive

bayes, DTs, and Long Short-Term Memory (LSTM) neural

(Hochreiter and Schmidhuber, 1997). The paper Losi et al.

(2022a-b) presents a comprehensive data-driven

methodology aimed at investigating and disclosing the

onset of trip symptoms, i.e., the most likely time point at

which trip symptoms trigger. A (LSTM) neural network is

employed as the classification model. The methodology

provides the most likely trigger position for four clusters

of trips within two days before trip occurrence with at

least 80% confidence. The paper Bechini et al. (2022) first

applies a systematic statistical analysis to identify the

most important variables and then uses a novel ML

technique known as temporal DTs, which differs from the

regular DTs because it allows a native treatment of the

temporal component. The learned models are finally

employed to extract statistical rules.

While previous works focus on classifying trips (i.e.,

sudden arrests) and shutdowns (i.e., intentional

shutdowns) through clustering techniques and predicting

them through ensemble ML approaches, in this study we

adopt a different approach in which we use ML models,

DTs, Extremely Randomized Trees (ERTs) and KNNs to

predict the rotational speed. Moreover, data processing

and feature engineering techniques implemented in the

current paper are different from our previous works. In

particular, the trained models use data from the last 20 h to

predict the trend of the rotational speed of the following 4 h.

Based on the rotational speed trend, the proposed models

allow us to predict the following GT operating conditions:

(i) Transient state (a trip or a shutdown) and

(ii) Steady state (a normal operating condition in which the

rotational speed is almost constant)

Although the proposed models do not perform a direct

distinction between trips and shutdowns, in real-case

scenarios, if the system is predicting a transient and no

human operator has intentionally sent a shutdown signal

then a trip is in progress. It is worth noting that in the data

Arnaud Nguembang Fadja et al. / Journal of Computer Science 2024, 20 (5): 495.510

DOI: 10.3844/jcssp.2024.495.510

497

used for training and testing, we do not consider explicit

signals that represent shutdown commands.

Similar work has been explored by Goyal et al. (2020);

Li et al. (2021); Liu and Karimi (2020). In Goyal et al.

(2020) the authors used multiple machine learning

algorithms to predict the normal behavior of operational

parameters including power generated and blade path

temperature spread. The predictions can be used to

identify anomalies and probable failures in the gas turbine

performance. The data used in the study is taken from

multiple heavy-duty gas turbine units of combined cycled

utility power plants which are known to contain

operational failures. The predictors include operational

parameters such as fuel flow, various thermodynamic

variables, etc. The models are trained and parameters are

selected based on the overall prediction performance on

the validation set. Li et al. (2021) present a cross-

disciplinary study on the combustion tuning of an F-class

gas turbine that combines machine learning with physics

understanding. A machine learning-based method was

developed by Liu and Karimi (2020) to predict gas turbine

performance for power generation. Two surrogate models

based on Dimensional Model Representation (HDMR)

and Artificial Neural Network (ANN) are developed from

real operational data to predict the operating

characteristics of the air compressor and turbine.

Various approaches that predict the future conditions

of GTs have been investigated in the literature, (Bangert,

2020; Li and Nilkitsaranont, 2009). Bangert (2020) the

authors presents an ML algorithm based on an LSTM to

predict the future conditions of GTs. To train the LSTM

model, the paper relies on measured variables similar to

those used in the present paper. Unlike Bangert (2020) our

approach makes use of tree-based models to predict future

GTs conditions and classification accuracy for evaluating

the models, thus it is more explainable and interpretable.

Li and Nilkitsaranont (2009) the authors investigate how

to predict GT future conditions by estimating the

remaining useful life of GT engines before their next

major overhaul based on historical health information.

Unlike the present work, the authors investigate a

technique that combines linear and quadratic regression to

predict the trend of some measured variables such as air

compressors. Unlike Bangert (2020); Li and

Nilkitsaranont (2009), our approach relies on a more

powerful model such as DTs to forecast GTs' future

conditions. Various other GT prognostic techniques

have been investigated, (DePold and Gass, 1999;

Brotherton et al., 2000; Roemer and Kacprzynski, 2000;

Byington et al., 2002; Brotherton et al., 2002; Roemer et al.,

2006; Hess et al., 2006). Most of these techniques are

experience-based prognostics, model-based prognostics,

evolutionary prognostics, neural networks, state estimator

prognostics, rule-based expert systems, and fuzzy logic-

based methods. They apply different methods to predict

GT future conditions. Unlike these approaches, the

current paper develops a data processing and feature

engineering pipeline aimed at forecasting the trend of GT

rotational speed, with the final goal of raising a warning

sign about future trip occurrence.

Lastly, recent studies by Hong and Kim (2023); De

Castro-Cros et al. (2021) employed machine learning

techniques to predict gas turbine engine performance.

Hong and Kim (2023) utilized operational parameters like

fuel flow and compressor discharge pressure, employing

artificial neural networks and support vector regression

algorithms. Their approach accurately predicted the gas

turbine’s performance. Similarly, Hong and Kim (2023);

De Castro-Cros et al. (2021) developed an artificial neural

network model using data from a heavy-duty gas turbine

unit, incorporating various operational parameters. The

resulting model successfully predicted the gas turbine

engine’s performance. Both studies demonstrate the

effectiveness of machine learning-based methods in

accurately forecasting gas turbine engine performance

using operational data.

Materials and Methods

In this section we present the data we considered,

the preprocessing we applied to it and the ML

algorithms we applied.

Available Data

The rotational speed is predicted in this study by using

data from various sensors collected from GTs produced

by Siemens. A measured variable is a reading from a

sensor acquired with a given frequency during machine

operation. In this study, 128 measured variables are

considered, Table 2. The set of variables includes

different types of system variables typically considered

during GT monitoring and diagnostics, e.g., ambient

conditions, gas path measurements, vibrations, rotational

speed, power output, as well as operational parameters of

external systems. More precisely, gas path measurements

comprise compressor inlet and outlet pressures,

compressor inlet and outlet temperatures, exhaust gas

temperatures (i.e., a ring of sixteen equally spaced

thermocouples placed circumferentially at the turbine

outlet section, each with two redundant thermocouples),

and turbine exhaust pressure. Vibration data consist of

both bearing vibrations and combustion chamber

pulsations. Finally, operational parameters such as fuel

temperature, fuel valve position lube oil pressure, and

temperature are also taken into account. Therefore, this

study employs a massive and comprehensive set of

measured variables. The high number of measured

variables, exploited to predict the future trend of GT

Arnaud Nguembang Fadja et al. / Journal of Computer Science 2024, 20 (5): 495.510

DOI: 10.3844/jcssp.2024.495.510

498

rotational speed, poses the challenge of handling big data.

Moreover, since different measured variables are sampled

at different frequencies, an interpolation operation is done

in order to have data for each measured variable at each

minute. Therefore, each feature considered in the rest of

the paper is the value of a measured variable at a specific

time (minute).

