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Abstract: Gas Turbine (GT) emergency shutdowns can lead to energy 

production interruption and may also reduce the lifespan of a turbine. In order 

to remain competitive in the market, it is necessary to improve the reliability 

and availability of GTs by developing predictive maintenance systems that are 

able to predict future conditions of GTs within a certain time. Predicting such 

situations not only helps to take corrective measures to avoid service 

unavailability but also eases the process of maintenance and considerably 

reduces maintenance costs. Huge amounts of sensor data are collected from 

(GTs) making monitoring impossible for human operators even with the help 

of computers. Machine learning techniques could provide support for handling 

large amounts of sensor data and building decision models for predicting GT 

future conditions. The paper presents an application of machine learning based 

on decision trees and k-nearest neighbors for predicting the rotational speed of 

gas turbines. The aim is to distinguish steady states (e.g., GT operation at 

normal conditions) from transients (e.g., GT trip or shutdown). The different 

steps of a machine learning pipeline, starting from data extraction to model 

testing are implemented and analyzed. Experiments are performed by applying 

decision trees, extremely randomized trees, and k-nearest neighbors to sensor 

data collected from GTs located in different countries. The trained models 

were able to predict steady state and transient with more than 93% accuracy. 

This research advances predictive maintenance methods and suggests 

exploring advanced machine learning algorithms, real-time data integration, 

and explainable AI techniques to enhance gas turbine behavior understanding 

and develop more adaptable maintenance systems for industrial applications. 
 

Keywords: Gas Turbines, Multi-Variate Time Series, Decision Tree, Extra 

Trees, K-Nearest Neighbour, Transient Prediction 
 

Introduction 

Gas Turbines (GTs), also known as combustion 

turbines, are used to convert energy by means of 

monitoring GTs not only help in making the service 

turbomachinery. The extracted energy is made available 

in always available but also reduces the number of failures 

in the form of electricity, compressed air, thrust, or a 

combination thereof and is used in planes, trains and 

ships, diagnosing GTs requires techniques of machine 

learning generators, tanks and many more. In order to 

guarantee the availability and reliability of GT assets, a 

robust, efficient, and flexible maintenance strategy should 

be designed and implemented (Tahan et al., 2017). 

Monitoring GTs not only helps in making the service 

turbomachinery. The extracted energy is made available in 
always available but also reduces the number of failures a 

GT asset due to unpredictable situations. Monitoring and 

diagnosing GTs requires techniques of machine learning or 

data mining to predict their future conditions using a large 

set of current and past operating data. 

The predictive system can exploit data provided by 

many sensors of many GTs in different years, thus 

posing big data challenges. Building such predictive 

systems helps in understanding the degradation trend 

of some components of GTs and therefore allows 

engineers to pay more attention to machines that have 

symptoms of degradation. In addition, understanding 
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the machine degradation behavior can also help in the 

design of future GT components. 

The term big data generally indicates a collection of data 

so extensive in terms of volume, speed, and variety that 

specific technologies and analytical methods are required for 

extracting value or knowledge (De Mauro et al., 2016). A 

recent study (Tahan et al., 2017) demonstrated that analytics 

methods based on large amounts of data collected from GTs 

can lead to significant savings in the oil and gas sector. 

Data mining (Fu, 1997) and Machine Learning (ML) 

(El Naqa and Murphy, 2015) have been successfully 

applied to predictive maintenance systems whose aim is 

to evaluate the health state of equipment by performing 

regular condition monitoring. They rely on the past and 

actual state of the equipment to predict future conditions. 

Many of these methods have been applied successfully to 

energy-based systems using large volumes of sensor 

data. Zhao et al. (2019a) the authors present a large 

range of ML techniques for health monitoring as well as 

ML-based methods for analyzing health data. Further 

applications of ML for predicting the remaining useful 

life are presented by Zhang et al. (2018); Yang and Wu 

(2006). Naderi and Khorasani (2018) the authors outline 

a process that relies on Markov parameters to detect, 

isolate, and estimate faults on actuators and sensors in 

GT systems. A study by Taylor et al. (2019) examined 

the effects of damaged blades on compressor 

performance using ML. Wong et al. (2014) a real-time 

fault diagnostics of GTs using ML is presented. The 

diagnosis is done by extracting useful patterns from vibration 

signals. Zhao et al. (2019b) an improved extreme learning 

machine tool detects the faults of an aircraft engine. 

The current paper investigates different ML models 

based on Decision Trees (DTs) and K-Nearest Neighbors 

(KNNs) to predict the future trend of the rotational speed, 

with an advance of 4 h. Analyses are performed without 

and with feature engineering and provide efficient and 

explainable models. Unlike other approaches, we propose 

an efficient preprocessing pipeline in order to not only 

clean the data but also to improve the prediction accuracy. 

The preprocessing pipeline includes efficient data 

extraction and selection of transient and state steady-state 

examples, custom stratifying sampling methods, and a 

broad set of feature engineering steps. 

In the framework of an extended research activity 

conducted by the authors about the prediction of GT 

future operations (Losi et al., 2021a-b; Bechini et al., 

2022) the current paper tackles the same challenge from a 

different perspective. The paper (Losi et al., 2021a) develops 

a methodology suitable to classify transients into two clusters 

(i.e., shutdown or trip). The methodology is applied to field 

data covering three years of operation and the obtained 

values of precision, recall, and accuracy are higher than 

90% in almost all cases. The paper Losi et al. (2021a-b) 

presents a methodology dealing with data selection and 

feature engineering, which allows the identification of the 

best target examples and set of features for the setup of an 

ML model aimed at predicting GT trips. Such a model was 

developed by Losi et al. (2022a-b) as a random forest 

model, which predicts gas turbine trips based on 

information gathered during a timeframe of historical data 

acquired from multiple sensors. The model is tested by 

means of field data taken during three years of operation 

of two fleets of GTs located in different regions. In this 

case, precision, recall, and accuracy values are in the range 

of 75-85%. The paper (Losi et al., 2022a-b) investigates the 

fusion of five data-driven base models by means of voting 

and stacking, in order to increase model accuracy and 

improve prediction robustness. The five ML classifiers 

are K-nearest neighbor, support vector machines, naive 

bayes, DTs, and Long Short-Term Memory (LSTM) neural 

(Hochreiter and Schmidhuber, 1997). The paper Losi et al. 

