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Abstract: Cloud droplet dynamics is an important part of cloud physics. 

This element of cloud physics analyses the features of each droplet, 

including its size distribution, probability density and mean saturation. The 

cloud's structure is significantly important for the Earth's atmosphere and 

this structure is affected by changes in the droplet's micro-physical 

properties. In order to investigate and understand the dynamics of cloud 

droplets in both the high and low vortex areas, data obtained from Direct 

Numeric Simulations (DNS) are utilized. Data generated from simulations 

of cumulus clouds, which are defined as low-level clouds located between 

800 and 1200 m above the surface of the earth. DNS data reveals complex 

droplet dynamics on a scale that is three-dimensional. When employing 

conventional machine learning methods, the processing of data relating to 

dynamic droplets requires a substantial amount of CPU resources. In this 

study, we discussed the advantages of using quantum mechanisms in cloud 

physics in order to investigate the complicated nature of cloud droplets. The 

use of quantum computing in the study of droplet dynamics using the 

quantum k-mean approach was further investigated in the discussion. 

Quantum machine learning is used to study the micro-physical 

characteristics of cloud droplets in order to investigate the effect that droplet 

dynamics have on the overall structure of clouds. The current topic of 

discussion delves more into the specifics of how data relating to DNS can 

be processed by an analog quantum computer in order to deal with enormous 

amounts of data in this specific area of research. 

 

Keywords: Quantum Computing and Machine Learning, Direct Numeric 

Simulation, Superposition and Entanglement, Cloud Droplets, Vorticity 

 

Introduction 

Global climate models are facing several hurdles in 

data processing and the accuracy of model outcomes. 

Cloud microphysics plays a very crucial role in assessing 

global climate models. In this study, we have integrated 

cloud physics with quantum computing. Cloud physics is 

the study of the physical processes of clouds such as cloud 

formation, density, growth and formation of precipitation. 

Cloud is one of the major components of the climate 

model and plays a very important role in Earth's 

atmosphere. World Meteorological Organization 

categorizes clouds into three major types cumulus, stratus 

and cirrus. The other clouds are represented as either a 

combination or modification of these forms. Clouds have 

various levels based on the height earth's surface, these 

levels are called high, middle and lower levels of clouds. 

Climate models come with a large scope and researchers' 

attention is required in many sectors of the domain. Our 

interest lies in the study of cloud droplet dynamics using 

quantum mechanisms. A droplet refers to a tiny particle 

of cloud. The microphysical properties of these droplets 

have the ability to alter the structure and arrangement of 

cloud formations. Our study conducts how quantum 

mechanism benefits to analyze the micro-physical 

properties of cloud (Kumar et al., 2021). To research this 

domain Direct Numeric Simulation (DNS) (Kumar et al. 

2014) data and its formats are discussed in the upcoming 

section. DNS represents cloud droplet data of 3-

dimension in size which consists of velocity and 
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temperature features. Further discussion explores how 

this domain benefited from the integration of quantum 

mechanisms. Several sectors benefit from using machine 

learning through accurate analysis of data required to 

generate reports, predictions, decision-making and 

optimization. Machine learning and quantum computing 

have coalesced to create quantum machine learning. 

Quantum machine learning was chosen over classical 

machine learning to investigate the benefits of quantum 

mechanisms such as superposition and entanglement. In 

contrast to classical bit data, a quantum bit as a qubit is 

used to represent data in quantum states. The traditional 

approach of machine learning methods on climate data 

processing results in poor performance in terms of 

accuracy and time. Huge and complex data processing and 

analysis is a major challenge in this domain. It takes more 

computational power and resources. Therefore, we have 

to find how future quantum computers solve these 

obstacles. We have identified issues such as the 

application of climate models on small and error-prone 

devices as one of the major points during simulation and 

modeling. Secondly, the amount of data is very large so 

how to load the data, embed data into quantum states and 

data prepossessing. 

Quantum-supervised machine learning and 

classification problems are discussed using various 

quantum tools and subroutines. how these methods 

accelerate the performance of the algorithm by using 

labeled learning techniques such as Support Vector 

Machine (SVM) and k-nearest neighbor using classical and 

quantum tools are discussed by Ablayev et al. (2019a-b). 