We use a dataset, Table 1 that includes 6490 transients

(trip and shutdown) and steady-state examples acquired

over three years from machines in different countries. The

dataset is proprietary and it is not possible to make it freely

available. It should be noted that the two categories are

balanced, the transient category includes 70 trips and 3221

shutdowns. Sampling data randomly from this distribution

for training an ML model could be problematic. Hence, it

is necessary to develop an ad hoc strategy for selecting

representative examples for training an ML model.

Table 1: Dataset distribution

Category #Example

Transient 3291

Steady-state 3199

Table 2: List of measured variables

Measured variable description Number of sensors

Air intake differential pressure 1
Ambient air humidity 1
Ambient air temperature 1
Differential pressure at 1
compressor inlet section
Compressor inlet pressure 1
Compressor inlet temperature 1
Compressor outlet pressure 3
Compressor outlet temperature 3
Power output 1
Differential pressure at exhaust 1
duct section
Fuel temperature 1
Turbine outlet pressure 1
Bearing vibration 6
Bearing vibration 1× N Amp 6
Turbine exhaust temperature 48
Gearbox casing vibration 2
Gearbox casing vibration 1× N Amp 2
Generator DE bearing temperature 1
Generator DE vibration 3
Generator NDE vibration 3
Generator stator temp pH 12
High-frequency pulsation 3
Low-frequency pulsation 3
Lube oil supply pressure 3
Lube oil supply temperature 4
Fuel valve position 1
Medium frequency pulsation 3
Narrow frequency pulsation 3
Combustor chamber pressure 1
Radial bearing temperature 4
Thrust bearing temperature 2
Turbine casing temperature 1
Rotational speed 1

Different ML models are trained using data associated

with those 128 measured variables. The models predict

the rotational speed of the next 4 h using the data of the

past 20 h (including the rotational speed), Fig. 1.

Therefore, the input to the models consists of 128·20·60

= 153600 features while the output includes 4·60 = 240

values of rotational speed.

Machine Learning Algorithms

This section describes the different ML algorithms

used to predict the rotational speed in GTs. Three ML

models are investigated: DTs (Breiman et al., 1984) ERT

also called Extra Trees (ETs) (Geurts et al., 2006)

which are a modification of Random Forests (RFs) (Ho,

1995; Breiman, 2001) and KNNs (Aha et al., 1991).

DTs are ML algorithms that can be used in predictive

tasks. A DT is a tree-like structure in which each node

represents a test on a specific feature. Each leaf node

represents an expected value (list of values) in the case of

(multi-output) regression. Figure 2 for an example of a

multi-output regression DT. Given an unknown example,

a DT performs inference by evaluating the conditions on

the nodes from the root to a leaf. The numerical list of

values associated with the leaf is assigned to the example.

One of the main characteristics of DTs is that they are

explainable, in the sense that the model can be interpreted

by a human. In fact, a path from the root node to a leaf can

be translated into a human-readable logical rule. The

training algorithm for building DTs Fig. 2 Example of DT.

Adapted from (Losi et al., 2021a-b) works in a top-down

manner. The algorithm starts with the whole set of training

examples that are associated with the root and splits them

into two partitions by greedily selecting the feature and

the threshold that create the purest partitions according to

an impurity measure. Then two child nodes are created,

one for each partition of the training examples. The

algorithm stops when the considered subset of examples

is pure or a limitation imposed by a hyperparameter is

reached. The most common hyperparameters are the size

of the set associated with the leaf called, min sample leaf,

and the depth of the tree, called max depth.

Fig. 1: Rotational speed prediction

Arnaud Nguembang Fadja et al. / Journal of Computer Science 2024, 20 (5): 495.510

DOI: 10.3844/jcssp.2024.495.510

499

Fig. 2: Example of DT. Adapted from (Losi et al., 2021b)

Fig. 3: Example of RF, (Losi et al., 2021b)

Fig. 4: Example of KNNs regression in 1 dimension: The X-axis

consists of 40 sorted random values between 0 and 5 and

the Y-axis is the sine values of X with added noise. It

applies k-nearest neighbors regression with uniform and

distance weight respectively. The data points are

visualized in crimson and predicted in blue

Ensemble methods are a group of ML techniques that

consist of aggregating several estimators (possibly of

different types). These techniques are useful because an

ensemble estimator could lead to better performance

compared to that of any of the individual estimators that

compose the ensemble.

An RF, Fig. 3. is an ensemble of DTs. The DT

estimators are independently trained on different (randomly

sampled) subsets of the training dataset and/or with

different (randomly sampled) subsets of features. The

prediction of an RF is a combination of the predictions

obtained by the DTs that compose the ensemble. If the

random forest is performing regression, the predicted value

is the mean of the outputs of the DTs.

ETs are another ML ensemble method similar to RFs that

introduce more randomness during tree building. Figure 4

Example of KNNs regression in 1 dimension. The X-axis

consists of 40 sorted random values between 0 and 5 and

the Y-axis is the sine values of X with added noise. It

applies the k-nearest neighbor's regression with uniform

and distance weight respectively. The data points are

visualized in crimson and the predicted in the blue main

difference between ETs and RFs is that, during the training

of each inner DT estimator, RFs choose the optimum

threshold for each feature whereas ETs choose it randomly,

hence the name extremely randomized trees. This makes ETs

faster to train than RFs because finding at every node the best

threshold for each feature is one of the most computationally

expensive tasks of the training process.

KNN is a versatile algorithm applied to both

classification and regression tasks. It computes distances

between the input data point and every entry in the

training set, relying on metrics such as the Euclidean or

Manhattan distance. By doing so, it identifies the k data

points nearest to the input. For classification, the

algorithm identifies the most common class among these

k-neighbors, attributing it to the input data point.

Conversely, regression calculates the weighted average of

the target values of these k nearest neighbors. The choice

of k and the distance metric significantly influence the

algorithm's performance. Smaller k values heighten

sensitivity to noise, whereas larger ones enhance stability,

albeit at the expense of computational complexity. In

regression tasks, Fig. 4. several hyperparameters come

into play, including weights and p. weights, which can be

either uniform or distance, define how contributions of

neighboring points are weighted. In the uniform setting,

all points within a neighborhood hold equal weight, while

in the distance setting, points are weighted in a way

inversely proportional to their distances from the target

point. The parameter p represents the power parameter for

the Murkowski distance metric. For instance, p = 1

corresponds to the Manhattan distance (L1 norm), while p = 2

to the Euclidean distance (L2 norm).

Arnaud Nguembang Fadja et al. / Journal of Computer Science 2024, 20 (5): 495.510

DOI: 10.3844/jcssp.2024.495.510

500

The ML workflow used in this study is illustrated in Fig. 5.

All the measured variables acquired from Siemens GTs

located worldwide are sent to a data warehouse, which is

in charge of data storage. Given the large amount of

gathered data, lossy compression techniques are needed

and, as a result, the measured variables are stored in the

data warehouse with different sampling frequencies,

depending on the considered sensor.