(2022a-b) presents a comprehensive data-driven 

methodology aimed at investigating and disclosing the 

onset of trip symptoms, i.e., the most likely time point at 

which trip symptoms trigger. A (LSTM) neural network is 

employed as the classification model. The methodology 

provides the most likely trigger position for four clusters 

of trips within two days before trip occurrence with at 

least 80% confidence. The paper Bechini et al. (2022) first 

applies a systematic statistical analysis to identify the 

most important variables and then uses a novel ML 

technique known as temporal DTs, which differs from the 

regular DTs because it allows a native treatment of the 

temporal component. The learned models are finally 

employed to extract statistical rules. 

While previous works focus on classifying trips (i.e., 

sudden arrests) and shutdowns (i.e., intentional 

shutdowns) through clustering techniques and predicting 

them through ensemble ML approaches, in this study we 

adopt a different approach in which we use ML models, 

DTs, Extremely Randomized Trees (ERTs) and KNNs to 

predict the rotational speed. Moreover, data processing 

and feature engineering techniques implemented in the 

current paper are different from our previous works. In 

particular, the trained models use data from the last 20 h to 

predict the trend of the rotational speed of the following 4 h. 

Based on the rotational speed trend, the proposed models 

allow us to predict the following GT operating conditions: 
 
(i) Transient state (a trip or a shutdown) and 

(ii) Steady state (a normal operating condition in which the 

rotational speed is almost constant) 
 

Although the proposed models do not perform a direct 

distinction between trips and shutdowns, in real-case 

scenarios, if the system is predicting a transient and no 

human operator has intentionally sent a shutdown signal 

then a trip is in progress. It is worth noting that in the data 
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used for training and testing, we do not consider explicit 

signals that represent shutdown commands. 

Similar work has been explored by Goyal et al. (2020); 

Li et al. (2021); Liu and Karimi (2020). In Goyal et al. 

(2020) the authors used multiple machine learning 

algorithms to predict the normal behavior of operational 

parameters including power generated and blade path 

temperature spread. The predictions can be used to 

identify anomalies and probable failures in the gas turbine 

performance. The data used in the study is taken from 

multiple heavy-duty gas turbine units of combined cycled 

utility power plants which are known to contain 

operational failures. The predictors include operational 

parameters such as fuel flow, various thermodynamic 

variables, etc. The models are trained and parameters are 

selected based on the overall prediction performance on 

the validation set. Li et al. (2021) present a cross-

disciplinary study on the combustion tuning of an F-class 

gas turbine that combines machine learning with physics 

understanding. A machine learning-based method was 

developed by Liu and Karimi (2020) to predict gas turbine 

performance for power generation. Two surrogate models 

based on Dimensional Model Representation (HDMR) 

and Artificial Neural Network (ANN) are developed from 

real operational data to predict the operating 

characteristics of the air compressor and turbine. 

Various approaches that predict the future conditions 

of GTs have been investigated in the literature, (Bangert, 

2020; Li and Nilkitsaranont, 2009). Bangert (2020) the 

authors presents an ML algorithm based on an LSTM to 

predict the future conditions of GTs. To train the LSTM 

model, the paper relies on measured variables similar to 

those used in the present paper. Unlike Bangert (2020) our 

approach makes use of tree-based models to predict future 

GTs conditions and classification accuracy for evaluating 

the models, thus it is more explainable and interpretable. 

Li and Nilkitsaranont (2009) the authors investigate how 

to predict GT future conditions by estimating the 

remaining useful life of GT engines before their next 

major overhaul based on historical health information. 

Unlike the present work, the authors investigate a 

technique that combines linear and quadratic regression to 

predict the trend of some measured variables such as air 

compressors. Unlike Bangert (2020); Li and 

Nilkitsaranont (2009), our approach relies on a more 

powerful model such as DTs to forecast GTs' future 

conditions. Various other GT prognostic techniques 

have been investigated, (DePold and Gass, 1999; 

Brotherton et al., 2000; Roemer and Kacprzynski, 2000; 

Byington et al., 2002; Brotherton et al., 2002; Roemer et al., 

2006; Hess et al., 2006). Most of these techniques are 

experience-based prognostics, model-based prognostics, 

evolutionary prognostics, neural networks, state estimator 

prognostics, rule-based expert systems, and fuzzy logic-

based methods. They apply different methods to predict 

GT future conditions. Unlike these approaches, the 

current paper develops a data processing and feature 

engineering pipeline aimed at forecasting the trend of GT 

rotational speed, with the final goal of raising a warning 

sign about future trip occurrence. 

Lastly, recent studies by Hong and Kim (2023); De 

Castro-Cros et al. (2021) employed machine learning 

techniques to predict gas turbine engine performance. 

Hong and Kim (2023) utilized operational parameters like 

fuel flow and compressor discharge pressure, employing 

artificial neural networks and support vector regression 

algorithms. Their approach accurately predicted the gas 

turbine’s performance. Similarly, Hong and Kim (2023); 

De Castro-Cros et al. (2021) developed an artificial neural 

network model using data from a heavy-duty gas turbine 

unit, incorporating various operational parameters. The 

resulting model successfully predicted the gas turbine 

engine’s performance. Both studies demonstrate the 

effectiveness of machine learning-based methods in 

accurately forecasting gas turbine engine performance 

using operational data. 