This study highlights more advanced tools and 

subroutines to implement using the Qiskit tool on the IBM 

cloud (IBM, 2020). Machine learning has been one of the 

major and successful branches of artificial intelligence 

over the years. ML has very well-set methods for classical 

mechanisms. The theoretical and mathematical 

perspective of the machine learning algorithm is well-

tested and executed on the traditional approach of 

computing. Identifying the complex problem that is 

classically hard to implement on the classical mechanism 

is selected to integrate with the quantum mechanism 

discussed in the paper (Li et al., 2020; Maheshwari et al., 

2022). Application in biomedical domain and Eeg signal 

feature extraction discussed on use of quantum mechanics 

and its advantages over selected domains. Classical vs. 

quantum machine learning pros and cons of proposed 

methods are specified and various algorithms are 

discussed (Khan and Robles-Kelly, 2020). Egger et al. 

highlight how quantum computing works in finance 

problems (Egger et al., 2020); Pushpak and Jain, mention 

application in insurance claim fraud (Pushpak and Jain, 

2022). The current quantum device is small and noisy, the 

limitation of current hardware in noisy intermediate-scale 

quantum computers using circuit compilation is reviewed 

and it helps to understand the scenario of hardware while 

proposing models for various other domains (Kusyk et al., 

2021). Quantum support vector machine is binary 

classification and how it is integrated with quantum 

mechanism is discussed (Mafu and Senekane, 2021). Author 

Schuld has proposed a classical-quantum approach to 

quantum machine learning. Supervised learning using 

quantum computing is discussed and explored with 

various methods to accelerate the process. The classical-

quantum approach requires classical data to be converted 

into quantum states. Various methods for encoding such 

as basis, amplitude and hybrid for classical data into 

quantum states are articulated by (Schuld et al., 2015). 

The design of the Variational Quantum Classifier (VQC) 

and the effect of encoding techniques on VQC is 

elaborated (Schuld et al., 2021). Use of variational 

quantum circuits as linear model, quantum kernel method 

and how model classifies data explicitly in Hilbert space. 

Feature map design and quantum kernel implementation 

over a sample 2-dimensional data set are discussed in the 

article (Schuld and Killoran, 2019). 

Quantum Computer Mechanism 

Our goal is to use the Noisy Intermediate Scale 

Quantum computer (NISQ) to develop a solution and a 

technique. NISQ are the 100+ qubit quantum computers 

of the near future. An unsupervised machine learning 

algorithm called quantum k-mean is proposed on IBM 

Qiskit. Open source software development kit Qiskit. 

Commercial quantum computers are not yet accessible. 

Thus, IBM quantum devices are used in experimental 

implementation on cloud-based quantum computers. 

Results are improved to function properly on near-term 

quantum computers. The implementation is done using 

the simulator for IBMQ QASM. A variety of quantum 

gates and instructions are incorporated into this 32-qubit 

general-purpose, context-aware and noise-modeling 

simulator to represent quantum circuits. Detailed 

instructions for connecting to cloud quantum computer 

simulators are provided below (IBM, 2020). 

 

import qiskit. providers. ibmq. jupyter IBMQ. 

load_account ()  

provider = IBMQ. get_provider (group =’ open’, 

 project =’ main’) 

system = provider.ge-backend(’ibm-qasm-

simulator’)  

system 

 

The disparity between the mathematical model and the 

practical model has narrowed in recent years. Quantum 

computers employ quantum phenomena like 

superposition and entanglement over the qubit. A “qubit" 
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also referred to as a quantum bit, is a quantum 

representation of data. Fault-tolerant quantum computers 

are not feasible at the available intermediate scale with 

noise. Due to its short coherence time, the qubit 

hypothesis would only hold for a short time. As a result, 

the output circuit develops a flaw. Shallow-depth 

quantum circuits can provide us with better results on 

NISQ devices. 