Data Preprocessing

The first step that must be performed is to extract

raw data for the machines of interest from the data

warehouse. Then, the raw data are grouped by

machines, sorted by timestamps, piecewise linearly

interpolated, and then new data points are created by

resampling the interpolated curves. Finally, the

resulting time series of the rotational speed is stored as

Comma Separated Values (CSV) files to be used for

detecting transients and steady-state cases. In the

following, we illustrate these steps in detail.

Raw Data Extraction

Given a set of measured variables and a GT, the aim is

to extract data from user-defined time windows as fast as

possible. We developed a script that creates a pool of

threads running in parallel, so that each of them sends an

SQL query to the cloud data warehouse that executes it,

Fig. 6. The pool of threads is managed by a single client

computer and, in order to avoid high memory usage, SQL

server cursors were used and the data rows were

concatenated in CSV files.

Each CSV file contains the data concerning the set of the

selected GT-measured variables in a given time window.

Finally, the resulting CSV file is zipped in order to reduce

storage consumption.

Data Elaboration and Storage

As mentioned before, the data warehouse contains

data sampled with different frequencies; thus data must be

elaborated in order to be sampled with the same frequency

since the training models used in this study are aimed at

processing multi-variate time series data. The GTs taken

into account include different sensors with different

sampling frequencies, e.g., high-frequency sensors such

as vibrations or low-frequency sensors such as ambient

temperature and air humidity. Each CSV file obtained in

the previous step is unzipped and read. Then, for each

measured variable related to a low-frequency sensor, the

raw data are ranked by timestamps, piecewise linearly

interpolated, and then new data points are created by

resampling the interpolated curve as shown in Fig. 7. For

each measured variable related to a high-frequency

sensor, the raw data are ranked by timestamps and, for

every minute, the average is computed. Finally, for each

CSV file that contains the raw data retrieved from the data

warehouse, the result of the elaboration is a Multi-Variate

Time Series (MTS), which is stored as a CSV file that in

turn is zipped to save storage space (Losi et al., 2023a-b).

Identification of Transient Operation

In order to build a dataset that includes examples of

trip and shutdown, an algorithm for identifying transients

is implemented. Since the database does not always

include the operational reports regarding past occurrence of

transients and their type for all fleets of GTs, an appropriate

technique to identify transients only based on field data is

required. Based on an analogous approach used to identify

starting events (Fontes and Pereira, 2016; Losi et al.,

2023a-b) we introduced an approach that applies the

subsequent matching algorithm (Fu, 2011) to identify

transient events from rotational speed data.

Fig. 5: Machine-learning workflow. Adapted from (Losi et al.,

2021b)

Fig. 6: Parallel query execution during raw data extraction,

(Losi et al., 2021b)

Fig. 7: Interpolation and resampling of measures of a generic

asynchronous sensor, (Losi et al., 2021b).

Arnaud Nguembang Fadja et al. / Journal of Computer Science 2024, 20 (5): 495.510

DOI: 10.3844/jcssp.2024.495.510

501

Fig. 8: Subsequence matching algorithm

The subsequent matching algorithm considers a two-

time series, usually defined as a query sequence and a

longer time series (Fu, 2011), and identifies the

subsequences in the longer time series that match the

query sequence. In our case, the query sequence is

computed by analyzing 8 min of the rotational speed of 50

transient events (Losi et al., 2021a-b). That 8 min is selected

because the rotational speed decreases from over 6000

rounds per minute (rpm) to a few rpm. We obtain a 50×8

matrix, where each row represents a transient event. Then

we compute the column-wise mean of this matrix obtaining

a vector that represents the typical profile of the rotational

speed during a transient of the GT and consists of 8 data

points, i.e., 8 min of rotational speed values. Instead, the

longer time series is composed of the historical data of the

rotational speed.

Figure 8 the subsequence matching algorithm

computes the Euclidean distance between the query

sequence and the longer time series within a moving time

window that has the same length as the query sequence.

The moving window slides forward one data point at a

time, i.e., 1 min at a time.

For each machine, the output of this algorithm is a list of

tuples ordered by timestamp of the form 〈Ti, Eii〉, where

Ti is the timestamp associated with the last data point of the

time window and Ei the Euclidean distance of the time

window. If the Euclidean distance of a given tuple is lower

than the distances of the previous tuple and the following

one, then that Euclidean distance is a local minimum. Tuples,

where the Euclidean distance is a local minimum, represent

those time windows where the longer time series is similar to

the query reference. Moreover, if the local minimum is lower

than a threshold, then the associated time window is

considered as a transient event and the last data point of the

time window is added to a list of transient timestamps. The

value 2000 rpm is chosen as a threshold that leads to a clear

distinction between steady-states and transients.

Moreover, for training and testing our machine learning

models, we consider as valid transient examples those cases

where, during the 23 h and 52 min before the start of the

transient event, the rotational speed was greater than 60%

of the maximum nominal speed, which corresponds to the

minimum GT load. Therefore, from the list of transient

timestamps, those timestamps associated with transient

events that do not meet this constraint are removed.

The final output of the transient identification step is a

CSV file containing a list of tuples of the form 〈Mj, Tji〉,

where Mj is a code that identifies a GT and Tj is a transient

timestamp, i.e., the timestamp of the end of a transient event.

Identification of Steady-State Operation

For each machine, we compute the time intervals

during which the rotational speed is greater than 60%

of the maximum nominal speed and we filter out all the

intervals that are shorter than 24 h. Then we split these

intervals into a set of 24 h intervals such that they do

not overlap. The output is a CSV file containing a list

of tuples of the form 〈Mj, Tji〉, where Mi is a code

that identifies a GT and Si is a timestamp that denotes

the end of the interval.

Selection of Training Examples

Before performing training, we analyze the MTS

examples extracted from the data warehouse. First, we

analyze the transient examples and we distinguish the trip

events from the normal shutdowns by exploiting the

clustering approach defined in Losi et al. (2023a-b). The

clustering approach applies feature-based clustering

embedding the unsupervised fuzzy c-means algorithm, see

(Yang and Wu, 2006). The aim of clustering is to partition

a number N of GT transients into a number, significantly

smaller than N, of clusters that represent different operating

conditions. This process allows the discrimination of trips

from normal shutdowns. In the last step, cluster labels are

assigned to classify each transient. For more details on the

clustering approach (Losi et al., 2021a-b).

Second, we analyze the distribution of the normal

shutdown events over the h of the day. In particular, for

each MTS shutdown example, we extract the timestamp

of the last row, which corresponds to the last minute of a

shutdown event, then we bin them into the h of the day

and analyze the resulting distribution.

Figure 9a shows that more than 91% of shutdown

events terminate overnight between 21:00-00:59. This

happens because there are some GTs which are often

intentionally shutdown between 21:00 and 00:59. If we

randomly sample the shutdown examples for training, we

can reasonably think that around 91% of sampled

examples correspond to shutdown events that fall in the

interval between 21:00-00:59.