Materials and Methods 

In this section we present the data we considered, 

the preprocessing we applied to it and the ML 

algorithms we applied. 

Available Data 

The rotational speed is predicted in this study by using 

data from various sensors collected from GTs produced 

by Siemens. A measured variable is a reading from a 

sensor acquired with a given frequency during machine 

operation. In this study, 128 measured variables are 

considered, Table 2. The set of variables includes 

different types of system variables typically considered 

during GT monitoring and diagnostics, e.g., ambient 

conditions, gas path measurements, vibrations, rotational 

speed, power output, as well as operational parameters of 

external systems. More precisely, gas path measurements 

comprise compressor inlet and outlet pressures, 

compressor inlet and outlet temperatures, exhaust gas 

temperatures (i.e., a ring of sixteen equally spaced 

thermocouples placed circumferentially at the turbine 

outlet section, each with two redundant thermocouples), 

and turbine exhaust pressure. Vibration data consist of 

both bearing vibrations and combustion chamber 

pulsations. Finally, operational parameters such as fuel 

temperature, fuel valve position lube oil pressure, and 

temperature are also taken into account. Therefore, this 

study employs a massive and comprehensive set of 

measured variables. The high number of measured 

variables, exploited to predict the future trend of GT 
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rotational speed, poses the challenge of handling big data. 

Moreover, since different measured variables are sampled 

at different frequencies, an interpolation operation is done 

in order to have data for each measured variable at each 

minute. Therefore, each feature considered in the rest of 

the paper is the value of a measured variable at a specific 

time (minute). 

We use a dataset, Table 1 that includes 6490 transients 

(trip and shutdown) and steady-state examples acquired 

over three years from machines in different countries. The 

dataset is proprietary and it is not possible to make it freely 

available. It should be noted that the two categories are 

balanced, the transient category includes 70 trips and 3221 

shutdowns. Sampling data randomly from this distribution 

for training an ML model could be problematic. Hence, it 

is necessary to develop an ad hoc strategy for selecting 

representative examples for training an ML model. 

 
Table 1: Dataset distribution 

Category #Example 

Transient 3291 

Steady-state 3199 

 
Table 2: List of measured variables 

Measured variable description Number of sensors 

Air intake differential pressure 1 
Ambient air humidity 1 
Ambient air temperature 1 
Differential pressure at 1 
compressor inlet section 
Compressor inlet pressure 1 
Compressor inlet temperature 1 
Compressor outlet pressure 3 
Compressor outlet temperature 3 
Power output 1 
Differential pressure at exhaust 1 
duct section 
Fuel temperature 1 
Turbine outlet pressure 1 
Bearing vibration 6 
Bearing vibration 1× N Amp 6 
Turbine exhaust temperature 48 
Gearbox casing vibration 2 
Gearbox casing vibration 1× N Amp 2 
Generator DE bearing temperature 1 
Generator DE vibration 3 
Generator NDE vibration 3 
Generator stator temp pH 12 
High-frequency pulsation 3 
Low-frequency pulsation 3 
Lube oil supply pressure 3 
Lube oil supply temperature 4 
Fuel valve position 1 
Medium frequency pulsation 3 
Narrow frequency pulsation 3 
Combustor chamber pressure 1 
Radial bearing temperature 4 
Thrust bearing temperature 2 
Turbine casing temperature 1 
Rotational speed 1 

Different ML models are trained using data associated 

with those 128 measured variables. The models predict 

the rotational speed of the next 4 h using the data of the 

past 20 h (including the rotational speed), Fig. 1. 

Therefore, the input to the models consists of 128·20·60 

= 153600 features while the output includes 4·60 = 240 

values of rotational speed. 

Machine Learning Algorithms 

This section describes the different ML algorithms 

used to predict the rotational speed in GTs. Three ML 

models are investigated: DTs (Breiman et al., 1984) ERT 

also called Extra Trees (ETs) (Geurts et al., 2006) 

which are a modification of Random Forests (RFs) (Ho, 

1995; Breiman, 2001) and KNNs (Aha et al., 1991). 

DTs are ML algorithms that can be used in predictive 

tasks. A DT is a tree-like structure in which each node 

represents a test on a specific feature. Each leaf node 

represents an expected value (list of values) in the case of 

(multi-output) regression. Figure 2 for an example of a 

multi-output regression DT. Given an unknown example, 

a DT performs inference by evaluating the conditions on 

the nodes from the root to a leaf. The numerical list of 

values associated with the leaf is assigned to the example. 

One of the main characteristics of DTs is that they are 

explainable, in the sense that the model can be interpreted 

by a human. In fact, a path from the root node to a leaf can 

be translated into a human-readable logical rule. The 

training algorithm for building DTs Fig. 2 Example of DT. 

Adapted from (Losi et al., 2021a-b) works in a top-down 

manner. The algorithm starts with the whole set of training 

examples that are associated with the root and splits them 

into two partitions by greedily selecting the feature and 

the threshold that create the purest partitions according to 

an impurity measure. Then two child nodes are created, 

one for each partition of the training examples. The 

algorithm stops when the considered subset of examples 

is pure or a limitation imposed by a hyperparameter is 

reached. The most common hyperparameters are the size 

of the set associated with the leaf called, min sample leaf, 

and the depth of the tree, called max depth. 

 

 

 
Fig. 1: Rotational speed prediction 
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Fig. 2: Example of DT. Adapted from (Losi et al., 2021b) 
 

 
 
Fig. 3: Example of RF, (Losi et al., 2021b) 
 

 
 
Fig. 4: Example of KNNs regression in 1 dimension: The X-axis 

consists of 40 sorted random values between 0 and 5 and 

the Y-axis is the sine values of X with added noise. It 

applies k-nearest neighbors regression with uniform and 

distance weight respectively. The data points are 

visualized in crimson and predicted in blue 

Ensemble methods are a group of ML techniques that 

consist of aggregating several estimators (possibly of 

different types). These techniques are useful because an 

ensemble estimator could lead to better performance 

compared to that of any of the individual estimators that 

compose the ensemble. 