Quantum Circuit Composition 

Qubit data is represented using vectors of bits. Dirac 

vector notation to represent state zero of a qubit is |0⟩ and 

state one as |1⟩. Quantum computations are measured by 

performing several operations on qubits using various 

quantum gates (Wittek, 2014). Quantum circuits are used 

to model the quantum computations on sample data. 

Quantum circuit design using IBM quantum circuit 

composer (IBM, 2020). Figure 1 shows a quantum circuit 

for Bell state design using 2-qubits. Hadamard gate H is 

used to superposition on qubit q [0] wire and the CNOT 

gate is used to entangle the qubit q [0] and qubit q [1]. Bell 

state of 2-qubits represented as: 
 

00 11

2

+
 =  (1) 

 

Quantum Interference 

Quantum particle has two states described as wave-

particle duality. The quantum interference pattern is 

generated by the superposition of waves. The amplitude 

of a wave is measured as constructive and destructive 

interference. Waves that are in phase produce constructive 

interference and waves that are with out of phase of 180° 

produce destructive interference in which amplitude 

cancels each other. Hadamard gate is used as an 

interference transformation. Superposition of 2-qubit 

quantum state is: 
 

0 1 2 300 01 10 11a a a a = + + +  (2) 

 
Amplitude vector matrix represented as: 
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Fig. 1: Quantum circuit model 

Interference of four amplitude of quantum states is 

achieved using the Hadamard gate. The Hadamard gate is 

a unitary matrix represented as follows: 

 

1 11

1 12
H

 
=  

− 
 (4) 

 

The tensor product of the Hadamard gate for a two-

qubit system is represented as: 

 

1 0 1 0

1 1 1 0 0 1 0 11 1

1 1 0 1 1 0 1 02 2

0 1 0 1

H I

 
 

      =  =     − −   
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Applying H ⊗ I to the state φ results in the following 

equation: 
 

( )H I  =   (6) 
 

0 20

1 31

2 0 2

3 1 3

0 01 0 1 0

0 10 1 0 11 1

1 0 1 0 1 02 2

0 1 0 1 11

a aa

a aa

a a a

a a a

 +   
    

+      = =     − −         − −        

 (7) 

 
Qubits interfere with each other and result in 

constructive and destructive interference of amplitude. 

The aforementioned mathematical representations are all 

utilized in the construction of the quantum computing 

circuit. The quantum mechanism is utilized in order to do 

an analysis of the micro-physical characteristics of cloud 

droplets. The transformation of classical data into 

quantum states offers numerous benefits, including the 

ability to investigate previously concealed features in the 

data. Finding intricate patterns in large amounts of data is 

a task that is conventionally difficult. The utilization of 

quantum mechanisms makes it possible to carry out a 

variety of rotations on data points. The Quantum 

mechanism is responsible for handling the process of 

designing high-dimensional feature sets for traditionally 

complex data by employing rotations and block rotations. 

Introduction to the Proposed System 

System Flowchart 

The method of quantum computing is applied in the 

system that has been presented in order to process 128 mm3 

worth of data that pertains to DNS domains. Quantum 

computers are able to enhance both the speed at which 

computations are performed as well as the time 

complexity of the system. The quantum circuit’s 

implementation and measurement are handled by separate 

modules within the system. These modules are 

responsible for the system’s data, pre-processing and 
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conversion functions, respectively. It is possible to 

acquire the data from DNS in the format that is 

commonly used. The information obtained from a 

conventional DNS system is converted into quantum 

states. Figure 2 provides a visual representation of the 

several phases that comprise the processing of DNS 

data. A quantum feature map is utilized for the purpose 

of encoding data in order to transfer it from a classical 

state to a quantum state. The quantum kernel matrix is 

constructed in such a way that it is determined by the 

training data pairings. The parameter shift module is the 

fundamental component that underpins the optimization 

of the quantum circuit. The overall goal of utilizing 

quantum machine learning is to get the quantum benefit 

in terms of data processing and this is done by employing 

the methodology in its entirety. As a consequence of this, 

the quantum circuit is executed a number of times in order 

to overcome the effects of quantum noise. 