Figure 9b shows the distribution over the h of the day of

the steady-state events extracted from the database. In this

case, roughly 80% of the steady state events terminate during

daylight between 06:00-08:59 and between 15:00 and 17:59.

Arnaud Nguembang Fadja et al. / Journal of Computer Science 2024, 20 (5): 495.510

DOI: 10.3844/jcssp.2024.495.510

502

(a)

(b)

Fig. 9: Shutdown and steady-state distribution; (a) Distribution of

shutdown events over the hours of the day; (b) Distribution

of steady-state events over the hours of the day

Fig. 10: Feature engineering pipeline

Feature Engineering

Feature engineering is a critical aspect of the success

of an ML project (Domingos, 2012) because it helps to

reduce the training cost and improves prediction

accuracy (Kuhn and Johnson, 2019). The two main steps

of feature engineering are feature selection (Cai et al.,

2018) and feature extraction (Guyon et al., 2008).

Feature selection allows reducing the number of features

by keeping only the relevant ones. This helps to

significantly reduce training time. It could simplify the

trained model and make it more understandable and

interpretable. Moreover, it also avoids the so-called

curse of dimensionality Koutroumbas and Theodoridis

(2008); Köppen (2000) which states that learning in

higher dimensions is harder than in lower dimensions.

Reducing the number of features eases the training

process and makes the model more likely to find optimal

patterns in the data. Feature extraction creates new

features by combining the existing ones. Figure 10

shows all the steps of our feature-engineering pipeline

that combines the measured variables, reduces their

number, and then, after the melting process, reduces the

number of features.

In the following subsections, the steps of the feature-

engineering pipeline are described in detail.

Semantic Aggregation

Semantic aggregation is a method in ML that

combines similar features that potentially share

information. It generally summarizes those features in a

reduced set by keeping only information that the reduced

features have in common. In this first step of feature

engineering, we aggregate the measured variables

obtained from the sensors "Exhaust Temperature n”,

where n = 1···16. Those measured variables were grouped

into 4 other groups as follows:

(i) Exhaust temperature 1-4

(ii) Exhaust temperature 5-8

(iii) Exhaust temperature 9-12

(iv) Exhaust temperature 13-16

Each group is aggregated by computing, at each

minute, the mean, standard deviation, kurtosis, and

skewness of the tags included in the group. Then the

aggregated features (measured variables, minutes) replace

the original ones.

Low Variance Reduction

One common approach of feature selection used in ML

is low variance reduction, which consists of removing all

features with low variance.

Arnaud Nguembang Fadja et al. / Journal of Computer Science 2024, 20 (5): 495.510

DOI: 10.3844/jcssp.2024.495.510

503

In our case, measured variables that are (almost) always
constant in all the MTSs do not provide any informative
content, hence they can be removed. Therefore, as shown
in Eq. 1, for each measured variable Xj, the variance on the
ith MTS is computed. Then, we summed all the variances
and we averaged the result over N, the number of the MTS

examples. Finally, all measured variables whose variances
are below a certain threshold are removed:

1

1 N

i j

i

Var X measure variable j
N 

   (1)

By analyzing the variance of all the measured variables,

we set the mean-variance threshold at 0.0002. This

threshold allows removing more than 40% of features.

Figure 11 shows the mean-variance of the measured

variables. The measured variable with the highest mean

variance is ambient air humidity. This means that the

environmental conditions at which the measured variables

were recorded are considerably different.

Fig. 11: Mean-variance of all the measured variables averaged

over all the examples

Fig. 12: Matrix of mean Pearson correlation between all couples

of measured variables

High Correlation Reduction

A feature that is strongly correlated with another one can
be seen as duplicated information. For this reason, we
compute the mean Pearson correlation between each pair of
variable time series averaged over the number of examples.

Figure 12 shows the mean Pearson correlation of the
variables. It can be observed that several variables are
highly correlated. In order to reduce the number of
features, for each couple of variables, if the absolute value of
the correlation between two variables is larger than Fig. 12.
Matrix of mean Pearson correlation between all couples of

measured variables. 0.85, we remove one of them. Note that
Pearson correlations greater than 0.8 are often considered as
very strong correlations, (Akoglu, 2018).

Granularity Reduction

The granularity reduction step consists of reducing the
number of points in the MTSs. For each measured
variable, instead of having a value every minute, we can
have one or more values every n minute. In our training
process, we set n to 10, and for every 10 min the following
statistics are computed:

(i) Mean

(ii) Standard deviation

(iii) Kurtosis

(iv) Skewness

The original 10 columns for the variable are replaced

with 4 new columns. Note that, to reduce the number of

features, n should be greater than 4. We set n to 10 because

it is a tradeoff between reducing the number of features

and maintaining relevant knowledge inside the data.

Melting

In MTS problems, the melting operation converts a

dataset into a format ready for the ML algorithms. In our

case, each example consists of 128 measured variables and

each measured variable has 20·60 = 1200 values. Therefore,

each MTS example, X data, represented by a matrix, is

transformed into a vector X data transformed as follows:

1 2

1 2 128

1_1 1_ 2 1_128

2 _1 2 _ 2 2 _128

1200 _1 1200 _ 2 1200 _128

1_1 1200 _1 1_ 2 1200 _ 2 1_128 1200 _128

...

...

_ ...

...

...

_ _

...

nMV MV MV

MV MV MV

x x x

X data x x x

x x x

X data transformed

x x x x x x

 
 
 
 
 
 
 
 
 





 
 
 
 

Arnaud Nguembang Fadja et al. / Journal of Computer Science 2024, 20 (5): 495.510

DOI: 10.3844/jcssp.2024.495.510

504

where, MV means measured variable, xi j is the value of a

measured variable j at the time (minute) i. X data

transformed represents a single example in the dataset.

Extra-Trees Feature Importance Reduction

In order to further reduce the number of features, we

use an ET al algorithm for identifying the most important

features. We measure the importance of a feature by

looking at how much the tree nodes that use a particular

feature reduce the impurity (Mean Square Error (MSE) in

our case) on average across all the trees. More precisely,

for each feature, the associated MSE importance is

computed. The feature is ordered according to the

associated MSE importance and the most important

features are selected.

Results and Discussion

This section presents the results of the experiments

made in this study for predicting the trend of the rotational

speed in GTs. Moreover, we discuss the results. The

implementations of the machine learning algorithms used

in the experiments are available in the scikit-learn suite

(https://scikit-learn.org/).

DTs, ET sand KNNs are trained using a grid search

that finds the best hyper-parameters by relying on

accuracy. The best hyperparameters are then used to train

the final models. The following sections present and

discuss the accuracy adopted, the training, and the

evaluation process respectively.

Accuracy

We use accuracy to measure how many transients and

steady-state cases are correctly identified. For every

example, the Mean Absolute Error (MAE) of the last 10

predicted points is computed: If the MAE is lower than a

fixed threshold, then the predicted curve is correct. The

accuracy is given by the following equation:

#

#

correct predictions
Accuracy

example


The threshold plays a crucial role in determining

whether the prediction is correct or not. For this reason, a

sensitivity analysis about the influence of the value of the

threshold is carried out on ET and DT models with different

configurations: The first case uses only examples of trip

and shutdown, the second only examples of trips and

stationary and the last uses all examples.