An RF, Fig. 3. is an ensemble of DTs. The DT 

estimators are independently trained on different (randomly 

sampled) subsets of the training dataset and/or with 

different (randomly sampled) subsets of features. The 

prediction of an RF is a combination of the predictions 

obtained by the DTs that compose the ensemble. If the 

random forest is performing regression, the predicted value 

is the mean of the outputs of the DTs. 

ETs are another ML ensemble method similar to RFs that 

introduce more randomness during tree building. Figure 4 

Example of KNNs regression in 1 dimension. The X-axis 

consists of 40 sorted random values between 0 and 5 and 

the Y-axis is the sine values of X with added noise. It 

applies the k-nearest neighbor's regression with uniform 

and distance weight respectively. The data points are 

visualized in crimson and the predicted in the blue main 

difference between ETs and RFs is that, during the training 

of each inner DT estimator, RFs choose the optimum 

threshold for each feature whereas ETs choose it randomly, 

hence the name extremely randomized trees. This makes ETs 

faster to train than RFs because finding at every node the best 

threshold for each feature is one of the most computationally 

expensive tasks of the training process. 

KNN is a versatile algorithm applied to both 

classification and regression tasks. It computes distances 

between the input data point and every entry in the 

training set, relying on metrics such as the Euclidean or 

Manhattan distance. By doing so, it identifies the k data 

points nearest to the input. For classification, the 

algorithm identifies the most common class among these 

k-neighbors, attributing it to the input data point. 

Conversely, regression calculates the weighted average of 

the target values of these k nearest neighbors. The choice 

of k and the distance metric significantly influence the 

algorithm's performance. Smaller k values heighten 

sensitivity to noise, whereas larger ones enhance stability, 

albeit at the expense of computational complexity. In 

regression tasks, Fig. 4. several hyperparameters come 

into play, including weights and p. weights, which can be 

either uniform or distance, define how contributions of 

neighboring points are weighted. In the uniform setting, 

all points within a neighborhood hold equal weight, while 

in the distance setting, points are weighted in a way 

inversely proportional to their distances from the target 

point. The parameter p represents the power parameter for 

the Murkowski distance metric. For instance, p = 1 

corresponds to the Manhattan distance (L1 norm), while p = 2 

to the Euclidean distance (L2 norm). 
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The ML workflow used in this study is illustrated in Fig. 5. 

All the measured variables acquired from Siemens GTs 

located worldwide are sent to a data warehouse, which is 

in charge of data storage. Given the large amount of 

gathered data, lossy compression techniques are needed 

and, as a result, the measured variables are stored in the 

data warehouse with different sampling frequencies, 

depending on the considered sensor. 

Data Preprocessing 

The first step that must be performed is to extract 

raw data for the machines of interest from the data 

warehouse. Then, the raw data are grouped by 

machines, sorted by timestamps, piecewise linearly 

interpolated, and then new data points are created by 

resampling the interpolated curves. Finally, the 

resulting time series of the rotational speed is stored as 

Comma Separated Values (CSV) files to be used for 

detecting transients and steady-state cases. In the 

following, we illustrate these steps in detail. 

Raw Data Extraction 

Given a set of measured variables and a GT, the aim is 

to extract data from user-defined time windows as fast as 

possible. We developed a script that creates a pool of 

threads running in parallel, so that each of them sends an 

SQL query to the cloud data warehouse that executes it, 

Fig. 6. The pool of threads is managed by a single client 

computer and, in order to avoid high memory usage, SQL 

server cursors were used and the data rows were 

concatenated in CSV files. 

Each CSV file contains the data concerning the set of the 

selected GT-measured variables in a given time window. 

Finally, the resulting CSV file is zipped in order to reduce 

storage consumption. 

Data Elaboration and Storage 

As mentioned before, the data warehouse contains 

data sampled with different frequencies; thus data must be 

elaborated in order to be sampled with the same frequency 

since the training models used in this study are aimed at 

processing multi-variate time series data. The GTs taken 

into account include different sensors with different 

sampling frequencies, e.g., high-frequency sensors such 

as vibrations or low-frequency sensors such as ambient 

temperature and air humidity. Each CSV file obtained in 

the previous step is unzipped and read. Then, for each 

measured variable related to a low-frequency sensor, the 

raw data are ranked by timestamps, piecewise linearly 

interpolated, and then new data points are created by 

resampling the interpolated curve as shown in Fig. 7. For 

each measured variable related to a high-frequency 

sensor, the raw data are ranked by timestamps and, for 

every minute, the average is computed. Finally, for each 

CSV file that contains the raw data retrieved from the data 

warehouse, the result of the elaboration is a Multi-Variate 

Time Series (MTS), which is stored as a CSV file that in 

turn is zipped to save storage space (Losi et al., 2023a-b). 

Identification of Transient Operation 

In order to build a dataset that includes examples of 

trip and shutdown, an algorithm for identifying transients 

is implemented. Since the database does not always 

include the operational reports regarding past occurrence of 

transients and their type for all fleets of GTs, an appropriate 

technique to identify transients only based on field data is 

required. Based on an analogous approach used to identify 

starting events (Fontes and Pereira, 2016; Losi et al., 

2023a-b) we introduced an approach that applies the 

subsequent matching algorithm (Fu, 2011) to identify 

transient events from rotational speed data. 
 