 

 
 
Fig. 2: DNS data processing using quantum computing 

 

 
 
Fig. 3: Classical-quantum model for DNS data processing 

System Architecture 

The system design that is proposed for a small cloud 

domain with a budget that falls somewhere between 

128 and 2048 mm3 is depicted in Fig. 3. This 

architecture may be found in the figure. The method is 

accurate in determining the precise positions of both the 

low and high vortex zones. The reporting module, along 

with the data module, the pre-processing module and the 

quantum circuit module, make up the architecture. Also 

included is the quantum circuit module. In the course of 

this inquiry, we will be utilizing a DNS domain that has a 

price tag of 128 ms of dollars. Following the completion 

of pre-processing on the data obtained from the Domain 

Name System (DNS), the information is next translated 

into a format that is compatible with quantum machine 

learning. Data must be represented in a form that is 

consistent with quantum states for quantum computing to 

be possible. Before continuing with the processing of the 

data, it is necessary to transform the classical data into 

quantum states. This data has been handed to you. In order 

to convert classical information into quantum states, a 

variety of encoding methods, such as basis, amplitude, 

angle and hybrid, are utilized (Schuld et al., 2021). The 

purpose of building quantum circuits is to allow for the 

processing of data in a manner that is consistent with 

quantum theory. When it comes to dealing with the noise 

that is produced by the circuits, quantum computers 

encounter a substantial obstacle. This might be seen as a 

significant barrier. In order to lessen the amount of 

sampling noise, we have incorporated a particular strategy 

into the quantum circuits that we have developed. The 

system architecture is made up of its two fundamental 

components, which are the classical model and the 

quantum circuit model respectively. The Classical-

Quantum paradigm (also known as CQ) is going to be 

used for the aim of this investigation. In the first part of 

the process, the data will be analyzed and pre-processed 

by using procedures that are more often employed. This is 

the starting point. Creating quantum circuits that can be 

used for encoding, calculations and the actual 

measurement of the results is the second step in this 

process. Quantum machine learning possesses a few 

special qualities that standard learning methodologies, 

when applied to traditional computers, are unable to 

mimic. These qualities pertain to the fact that quantum 

computers are able to solve problems that ordinary 

computers cannot. A computer model that is capable of 

simulating a system that conducts computing operations 

using a quantum device while simultaneously applying 

quantum machine learning to data is the goal of this 

research. This model will be developed as part of this 

study. The suggested system is experimentally developed 

with the QASM simulator (IBM, 2020) and droplets are 

divided into high vortex locations and low vortex regions 

utilizing quantum machine learning from a given domain. 
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The vorticity of each individual droplet is currently being 

determined. In addition, we looked at the concept of vorticity 

and illustrated how it relates to a variety of other aspects. 

When it comes to the process of feature encoding, the 

operation of a variational quantum circuit is contingent on 

parameters such as the angle rotation theta. In many 

circles, variational quantum algorithms are held up as a 

potentially fruitful way to achieve quantum advantage on 

devices in the not-too-distant future. The outsourcing of 

the optimization procedure to a conventional optimizer, 

which is not required in the majority of cases because 

these issues do not ask for the execution of deep quantum 

circuits, is one way to partially reduce the likelihood of 

making systematic errors. However, the Variational 

Quantum Algorithm (VQA) also faces a number of 

challenges. The most significant of these challenges are 

inquiries into whether or not they are capable of being 

trained effectively and whether or not they generate 

answers that are, in fact, superior to those generated by 

traditional algorithms. In spite of these challenges, Virtual 

Quality Assessments (VQAs) have been proposed as a 

solution for a wide variety of problematic scenarios, 

including the ones that are described below. We have 

made use of variational quantum circuits in order to 

construct parameterized quantum models and variational 

quantum classifiers in order to carry out quantum machine 

learning utilizing a given sample of data. This has allowed 

us to accomplish the task of using the data in a way that is 

more efficient. The Variational Quantum Circuit (VQC) 

that was constructed by making use of these three 

characteristics is depicted in Fig. 4. On each individual 

feature, the rotation operation denoted by Rx is carried out. 

The superposition and entanglement effects produced by 

the quantum circuit are a part of this phenomenon. A 

quantum CNOT gate is utilized in order to couple the 

qubits together after a Hadamard gate H has been applied 

to each individual qubit wire. 