After training, the MAE of the last 10 points is computed

and the result is included in a scatter plot, with the aim of

analyzing the distribution of errors.

The analysis of the scatter plots highlighted a trend

toward the distribution of the error in two distinct regions

(Fig. 13): A region with a centroid at MAE = 200 (perfect

prediction) and another with a centroid at MAE = 2500

(wrong prediction).

The intermediate cases are analyzed individually by

looking at the predicted curves and identifying the

optimal threshold of 1000 as a discriminant between

the correct and incorrect examples.

Training and Evaluation

Two learning pipelines are investigated as described in

the following sections.

Learning without Feature Selection

We first train different ML models using a simple

(shallow) training pipeline that does not include feature

selection, Fig. 14.

These distributions can cause serious issues in our

training process, because our training examples are, in

terms of time, highly biased. In order to avoid biasedness,

a stratified sampling based on the h of the day is

performed in such a way that the training dataset is

uniformly distributed in terms of time as much as

possible, Figs. 15a-b.

Fig. 13: Threshold analysis: Error distribution

Fig. 14: Learning pipeline without feature selection

Arnaud Nguembang Fadja et al. / Journal of Computer Science 2024, 20 (5): 495.510

DOI: 10.3844/jcssp.2024.495.510

505

(a)

(b)

Fig. 15: Training distribution; (a) Distribution of steady-state

events used for training over the hours of the day after

performing the stratified sampling; (b) Distribution of

shutdown events used for training over the hours of the

day after performing the stratified sampling

(a)

(b)

Fig. 16: Testing distribution; (a) Distribution of shutdown

events used for testing over the hours of the day; (b)

Distribution of steady state events used for testing over

the hours of the day

In the first experiment, we perform, as already

explained, a stratified sampling of examples based on the

h of the day. After performing the stratified selection of

examples, we obtained the following training distribution:

362 transient examples, including 292 shutdown

examples 70 trip examples, and 362 steady-state

examples. All the remaining examples are used as a test

set. Detailed distribution with respect to the h of the days

after performing the stratified sampling for shutdown and

steady-state training examples are depicted in Fig. 16a-b

respectively.

Two models, DT and ET, are trained following the

learning pipeline in Fig. 13. We chose ET, instead of RF

because it is faster to train. Initially, a grid search is

performed to find the best hyperparameters. The

following hyperparameters are explored for DT: Max

depth: [2, 5, 10, 20], min samples leaf: [1, 5, 10, 20] and

the following for ET: Max depth: [2, 5, 10, 20], max

features: [100, 500, 1000, 10000], min samples leaf: [5]

and n estimators: [100, 500].

To perform the grid search, a four-fold cross-validation is

used for each combination of hyperparameters. The choice

of a four-fold cross-validation adopted is a compromise

between the number of hyperparameters to explore and the

time to perform the experiment. The following abbreviations

are used in the following tables: Max-depth (m d), min-

samples leaf (m s l), max features (m f), and n estimators

(n e). Tables 3-5 show the values of the accuracy of the top

three best combinations for DT, ET, and KNN respectively.

Note that in Table 4 by feature we mean an attribute of the

form (measured variable, minute) at a given minute.

Table 3: Learning without feature selection setting: Grid search

for DTs

Hyperparameters Evaluation

-- -------------

M_d M_s_l Accuracy

 2 20 0.867

 5 5 0.849

10 20 0.796

Table 4: Learning without feature selection setting: Grid search

for ETs

Hyperparameters Evaluation

-- -------------

M_d M_f M_s_1 N_e Accuracy

5 500 5 100 0.894

5 500 5 500 0.898

5 10000 5 500 0.874

Table 5: Learning without feature selection setting: Grid search

for KNNs

Hyperparameters Evaluation

--- -------------

K Weights P Accuracy

1 uniform 1 0.896

1 distance 1 0.896

3 distance 1 0.890

Arnaud Nguembang Fadja et al. / Journal of Computer Science 2024, 20 (5): 495.510

DOI: 10.3844/jcssp.2024.495.510

506

After performing a grid search, hyperparameters

showing good performance are identified to train the final

model. In our case, four combinations of hyperparameters

are chosen for training: Two DT models, one ET and one

KNN as follows: DT1: Max depth = 2, min samples leaf =

20; DT2: Max depth = 5, min samples leaf = 5; ET: Max

depth = 5, max features = 500, min samples leaf = 5, n

estimators = 500; KNN: K = 1, weights = uniform, p = 1.

Two DTs are chosen: The one with the best accuracy and

another one with slightly worse performance (used to

check the usefulness of the grid search). Among all the

ETs, the one with the best accuracy is chosen. Regarding

the KNN, the first two combinations yield identical

accuracy. However, the first one was selected because it

is faster. The examples for training and testing the models

are distributed as shown in Table 6. Note that the

number of steady-state examples for training is equal

to the number of transient examples which is the sum

of the number of trips and shutdown, 348 = 292+56.

Moreover, after training, the model is tested on the rest

of the available data.

Considering transients as positive examples and the

steady state as negative examples, in addition to accuracy,

other metrics such as Precision, Recall, F1-score, and

Specificity are also computed. Let us denote by True

Positive (TP) the number of transients correctly classified,

False Positive (FP) the number of transients wrongly

classified as steady states, True Negative (TN) the number

of steady states correctly classified and False Negative (FN)

the number of stead-states wrongly classified as transients.

The Precision, Eq. 2, computes the proportion of examples

classified as positive that are correctly classified:

TP
Precision

TP FP



 (2)

The Recall (also called sensitivity), Eq. 3, computes

the proportion of the actual positive examples correctly

classified:

TP
Recall

TP FN



 (3)

The F1-score is a way of combining the precision and

recall of the model. It is defined as the harmonic mean of

the precision and recall, Eq. 4 and reaches its optimum 1

only if precision and recall are both at 100%:

1 2
Precision Recall

F score
Precision Recall


  


 (4)

The specificity, Eq. 5, computes the proportion of

examples classified as negative that are correctly classified.

Table 6: Distribution of training and testing examples

- Training Test

#transient 348 2943

#steady-state 348 2851

Table 7: Detailed test results

Model Precision Recall F1-score Specificity Accuracy

DT1 0.835 0.847 0.841 0.827 0.837

DT2 0.782 0.829 0.805 0.761 0.796

ET 0.888 0.842 0.865 0.891 0.866

KNN 0.919 0.924 0.922 0.912 0.920

DT1 with 0.878 0.877 0.878 0.875 0.876

feature

selection

KNN with 0.924 0.926 0.925 0.921 0.924

feature

selection

TN

Specificity
TN FN




 (5)

Table 7 shows the final results using the combinations

of previously chosen hyperparameters.

Overall, Tables 3-5 and 7 show that the models are able

to generalize as well as extract patterns in the data that are

useful for predicting the trend of the rotational speed.