 
 
Fig. 5: Machine-learning workflow. Adapted from (Losi et al., 

2021b) 
 

 
 
Fig. 6: Parallel query execution during raw data extraction, 

(Losi et al., 2021b) 
 

 
 
Fig. 7: Interpolation and resampling of measures of a generic 

asynchronous sensor, (Losi et al., 2021b). 
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Fig. 8: Subsequence matching algorithm 

 

The subsequent matching algorithm considers a two-

time series, usually defined as a query sequence and a 

longer time series (Fu, 2011), and identifies the 

subsequences in the longer time series that match the 

query sequence. In our case, the query sequence is 

computed by analyzing 8 min of the rotational speed of 50 

transient events (Losi et al., 2021a-b). That 8 min is selected 

because the rotational speed decreases from over 6000 

rounds per minute (rpm) to a few rpm. We obtain a 50×8 

matrix, where each row represents a transient event. Then 

we compute the column-wise mean of this matrix obtaining 

a vector that represents the typical profile of the rotational 

speed during a transient of the GT and consists of 8 data 

points, i.e., 8 min of rotational speed values. Instead, the 

longer time series is composed of the historical data of the 

rotational speed. 

Figure 8 the subsequence matching algorithm 

computes the Euclidean distance between the query 

sequence and the longer time series within a moving time 

window that has the same length as the query sequence. 

The moving window slides forward one data point at a 

time, i.e., 1 min at a time. 

For each machine, the output of this algorithm is a list of 

tuples ordered by timestamp of the form 〈Ti, Eii〉, where 

Ti is the timestamp associated with the last data point of the 

time window and Ei the Euclidean distance of the time 

window. If the Euclidean distance of a given tuple is lower 

than the distances of the previous tuple and the following 

one, then that Euclidean distance is a local minimum. Tuples, 

where the Euclidean distance is a local minimum, represent 

those time windows where the longer time series is similar to 

the query reference. Moreover, if the local minimum is lower 

than a threshold, then the associated time window is 

considered as a transient event and the last data point of the 

time window is added to a list of transient timestamps. The 

value 2000 rpm is chosen as a threshold that leads to a clear 

distinction between steady-states and transients. 

Moreover, for training and testing our machine learning 

models, we consider as valid transient examples those cases 

where, during the 23 h and 52 min before the start of the 

transient event, the rotational speed was greater than 60% 

of the maximum nominal speed, which corresponds to the 

minimum GT load. Therefore, from the list of transient 

timestamps, those timestamps associated with transient 

events that do not meet this constraint are removed. 

The final output of the transient identification step is a 

CSV file containing a list of tuples of the form 〈Mj, Tji〉, 

where Mj is a code that identifies a GT and Tj is a transient 

timestamp, i.e., the timestamp of the end of a transient event. 

Identification of Steady-State Operation 

For each machine, we compute the time intervals 

during which the rotational speed is greater than 60% 

of the maximum nominal speed and we filter out all the 

intervals that are shorter than 24 h. Then we split these 

intervals into a set of 24 h intervals such that they do 

not overlap. The output is a CSV file containing a list 

of tuples of the form 〈Mj, Tji〉, where Mi is a code 

that identifies a GT and Si is a timestamp that denotes 

the end of the interval. 

Selection of Training Examples 

Before performing training, we analyze the MTS 

examples extracted from the data warehouse. First, we 

analyze the transient examples and we distinguish the trip 

events from the normal shutdowns by exploiting the 

clustering approach defined in Losi et al. (2023a-b). The 

clustering approach applies feature-based clustering 

embedding the unsupervised fuzzy c-means algorithm, see 

(Yang and Wu, 2006). The aim of clustering is to partition 

a number N of GT transients into a number, significantly 

smaller than N, of clusters that represent different operating 

conditions. This process allows the discrimination of trips 

from normal shutdowns. In the last step, cluster labels are 

assigned to classify each transient. For more details on the 

clustering approach (Losi et al., 2021a-b). 

Second, we analyze the distribution of the normal 

shutdown events over the h of the day. In particular, for 

each MTS shutdown example, we extract the timestamp 

of the last row, which corresponds to the last minute of a 

shutdown event, then we bin them into the h of the day 

and analyze the resulting distribution. 

Figure 9a shows that more than 91% of shutdown 

events terminate overnight between 21:00-00:59. This 

happens because there are some GTs which are often 

intentionally shutdown between 21:00 and 00:59. If we 

randomly sample the shutdown examples for training, we 

can reasonably think that around 91% of sampled 

examples correspond to shutdown events that fall in the 

interval between 21:00-00:59. 

Figure 9b shows the distribution over the h of the day of 

the steady-state events extracted from the database. In this 

case, roughly 80% of the steady state events terminate during 

daylight between 06:00-08:59 and between 15:00 and 17:59. 
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(a) 

 

 

(b) 

 
Fig. 9: Shutdown and steady-state distribution; (a) Distribution of 

shutdown events over the hours of the day; (b) Distribution 

of steady-state events over the hours of the day 

 

 
 
Fig. 10: Feature engineering pipeline 

Feature Engineering 

Feature engineering is a critical aspect of the success 

of an ML project (Domingos, 2012) because it helps to 

reduce the training cost and improves prediction 

accuracy (Kuhn and Johnson, 2019). The two main steps 

of feature engineering are feature selection (Cai et al., 

2018) and feature extraction (Guyon et al., 2008). 

Feature selection allows reducing the number of features 

by keeping only the relevant ones. This helps to 

significantly reduce training time. It could simplify the 

trained model and make it more understandable and 

interpretable. Moreover, it also avoids the so-called 

curse of dimensionality Koutroumbas and Theodoridis 

(2008); Köppen (2000) which states that learning in 

higher dimensions is harder than in lower dimensions. 

Reducing the number of features eases the training 

process and makes the model more likely to find optimal 

patterns in the data. Feature extraction creates new 

features by combining the existing ones. Figure 10 

shows all the steps of our feature-engineering pipeline 

that combines the measured variables, reduces their 

number, and then, after the melting process, reduces the 

number of features. 