System Objectives 

 

• Find high and low vortex coordinates in the given 3D 

DNS domain 

• Trace the high-vorticity regions 

• Analyze the droplet properties in the high vortex regions 

 

Materials and Methods 

Our institution serves as the location for the study that 

is being carried out. The utilization of hardware to carry 

out experimental work is done on IBM quantum 

computers, which are also available online as quantum 

simulators. One of the newer sub-fields of research is 

known as quantum computing. IBM has made available a 

number of tutorials on the subject. For the purpose of this 

study, data was provided by IITM Pune, India. 

 
 
Fig. 4: Quantum feature map using 3-features and several rotations 

 

Methodology A 

About Cloud Data 

The numerical model that is being used for research is 

called Direct Numeric Simulation (DNS). DNS models 

are put to use in research on cloud computing. In order to 

reap the benefits of a quantum process when applied to 

fluid data, quantum machine learning is being combined 

with cloud physics. Owing to the fact that we have chosen 

data that exhibits a dynamic behavior in terms of the 

droplet features it possesses. A droplet is a very small 

particle that makes up a cloud and any changes to the 

structure of droplets will cause an overall shift in the 

cloud’s composition. We have decided that clouds are one 

of the elements of the atmosphere that are responsible for 

the changing climate. The study of how droplet behavior 

is affected by quantum mechanics contributes to a more 

precise understanding of how cloud behavior is affected. 

For the purpose of this study, we are utilizing the DNS 

data of cloud droplets. The Domain Name System (DNS) 

data is organized as data points on a three-dimensional 

Lagrangian scale. The investigation makes use of a cloud 

domain measuring 128mm3, which contains 

128×128×128 data points. This study includes the 

development of a system for the observational analysis of 

cloud droplets. The system looks for statistical measures 

of cloud physics parameters that are connected with 

droplet data in regions of high and low vorticity. The 

measure of how fluid spins in a certain domain is called 

its vorticity. The analysis of droplets can be fairly 

challenging because droplets only remain for a very brief 

period of time. When it comes to processing fluid data, 

the traditional method has quite a few obstacles to 

overcome (Kumar et al., 2021). 

Calculation of Vorticity 

Vorticity is a measurement that can be used to describe 

rotation and spin in a fluid. There are three components of 

velocity, denoted u, v and w, at every place. In the 

standard Eulerian frame used for DNS data format, w 

denotes the vertical velocity component, while u and v 

stand for the horizontal velocity components. When 

calculating the vorticity at specific grid points, these 

velocity components are taken into account. The 

magnitude of the vorticity at each position is: 
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( )
1

2 2 2 2
net i j kW W W W= + +  (8) 
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The Eulerian frame of DNS data contains variables like 

flow velocity, mixing ratio and temperature. Every point in 

the 128 mm3 domain consists of a grid size of 1mm and the 

total points are 128×128×128. We have calculated vorticity 

at each droplet point and the statistics of the given DNS 

sample data are shown in Table 1. Data points are 

categorized into High Vortex (HV) and Low Vortex region 

(LV). According to the distribution of vorticity, the 

threshold value is set for HV and LV regions. 

The distribution of vorticity in the given DNS domain 

is shown in Figs. 5-6 shows. 

Proposed System 

To model quantum supervised machine learning HV 

and LV regions are traced from 128 mm3 DNS domain, 

the resultant HV region is less than 2%. We have used a 

quantum-supervised learning approach to find the HV 

regions in the given sample of DNS. We have calculated 

and projected the outcome on the 2048 mm3 DNS domain. 

Table 2 shows statistics for high vortex regions in large-

scale DNS domains. The DNS domain is divided into 

various partitions such as A, B, C, D and so on. By 

applying quantum supervised learning running time 

complexity achieved is O(N2). ‘N ‘is a number of high-

dimensional samples. qRAM requires to store O(log2N) 

post-processing the quantum data was O(poly(log2N). 

Grouping DNS Domains 

The grouping of numerous locations and their 

projection onto a larger DNS scale is displayed in Fig. 7. 