Learning with Feature Selection

In order to improve the results obtained in the previous

section, we extend the training pipeline by adding the

steps of feature selection described in Section 5. We start

with 128, 20, 60 = 153600 features and obtain the

following number of features after each step: After

performing Semantic aggregation, the number of features

becomes 115200 i.e., 25% of the input features are

removed. After applying low variance reduction, with a

variance threshold = 0.0002 we obtain 69600 i.e., ∼ 40%

of features are removed. The mean Pearson correlation

reduction brings the number of features to 37200 which

means that more than ∼ 47% of features are being

removed. Granularity reduction reduces the number of

features to 14880, i.e., 60% of features are removed. The

melting operation does not reduce the number of features

but prepares the data for training as explained. Finally, an

ET, used for feature selection, reduces the number of

features to 3720, i.e., a reduction of 75%. Overall ∼ 98% of

the initial features are removed.

We train DT1 and KNN after feature selection and the

results are shown in the last two rows of Table 7. It can be

observed that feature selection contributes to improving

the accuracy. Examples of transients (trip and shutdown)

and steady-state classifications are depicted in Figs. 17-18

by showing the normalized rotational speed trend over

one day (normalized data are reported because of

confidentiality reasons).

Arnaud Nguembang Fadja et al. / Journal of Computer Science 2024, 20 (5): 495.510

DOI: 10.3844/jcssp.2024.495.510

507

It is worth noting that KNN provides better

accuracy with respect to other classifiers trained with

or without feature selection. However, DT1 trained

with feature selection is a good tradeoff between

prediction quality and explainability.

(a)

(b)

Fig. 17: Examples of correct and wrong transient predictions;

(a) Transient correct prediction; (b) Transient wrong

prediction

(a)

 (b)

Fig. 18: Examples of correct and wrong steady-state

predictions; (a) Steady-state correct prediction; (b)

Steady-state wrong prediction

Conclusion

In this study, we investigated machine-learning

approaches based on DTs, ETs, and KNNs for predicting

the rotational speed of a GT. The models developed

predict the rotational speed of the next 4 h by using data

from multiple measured variables of the previous 20 h. An

ML workflow starting from sensor data extraction from

the Siemens database to an ML pipeline for training and

predicting the rotational speed trend of GTs was applied.

Three ML pipelines, with and without feature selection,

were investigated to predict the rotational speed of GTs.

KNNs with and without feature selection provide the best

results with an accuracy of more than 92%. However, DTs

with feature selection provide a good compromise

between prediction quality and explainability. The trained

models are not only able to correctly predict transients but

are also able, in the case of DTs, to give an explanation of

their decision.

As a future work, we first plan to try to predict with a

24 h advance in order to timely detect incipient GT

transient symptoms.

Moreover, we plan to focus on interpretability and

model explainability, especially in the context of Decision

Trees (DTs). Exploring techniques Such as Shapley

Additive Explanations (SHAP) (Nohara et al., 2019) values

and LIME (local interpretable model-agnostic

explanations) (Plumb et al., 2018) can provide deeper

insights into how our models arrive at specific predictions.

Understanding the rationale behind the predictions is

crucial, especially in critical industrial applications where

decision-making transparency is paramount.

Additionally, we plan to integrate anomaly detection

algorithms with predictive modeling to identify unusual

patterns and outliers in data, not only detecting transient

Arnaud Nguembang Fadja et al. / Journal of Computer Science 2024, 20 (5): 495.510

DOI: 10.3844/jcssp.2024.495.510

508

symptoms but also highlighting anomalous behaviors

indicating underlying issues. Second, they aim to

incorporate real-time data streams and sensor information

into their prediction models, creating dynamic and

adaptive systems capable of responding promptly to

changing operating conditions. This integration will

enable timely alerts and preventive maintenance

suggestions, ensuring uninterrupted gas turbine operation

and preventing potential failures.

Lastly, we plan to design and implement a user-

friendly interface for industry professionals and

operators. This interface will allow users to visualize

predictions, explore model explanations, and receive

actionable insights in an easily understandable manner.

The focus on usability and accessibility is crucial,

ensuring the practical applicability and adoption of their

predictive models in real-world industrial settings.

Through these efforts, the authors aim to advance gas

turbine predictive maintenance, offering valuable tools

to the energy sector. Their goal is to enhance the

operational efficiency, cost-effectiveness, and overall

reliability of gas turbine systems, contributing

significantly to the industry's advancements.

Acknowledgment

The authors gratefully acknowledge Siemens Energy

for the permission to publish the results. The authors also

wish to express sincere gratitude to Dr. Giuseppe Fabio

Ceschini for inspiring and supporting the research activity

about gas turbine trip prediction.

Funding Information

The research was funded by Siemens Energy Srl.

Author’s Contributions

Arnaud Nguembang, Fadja Giuseppe Cota, and

Francesco Bertasi: Made significant contributions to the

paper across various dimensions. Their involvement

encompassed conceptualization, methodological design,

software development, validation procedures, formal

analysis, and the creation of visualizations.

Additionally, they played a pivotal role in crafting the

original draft and contributed extensively to the review

and editing phases, ensuring the overall quality and

coherence of the manuscript.

Fabrizio Riguzzi: Demonstrated a comprehensive

and multifaceted involvement in the project.

From the initial conceptualization and methodological

framework development to the creation of necessary

software, rigorous validation, and formal analysis,

Fabrizio’s contributions were foundational.

Furthermore, Fabrizio actively engaged in the entire

writing process, from crafting the original draft to

meticulous review and edited.

Although no impactful visualizations were produced,

Fabrizio’s role extended to effective supervision and

adept project administration, showcasing a well-rounded

and fluent presence throughout the project lifecycle.

Enzo Losi and Lucrezia Manservigi: Made

significant contributions throughout the research process.

Their involvement spanned from the conceptualization of

ideas to the meticulous validation of results.

They actively participated in crafting the original draft

and played a crucial role in the comprehensive review,

editing, and visualization stages.

Their contributions have been integral to the

development and refinement of this study.

Mauro Venturini and Giovanni Bechini: Played a

vital role in shaping and guiding this project. Their

involvement extended from the initial conceptualization

of ideas to the meticulous validation of results.

They further contributed to the creation of the original

draft and engaged in thorough review and editing

processes. Additionally, their valuable supervision

ensured the project’s integrity and quality, showcasing

adept project administration skills and contributing to the

overall success and efficiency of the endeavor.

Ethics

No human or animal subject was involved and we

do not envision any potential negative societal impacts

of the research.

References

Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-

based learning algorithms. Machine Learning, 6, 37-66.

 https://link.springer.com/article/10.1007/BF00153759

Akoglu, H. (2018). User's guide to correlation

coefficients. Turkish Journal of Emergency

Medicine, 18(3), 91-93.

 https://doi.org/10.1007/BF00153759

Bangert, P. (2020). Predictive maintenance for gas turbines.