In the following subsections, the steps of the feature-

engineering pipeline are described in detail. 

Semantic Aggregation 

Semantic aggregation is a method in ML that 

combines similar features that potentially share 

information. It generally summarizes those features in a 

reduced set by keeping only information that the reduced 

features have in common. In this first step of feature 

engineering, we aggregate the measured variables 

obtained from the sensors "Exhaust Temperature n”, 

where n = 1···16. Those measured variables were grouped 

into 4 other groups as follows: 

 

(i) Exhaust temperature 1-4 

(ii) Exhaust temperature 5-8 

(iii) Exhaust temperature 9-12 

(iv) Exhaust temperature 13-16 

 

Each group is aggregated by computing, at each 

minute, the mean, standard deviation, kurtosis, and 

skewness of the tags included in the group. Then the 

aggregated features (measured variables, minutes) replace 

the original ones. 

Low Variance Reduction 

One common approach of feature selection used in ML 

is low variance reduction, which consists of removing all 

features with low variance. 
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In our case, measured variables that are (almost) always 
constant in all the MTSs do not provide any informative 
content, hence they can be removed. Therefore, as shown 
in Eq. 1, for each measured variable Xj, the variance on the 
ith MTS is computed. Then, we summed all the variances 
and we averaged the result over N, the number of the MTS 

examples. Finally, all measured variables whose variances 
are below a certain threshold are removed: 
 

1

1 N

i j

i

Var X measure variable j
N 

    (1) 

 

By analyzing the variance of all the measured variables, 

we set the mean-variance threshold at 0.0002. This 

threshold allows removing more than 40% of features. 

Figure 11 shows the mean-variance of the measured 

variables. The measured variable with the highest mean 

variance is ambient air humidity. This means that the 

environmental conditions at which the measured variables 

were recorded are considerably different. 
 

 
 
Fig. 11: Mean-variance of all the measured variables averaged 

over all the examples 
 

 
 
Fig. 12: Matrix of mean Pearson correlation between all couples 

of measured variables 

High Correlation Reduction 

A feature that is strongly correlated with another one can 
be seen as duplicated information. For this reason, we 
compute the mean Pearson correlation between each pair of 
variable time series averaged over the number of examples. 

Figure 12 shows the mean Pearson correlation of the 
variables. It can be observed that several variables are 
highly correlated. In order to reduce the number of 
features, for each couple of variables, if the absolute value of 
the correlation between two variables is larger than Fig. 12. 
Matrix of mean Pearson correlation between all couples of 

measured variables. 0.85, we remove one of them. Note that 
Pearson correlations greater than 0.8 are often considered as 
very strong correlations, (Akoglu, 2018). 

Granularity Reduction 

The granularity reduction step consists of reducing the 
number of points in the MTSs. For each measured 
variable, instead of having a value every minute, we can 
have one or more values every n minute. In our training 
process, we set n to 10, and for every 10 min the following 
statistics are computed: 
 
(i) Mean 

(ii) Standard deviation 

(iii) Kurtosis 

(iv) Skewness 
 

The original 10 columns for the variable are replaced 

with 4 new columns. Note that, to reduce the number of 

features, n should be greater than 4. We set n to 10 because 

it is a tradeoff between reducing the number of features 

and maintaining relevant knowledge inside the data. 

Melting 

In MTS problems, the melting operation converts a 

dataset into a format ready for the ML algorithms. In our 

case, each example consists of 128 measured variables and 

each measured variable has 20·60 = 1200 values. Therefore, 

each MTS example, X data, represented by a matrix, is 

transformed into a vector X data transformed as follows: 
 

1 2

1 2 128

1_1 1_ 2 1_128

2 _1 2 _ 2 2 _128

1200 _1 1200 _ 2 1200 _128

1_1 1200 _1 1_ 2 1200 _ 2 1_128 1200 _128

...

...

_ ...

... ... ... ...

...

_ _

... ... ... ...

nMV MV MV

MV MV MV

x x x

X data x x x

x x x

X data transformed

x x x x x x

 
 
 
 
 
 
 
 
 





 
 
 
 
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where, MV means measured variable, xi j is the value of a 

measured variable j at the time (minute) i. X data 

transformed represents a single example in the dataset. 

Extra-Trees Feature Importance Reduction 

In order to further reduce the number of features, we 

use an ET al algorithm for identifying the most important 

features. We measure the importance of a feature by 

looking at how much the tree nodes that use a particular 

feature reduce the impurity (Mean Square Error (MSE) in 

our case) on average across all the trees. More precisely, 

for each feature, the associated MSE importance is 

computed. The feature is ordered according to the 

associated MSE importance and the most important 

features are selected. 

Results and Discussion 

This section presents the results of the experiments 

made in this study for predicting the trend of the rotational 

speed in GTs. Moreover, we discuss the results. The 

implementations of the machine learning algorithms used 

in the experiments are available in the scikit-learn suite 

(https://scikit-learn.org/). 

DTs, ET sand KNNs are trained using a grid search 

that finds the best hyper-parameters by relying on 

accuracy. The best hyperparameters are then used to train 

the final models. The following sections present and 

discuss the accuracy adopted, the training, and the 

evaluation process respectively. 

Accuracy 

We use accuracy to measure how many transients and 

steady-state cases are correctly identified. For every 

example, the Mean Absolute Error (MAE) of the last 10 

predicted points is computed: If the MAE is lower than a 

fixed threshold, then the predicted curve is correct. The 

accuracy is given by the following equation: 

 

#

#

correct predictions
Accuracy

example
  

 
The threshold plays a crucial role in determining 

whether the prediction is correct or not. For this reason, a 

sensitivity analysis about the influence of the value of the 

threshold is carried out on ET and DT models with different 

configurations: The first case uses only examples of trip 

and shutdown, the second only examples of trips and 

stationary and the last uses all examples. 