In order to project output on a bigger scale using the 

cloud, stitching together multiple 128 mm3 DNS domains 

is used. The huge cloud represents an integration of a total 

of 16 DNS domains (G1-G16). Each domain has around 

2 million data points. Every single data point is portrayed 

through its respective velocity, mixing ratio and 

temperature attributes. Figure 8 shows a vorticity 

distribution graph. 

Table 1: High vortex points in sample DNS region 

Vorticity >20 >30 >40 

128 mm3 12882 714 61 

Percentage 0.61 0.034 0.029 
 

 
 
Fig. 5: Plot of distribution of Wvel velocity component against 

x, y and z coordinates of droplet data 
 

 
 
Fig. 6: DNS vorticity ranging between values 0-44 

 

 
 
Fig. 7: Large DNS projection 
 

 
 
Fig. 8: Vorticity ranges in the DNS domain
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Table 2: High vortex points on large DNS region 

Vorticity DNS domain > 20 > 30 > 35 > 40 Total HV% statistics Average % 

128 mm3 DNS A 39653.000 897.0000 784.0000 47.000  1.89 1.42 

Percentage  1.890 0.0420 0.0370 0.0022 1.973 

128 mm3 DNS B 25896.000 3562.0000 369.0000 96.0000  1.42 

Percentage  1.230 0.1690 0.0175 0.0045 1.426 

128 mm3 DNS C 35734.000 5434.0000 320.0000 87.0000  1.98 

Percentage  1.703 0.2590 0.0152 0.0041 1.982 

128 mm3 DNS D 18882.000 714.0000 197.0000 61.0000  0.94 

Percentage  0.900 0.0340 0.0093 0.0029 0.946 

 

Results 

Locating HV and LV Regions 

Figure 9 shows how the vortices appear when viewed 

in three dimensions. It is possible to recognize a vortex by 

its many different irregular shapes and sizes. It can be 

difficult to locate vorticity since the shape and size of 

these features are not clearly defined and the amplitude of 

these features can change in a fraction of a second. We 

have recommended dividing the entire domain up into a 

number of three-dimensional cells (cell size can be 

2×2×2) and then calculating the average vorticity of each 

of those cells. When we compare the vorticity of each 3D 

cell by utilizing the average vorticity value, we are able to 

filter out the cells that have a vorticity value that is greater 

than the threshold value. To carry out this process will 

take a significant amount of computational resources. In 

the supplied example DNS domain, we came to the 

conclusion that 2% of the points fall into the high vorticity 

zone. Finding areas with strong vorticity can be 

accomplished using unsupervised learning. 

Data Description and Associated Variables 

The experimental data used in this study were obtained 

from DNS (using the model developed by Kumar et al. 

and were made available by IITM Pune (Kumar et al., 

2014). This sample DNS is a three-dimensional cloud on 

a side. The variables included in the data, such as velocity, 

mixing ratio and temperature, are shown in the following 

language. Each droplet point has a three-dimensional (x, 

y and z coordinate) size. Accessing an online quantum 

computer requires the usage of a classical computer. The 

standard configuration for a traditional computer is an 

Intel Core i5-10400F processor with 16 gigabytes of 

memory. On the IBM quantum simulator known as state 

vector, the programming tool that is used is called 

quantum qiskit and the programming language that is 

utilized is Python. The features of droplets are represented 

by DNS data in terms of their velocities, temperatures and 

mixing ratios. Each domain has approximately 2 million 

points in the Lagrangian frame, with one point 

representing one millimeter of Eulerian variable space. 

The velocity of a droplet is determined by its three 

different component dimensions (sizes): x(128), y(128), 

z(128) variables(dimensions): Float64 Uvel(z, y, x), 

float64 Vvel(z, y, x), float64 Wvel(z, y, x), float64 qv(z, 

y, x), float64 temp(z, y, x). 