In International Petroleum Technology Conference,

D023S039R003. IPTC.

 https://doi.org/10.2523/IPTC-19864-Abstract

Bechini, G., Losi, E., Manservigi, L., Pagliarini, G.,

Sciavicco, G., Stan, E. I., & Venturini, M. (2022).

Temporal random forest applied to gas turbine trip

prediction. In ASME.

 https://doi.org/10.1115/1.4053194

Breiman, L. (2001). Random forests. Machine Learning,

45, 5-32.

 https://link.springer.com/article/10.1023/a:10109334

04324

https://link.springer.com/article/10.1007/BF00153759
https://doi.org/10.1007/BF00153759
https://doi.org/10.2523/IPTC-19864-Abstract
https://doi.org/10.1115/1.4053194
https://link.springer.com/article/10.1023/a:1010933404324
https://link.springer.com/article/10.1023/a:1010933404324

Arnaud Nguembang Fadja et al. / Journal of Computer Science 2024, 20 (5): 495.510

DOI: 10.3844/jcssp.2024.495.510

509

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C.

J. (1984). Classification and regression trees.

Chapman and HalI.

 https://www.geeksforgeeks.org/cart-classification-

and- egression-tree-in-machine-learning/

Brotherton, T., Jahns, G., Jacobs, J., & Wroblewski, D.

(2000). Prognosis of faults in gas turbine engines.

In 2000 Aerospace Conference, Proceedings,

(6),163-171.

 https://doi.org/10.1109/AERO.2000.877892

Brotherton, T., Grabill, P., Wroblewski, D., Friend, R.,

Sotomayer, B., & Berry, J. (2002). A testbed for data

fusion for engine diagnostics and prognostics. In

Proceedings, IEEE Aerospace Conference, (6), 6-6.

 https://doi.org/10.1109/AERO.2002.1036145

Byington, C. S., Roemer, M. J., & Galie, T. (2002).

Prognostic enhancements to diagnostic systems for

improved condition-based maintenance. In

Proceedings, Aerospace Conference (6), 6-6.

 https://doi.org/10.1109/AERO.2002.1036120

Cai, J., Luo, J., Wang, S., & Yang, S. (2018). Feature

selection in machine learning: A new perspective.

Neuro Computing, 300, 70-79.

 https://doi.org/10.1016/j.neucom.2017.11.077

De Mauro, A., Greco, M., & Grimaldi, M. (2016). A

formal definition of big data based on its essential

features. Library Review, 65(3), 122-135.

 https://doi.org/10.1108/LR-06-2015-0061

DePold, H. R., & Gass, F. D. (1999). The application of

expert systems and neural networks to gas turbine

prognostics and diagnostics. (121) (4), 607-612.

 https://doi.org/10.1115/1.2818515

De Castro-Cros, M., Velasco, M., & Angulo, C. (2021).

Machine-learning-based condition assessment of gas

turbines-A review. Energies, 14(24), 8468.

 https://doi.org/10.3390/en14248468

Domingos, P. (2012). A few useful things to know about

machine learning. Communications of the ACM,

55(10), 78-87.

 https://doi.org/10.1145/2347736.2347755

El Naqa, I., & Murphy, M. J. (2015). What is machine

learning? Theory and Applications, 3-11.

 https://doi.org/10.1007/978-3-319-18305-3_1

Fontes, C. H., & Pereira, O. (2016). Pattern recognition in

multivariate time series: A case study applied to fault

detection in a gas turbine. Engineering Applications

of Artificial Intelligence, 49, 10-18.

 https://doi.org/10.1016/j.engappai.2015.11.005

Fu, T. C. (2011). A review on time series data mining.

Engineering Applications of Artificial Intelligence,

24(1), 164-181.

 https://doi.org/10.1016/j.engappai.2010.09.007

Fu, Y. (1997). Data mining. Potentials, 16(4):18-20.

 https://doi.org/10.1109/45.624335

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely

randomized trees. Machine Learning, 63, 3-42.

 https://doi.org/10.1007/s10994-006-6226-1

Goyal, V., Xu, M., Kapat, J., & Vesely, L. (2020).

Prediction of gas turbine performance using machine

learning methods. In Turbo Expo: Power for Land,

Sea and Air, (84157), V006T09A004.

 https://doi.org/10.1115/GT2020-15232

Guyon, I., Gunn, S., Nikravesh, M., & Zadeh, L. A.

(2008). Feature extraction: Foundations and

applications. Springer, 207. ISBN-10: 3540354883.

Hess, A., Frith, P., & Suarez, E. (2006). Challenges, issues

and lessons learned implementing prognostics for

propulsion systems. In Turbo Expo: Power for Land,

Sea and Air, 42371, 927-935.

 https://doi.org/10.1115/GT2006-91279

Ho, T. K. (1995). Random decision forests. In

Proceedings of 3rd International Conference on

Document Analysis and Recognition, 1, 278-282.

https://doi.org/10.1109/ICDAR.1995.598994

Hochreiter, S., & Schmidhuber, J. (1997). Long short-

term memory. Neural Computation, 9(8), 1735-1780.

 https://doi.org/10.1162/neco.1997.9.8.1735

Hong, C. W., & Kim, J. (2023). Exhaust temperature

prediction for gas turbine performance estimation by

using deep learning. Journal of Electrical

Engineering and Technology, 1-9.

 https://doi.org/10.1007/s42835-023-01488-x

Köppen, M. (2000, September). The curse of dimensionality.

In 5th online world conference on soft computing in

industrial applications (WSC5) (Vol. 1, pp. 4-8).

Koutroumbas, K., & Theodoridis, S. (2008). Pattern

recognition. Academic Press. ISBN-10: 0080949126.

Kuhn, M., & Johnson, K. (2019). Feature engineering and

selection: A practical approach for predictive models.

Chapman and Hall/CRC, (1), 310.

 https://doi.org/10.1201/9781315108230

Li, S., Zhu, H., Zhu, M., Zhao, G., & Wei, X. (2021).