After training, the MAE of the last 10 points is computed 

and the result is included in a scatter plot, with the aim of 

analyzing the distribution of errors. 

The analysis of the scatter plots highlighted a trend 

toward the distribution of the error in two distinct regions 

(Fig. 13): A region with a centroid at MAE = 200 (perfect 

prediction) and another with a centroid at MAE = 2500 

(wrong prediction). 

The intermediate cases are analyzed individually by 

looking at the predicted curves and identifying the 

optimal threshold of 1000 as a discriminant between 

the correct and incorrect examples. 

Training and Evaluation 

Two learning pipelines are investigated as described in 

the following sections. 

Learning without Feature Selection 

We first train different ML models using a simple 

(shallow) training pipeline that does not include feature 

selection, Fig. 14. 

These distributions can cause serious issues in our 

training process, because our training examples are, in 

terms of time, highly biased. In order to avoid biasedness, 

a stratified sampling based on the h of the day is 

performed in such a way that the training dataset is 

uniformly distributed in terms of time as much as 

possible, Figs. 15a-b. 

 

 
 
Fig. 13: Threshold analysis: Error distribution 

 

 
 
Fig. 14: Learning pipeline without feature selection 
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(a) 

 

 
(b) 

 
Fig. 15: Training distribution; (a) Distribution of steady-state 

events used for training over the hours of the day after 

performing the stratified sampling; (b) Distribution of 

shutdown events used for training over the hours of the 

day after performing the stratified sampling 
 

 
(a) 

 

 
(b) 

 
Fig. 16: Testing distribution; (a) Distribution of shutdown 

events used for testing over the hours of the day; (b) 

Distribution of steady state events used for testing over 

the hours of the day 

 

In the first experiment, we perform, as already 

explained, a stratified sampling of examples based on the 

h of the day. After performing the stratified selection of 

examples, we obtained the following training distribution: 

362 transient examples, including 292 shutdown 

examples 70 trip examples, and 362 steady-state 

examples. All the remaining examples are used as a test 

set. Detailed distribution with respect to the h of the days 

after performing the stratified sampling for shutdown and 

steady-state training examples are depicted in Fig. 16a-b 

respectively. 

Two models, DT and ET, are trained following the 

learning pipeline in Fig. 13. We chose ET, instead of RF 

because it is faster to train. Initially, a grid search is 

performed to find the best hyperparameters. The 

following hyperparameters are explored for DT: Max 

depth: [2, 5, 10, 20], min samples leaf: [1, 5, 10, 20] and 

the following for ET: Max depth: [2, 5, 10, 20], max 

features: [100, 500, 1000, 10000], min samples leaf: [5] 

and n estimators: [100, 500]. 

To perform the grid search, a four-fold cross-validation is 

used for each combination of hyperparameters. The choice 

of a four-fold cross-validation adopted is a compromise 

between the number of hyperparameters to explore and the 

time to perform the experiment. The following abbreviations 

are used in the following tables: Max-depth (m d), min-

samples leaf (m s l), max features (m f), and n estimators 

(n e). Tables 3-5 show the values of the accuracy of the top 

three best combinations for DT, ET, and KNN respectively. 

Note that in Table 4 by feature we mean an attribute of the 

form (measured variable, minute) at a given minute. 

 
Table 3: Learning without feature selection setting: Grid search 

for DTs 

Hyperparameters  Evaluation 

---------------------------------------- ------------- 

M_d M_s_l Accuracy 

  2 20 0.867 

  5 5 0.849 

10 20 0.796 

 

Table 4: Learning without feature selection setting: Grid search 

for ETs 

Hyperparameters   Evaluation 

------------------------------------------------------ ------------- 

M_d M_f M_s_1 N_e Accuracy 

5 500 5 100 0.894 

5 500 5 500 0.898 

5 10000 5 500 0.874 

 
Table 5: Learning without feature selection setting: Grid search 

for KNNs 

Hyperparameters   Evaluation 

--------------------------------------------- ------------- 

K Weights P Accuracy 

1 uniform 1 0.896 

1 distance 1 0.896 

3 distance 1 0.890 
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After performing a grid search, hyperparameters 

showing good performance are identified to train the final 

model. In our case, four combinations of hyperparameters 

are chosen for training: Two DT models, one ET and one 

KNN as follows: DT1: Max depth = 2, min samples leaf = 

20; DT2: Max depth = 5, min samples leaf = 5; ET: Max 

depth = 5, max features = 500, min samples leaf = 5, n 

estimators = 500; KNN: K = 1, weights = uniform, p = 1. 

Two DTs are chosen: The one with the best accuracy and 

another one with slightly worse performance (used to 

check the usefulness of the grid search). Among all the 

ETs, the one with the best accuracy is chosen. Regarding 

the KNN, the first two combinations yield identical 

accuracy. However, the first one was selected because it 

is faster. The examples for training and testing the models 

are distributed as shown in Table 6. Note that the 

number of steady-state examples for training is equal 

to the number of transient examples which is the sum 

of the number of trips and shutdown, 348 = 292+56. 

Moreover, after training, the model is tested on the rest 

of the available data. 

Considering transients as positive examples and the 

steady state as negative examples, in addition to accuracy, 

other metrics such as Precision, Recall, F1-score, and 

Specificity are also computed. Let us denote by True 

Positive (TP) the number of transients correctly classified, 

False Positive (FP) the number of transients wrongly 

classified as steady states, True Negative (TN) the number 

of steady states correctly classified and False Negative (FN) 

the number of stead-states wrongly classified as transients. 

The Precision, Eq. 2, computes the proportion of examples 

classified as positive that are correctly classified: 

 

TP
Precision

TP FP



 (2) 

 

The Recall (also called sensitivity), Eq. 3, computes 

the proportion of the actual positive examples correctly 

classified: 

 

TP
Recall

TP FN



 (3) 

 

The F1-score is a way of combining the precision and 

recall of the model. It is defined as the harmonic mean of 

the precision and recall, Eq. 4 and reaches its optimum 1 

only if precision and recall are both at 100%: 

 

1 2
Precision Recall

F score
Precision Recall


  


 (4) 

 

The specificity, Eq. 5, computes the proportion of 

examples classified as negative that are correctly classified. 

Table 6: Distribution of training and testing examples 

- Training Test 

#transient 348 2943 

#steady-state 348 2851 
 
Table 7: Detailed test results 

Model Precision Recall F1-score Specificity Accuracy 

DT1 0.835 0.847 0.841 0.827 0.837 

DT2 0.782 0.829 0.805 0.761 0.796 

ET 0.888 0.842 0.865 0.891 0.866 

KNN 0.919 0.924 0.922 0.912 0.920 

DT1 with  0.878 0.877 0.878 0.875 0.876 

feature  

selection 

KNN with  0.924 0.926 0.925 0.921 0.924 

feature  

selection 

 
TN

Specificity
TN FN




 (5) 

 
Table 7 shows the final results using the combinations 

of previously chosen hyperparameters. 

Overall, Tables 3-5 and 7 show that the models are able 

to generalize as well as extract patterns in the data that are 

useful for predicting the trend of the rotational speed. 

Learning with Feature Selection 

In order to improve the results obtained in the previous 

section, we extend the training pipeline by adding the 

steps of feature selection described in Section 5. We start 

with 128, 20, 60 = 153600 features and obtain the 

following number of features after each step: After 

performing Semantic aggregation, the number of features 

becomes 115200 i.e., 25% of the input features are 

removed. After applying low variance reduction, with a 

variance threshold = 0.0002 we obtain 69600 i.e., ∼ 40% 

of features are removed. The mean Pearson correlation 

reduction brings the number of features to 37200 which 

means that more than ∼ 47% of features are being 

removed. Granularity reduction reduces the number of 

features to 14880, i.e., 60% of features are removed. The 

melting operation does not reduce the number of features 

but prepares the data for training as explained. Finally, an 

ET, used for feature selection, reduces the number of 

features to 3720, i.e., a reduction of 75%. Overall ∼ 98% of 

the initial features are removed. 

We train DT1 and KNN after feature selection and the 

results are shown in the last two rows of Table 7. It can be 

observed that feature selection contributes to improving 

the accuracy. Examples of transients (trip and shutdown) 

and steady-state classifications are depicted in Figs. 17-18 

by showing the normalized rotational speed trend over 

one day (normalized data are reported because of 

confidentiality reasons). 
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It is worth noting that KNN provides better 

accuracy with respect to other classifiers trained with 

or without feature selection. However, DT1 trained 

with feature selection is a good tradeoff between 

prediction quality and explainability. 

 

 
(a) 

 

 
(b) 

 
Fig. 17: Examples of correct and wrong transient predictions; 

(a) Transient correct prediction; (b) Transient wrong 

prediction 

 

 
(a) 

 
 (b) 

 

Fig. 18: Examples of correct and wrong steady-state 

predictions; (a) Steady-state correct prediction; (b) 

Steady-state wrong prediction 

 

Conclusion 

In this study, we investigated machine-learning 

approaches based on DTs, ETs, and KNNs for predicting 

the rotational speed of a GT. The models developed 

predict the rotational speed of the next 4 h by using data 

from multiple measured variables of the previous 20 h. An 

ML workflow starting from sensor data extraction from 

the Siemens database to an ML pipeline for training and 

predicting the rotational speed trend of GTs was applied. 

Three ML pipelines, with and without feature selection, 

were investigated to predict the rotational speed of GTs. 

KNNs with and without feature selection provide the best 

results with an accuracy of more than 92%. However, DTs 

with feature selection provide a good compromise 

between prediction quality and explainability. The trained 

models are not only able to correctly predict transients but 

are also able, in the case of DTs, to give an explanation of 

their decision. 

As a future work, we first plan to try to predict with a 

24 h advance in order to timely detect incipient GT 

transient symptoms. 

Moreover, we plan to focus on interpretability and 

model explainability, especially in the context of Decision 

Trees (DTs). Exploring techniques Such as Shapley 

Additive Explanations (SHAP) (Nohara et al., 2019) values 

and LIME (local interpretable model-agnostic 

explanations) (Plumb et al., 2018) can provide deeper 

insights into how our models arrive at specific predictions. 

Understanding the rationale behind the predictions is 

crucial, especially in critical industrial applications where 

decision-making transparency is paramount. 

Additionally, we plan to integrate anomaly detection 

algorithms with predictive modeling to identify unusual 

patterns and outliers in data, not only detecting transient 
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symptoms but also highlighting anomalous behaviors 

indicating underlying issues. Second, they aim to 

incorporate real-time data streams and sensor information 

into their prediction models, creating dynamic and 

adaptive systems capable of responding promptly to 

changing operating conditions. This integration will 

enable timely alerts and preventive maintenance 

suggestions, ensuring uninterrupted gas turbine operation 

and preventing potential failures. 

Lastly, we plan to design and implement a user-

friendly interface for industry professionals and 

operators. This interface will allow users to visualize 

predictions, explore model explanations, and receive 

actionable insights in an easily understandable manner. 

The focus on usability and accessibility is crucial, 

ensuring the practical applicability and adoption of their 

predictive models in real-world industrial settings. 

Through these efforts, the authors aim to advance gas 

turbine predictive maintenance, offering valuable tools 

to the energy sector. Their goal is to enhance the 

operational efficiency, cost-effectiveness, and overall 

reliability of gas turbine systems, contributing 

significantly to the industry's advancements. 
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