Combustion tuning for a gas turbine power plant

using data-driven and machine learning

approach. Journal of Engineering for Gas Turbines

and Power, 143(3), 031021.

 https://doi.org/10.1115/1.4050020

Li, Y. G., & Nilkitsaranont, P. (2009). Gas turbine

performance prognostic for condition-based

maintenance. Applied Energy, 86(10), 2152-2161.

 https://doi.org/10.1016/j.apenergy.2009.02.011

Liu, Z., & Karimi, I. A. (2020). Gas turbine performance

prediction via machine learning. Energy, 192,

116627. https://doi.org/10.1016/j.energy.2019.116627

https://doi.org/10.1109/AERO.2000.877892
https://doi.org/10.1109/AERO.2002.1036145
https://doi.org/10.1109/AERO.2002.1036120
https://doi.org/10.1016/j.neucom.2017.11.077
https://doi.org/10.1108/LR-06-2015-0061
https://doi.org/10.1115/1.2818515
https://doi.org/10.3390/en14248468
https://doi.org/10.1145/2347736.2347755
https://doi.org/10.1007/978-3-319-18305-3_1
https://doi.org/10.1016/j.engappai.2015.11.005
https://doi.org/10.1016/j.engappai.2010.09.007
https://doi.org/10.1109/45.624335
https://doi.org/10.1007/s10994-006-6226-1
https://doi.org/10.1115/GT2020-15232
https://doi.org/10.1115/GT2006-91279
https://doi.org/10.1109/ICDAR.1995.598994
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/s42835-023-01488-x
https://doi.org/10.1201/9781315108230
https://doi.org/10.1115/1.4050020
https://doi.org/10.1016/j.apenergy.2009.02.011
https://doi.org/10.1016/j.energy.2019.116627

Arnaud Nguembang Fadja et al. / Journal of Computer Science 2024, 20 (5): 495.510

DOI: 10.3844/jcssp.2024.495.510

510

Losi, E., Venturini, M., Manservigi, L., Ceschini, G. F.,

Bechini, G., Cota, G., & Riguzzi, F. (2021a). Data

selection and feature engineering for the application

of machine learning to the prediction of gas turbine

trip. In Turbo Expo: Power for Land, Sea and Air,

(85017), V008T20A004.

 https://doi.org/10.1115/GT2021-58914

Losi, E., Venturini, M., Manservigi, L., Ceschini, G. F.,

Bechini, G., Cota, G., & Riguzzi, F. (2021b).

Structured methodology for clustering gas turbine

transients by means of multivariate time series.

Journal of Engineering for Gas Turbines and Power,

143(3), 031014. https://doi.org/10.1115/1.4049503

Losi, E., Venturini, M., Manservigi, L., Ceschini, G. F.,

Bechini, G., Cota, G., & Riguzzi, F. (2022a). Prediction

of gas turbine trip: A novel methodology based on

random forest models. Journal of Engineering for Gas

Turbines and Power, 144(3), 031025.

 https://doi.org/10.1115/GT2021-58916

Losi, E., Venturini, M., Manservigi, L., Ceschini, G. F.,

Bechini, G., Cota, G., & Riguzzi, F. (2022b).

Prediction of gas turbine trip: A novel methodology

based on random forest models. Journal of

Engineering for Gas Turbines and Power, 144(3),

031025. https://doi.org/10.1115/1.4053194

Losi, E., Venturini, M., Manservigi, L., & Bechini, G.

(2023a). Detection of the onset of trip symptoms

embedded in gas turbine operating data. Journal of

Engineering for Gas Turbines and Power, 145(3),

031023. https://doi.org/10.1115/1.4055904

Losi, E., Venturini, M., Manservigi, L., & Bechini, G.

(2023b). Ensemble learning approach to the

prediction of gas turbine trip. Journal of Engineering

for Gas Turbines and Power, 145(2), 021009.

 https://doi.org/10.1115/1.4055905

Naderi, E., & Khorasani, K. (2018). Data-driven fault

detection, isolation and estimation of aircraft gas

turbine engine actuator and sensors. Mechanical

Systems and Signal Processing, 100, 415-438.

 https://doi.org/10.1016/j.ymssp.2017.07.021

Nohara, Y., Matsumoto, K., Soejima, H., & Nakashima, N.

(2019). Explanation of machine learning models using

improved shapley additive explanation. In

Proceedings of the 10th ACM International Conference

on Bioinformatics, Computational Biology and Health

Informatics, 546-546.

 https://doi.org/10.1145/3307339.3343255

Plumb, G., Molitor, D., & Talwalkar, A. S. (2018). Model

agnostic supervised local explanations. Advances in

Neural Information Processing Systems, 31.

Roemer, M. J., Byington, C. S., Kacprzynski, G. J., &

Vachtsevanos, G. (2006). An overview of selected

prognostic technologies with application to engine

health management. In Turbo Expo: Power for Land,

Sea and Air, 42371, 707-715.

 https://doi.org/10.1115/GT2006-90677

Roemer, M. J., & Kacprzynski, G. J. (2000). Advanced

diagnostics and prognostics for gas turbine engine

risk assessment. In 2000 Aerospace Conference,

Proceedings, 6, 345-353.

 https://doi.org/10.1109/AERO.2000.877909

Tahan, M., Tsoutsanis, E., Muhammad, M., & Karim, Z.

A. (2017). Performance-based health monitoring,

diagnostics and prognostics for condition-based

maintenance of gas turbines: A review. Applied

Energy, 198, 122-144.

 https://doi.org/10.1016/j.apenergy.2017.04.048

Taylor, J. V., Conduit, B., Dickens, A., Hall, C., Hillel,

M., & Miller, R. J. (2019). Predicting the operability

of damaged compressors using machine learning.

In Turbo Expo: Power for Land, Sea and Air, 58554,

V02AT39A027.

 https://doi.org/10.1115/GT2019-91339

Wong, P. K., Yang, Z., Vong, C. M., & Zhong, J. (2014).

Real time fault diagnosis for gas turbine generator

systems using extreme learning machine.

Neurocomputing, 128, 249-257.

 https://doi.org/10.1016/j.neucom.2017.05.063

Yang, M. S., & Wu, K. L. (2006). Unsupervised

possibilistic clustering. Pattern Recognition, 39(1),

5-21. https://doi.org/10.1016/j.patcog.2005.07.005

Zhang, J., Wang, P., Yan, R., & Gao, R. X. (2018). Deep

learning for improved system remaining life

prediction. Procedia Cirp, 72, 1033-1038.

 https://doi.org/10.1016/j.procir.2018.03.262

Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao,

R. X. (2019a). Deep learning and its applications to

machine health monitoring. Mechanical Systems and

Signal Processing, 115, 213-237.

 https://doi.org/10.1016/j.ymssp.2018.05.050

Zhao, Y. P., Huang, G., Hu, Q. K., Tan, J. F., Wang, J. J.,

& Yang, Z. (2019b). Soft extreme learning machine

for fault detection of aircraft engine. Aerospace

Science and Technology, 91, 70-81.

https://doi.org/10.1016/j.ast.2019.05.021

https://doi.org/10.1115/GT2021-58914
https://doi.org/10.1115/1.4049503
https://doi.org/10.1115/GT2021-58916
https://doi.org/10.1115/1.4053194
https://doi.org/10.1115/1.4055904
https://doi.org/10.1115/1.4055905
https://doi.org/10.1016/j.ymssp.2017.07.021
https://doi.org/10.1145/3307339.3343255
https://doi.org/10.1115/GT2006-90677
https://doi.org/10.1109/AERO.2000.877909
https://doi.org/10.1016/j.apenergy.2017.04.048
https://doi.org/10.1115/GT2019-91339
https://doi.org/10.1016/j.neucom.2017.05.063
https://doi.org/10.1016/j.patcog.2005.07.005
https://doi.org/10.1016/j.procir.2018.03.262
https://doi.org/10.1016/j.ymssp.2018.05.050
https://doi.org/10.1016/j.ast.2019.05.021