 

Methodology B 

The k-mean algorithm’s application to a specific 

domain is the topic of discussion in this section. In the 

prior part, we determined the whole region that is subject 

to high vorticity and came to the conclusion that about 

1.58% of the territory is subject to high vorticity. It was 

challenging to investigate droplets in such places due to 

the distribution of points over the domain. In order to find 

a solution to this issue, the HV region has been further 

subdivided into many cubes of varying sizes. Within each 

of these tiny cubical zones, the average vorticity is 

computed and droplets in the region are examined. 

Quantum k-mean is utilized in order to locate a number of 

small regions within the provided domain and the running 

time complexity is computed. When looking for smaller 

clusters in the DNS region, the quantum k-mean is utilized 

to aim at high vortex coordinates. The subsequent 

procedures will demonstrate how it will be implemented 

using DNS data. The flow of the model that was proposed 

in approach 2 is illustrated in Fig. 10. 

 

 
 
Fig. 9: Vorticity in 3D dimensional space 
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Fig. 10: System working model 

 

Unsupervised Learning Algorithm 

We have used classical mechanism unsupervised ML 

learning using a k-mean algorithm and also on quantum 

mechanism quantum k-mean is used. K-mean is the most 

simple unsupervised learning method. K-mean is used to 

make a k-group in the given data set based on some 

common features. Using k-mean we will group the given 

data into high and low vorticity regions. Selection of a 

number of groups is very important for better results. 

Classical k-mean is used in the following manner (Shah 

and Singh, 2012). Simple k-mean steps: 

 

• Group the data set in k-groups 

• Mark the k-number of clusters with the k-number of 

centroids 

• Assign each data point to the closest centroid 

• A number of iterations are performed and k-groups 

are formulated 

 

K-Mean Algorithm 

The k-mean algorithm takes the input data in terms of 

vector vi for i ∈ n. Data points are clustered in K number 

of groups according to similarities in the features set. The 

similarity measure used in the K mean is the Euclidean 

distance between the data point and the centroid of the 

cluster. Initially, K random centroids are selected. Each 

data point is compared with the selected centroid and the 

distance is calculated. A data point is assigned in the 

cluster with a minimum distance from the selected 

centroid. Then each centroid is updated based upon the 

average of all the data points associated with that cluster. 

We have given the data set D of vectors vi at a given time 

t. There are K clusters by the groups t

jg  for j ∈ K with 

corresponding centroid t

jg . At each iteration t, the data 

vector vi is assigned to the cluster t

jg . Euclidean distance 

between vector vi and centroid t

jg is dist (vi, 
t

jg ). The 

algorithm assigns each vi a label l( t

iV ) with respect to the 

closest centroid that is: 
 

( )   ( )( ),t t

i j i jl v argmin K d v g=   (12) 

 
In the first iteration t = 0, Formulated clusters are used 

to update the centroid: 
 

1 1

t
j

t

j t
i cj

g vi
c

+



=   (13) 

 
The average of all the points of each cluster from 

iteration at t = 0 would be the revised centroid. Small 

threshold τ is used for the convergence such as: 
 

( )1 11
,t t t

j j jg d g g
k

+ +=   (14) 

 
Algorithm 1: DNS data processing using k-means 

Require: DNS domain data 128 mm3, velocity, mixing 

 ratio, temp 

Ensure: Dataset D has vector vi of feature dimension d 

 Step 0: BEGIN 

 Iteration t ∈ T 

 t = 0 

 Step 1: Centroid Selection 

 Clusters k ∈ t

jg  where j ∈ [k] 

 Step 2: Distance Calculation 

 for all t

jg  do 

 while vi ≤ N do 

 if vi is True then 

 Calculate d ( ) , t t

i j j jv g g G  

 end if 

 end while 

 end for 

 Step 3: Cluster Assignment to Datavector vi  (Based on 

 HV and LV regions) 

 Assign vi to min d ( ), t

i jv g  where j 0 1, ...t t t

kg g g  

 Step 4: Update Cluster Centroid to  
1 1 1

0 1, ...t t t

kg g g+ + +  

 Step 5: Repeat Step 2,3,4 until reach convergence 

 τ ≤ threshold 

 Step 6: Stop 

 

Running Time of DNS Using K-Mean 

Every iteration has a time complexity of O(knd), there are 

n vectors of dimension d to be compared with k centroids. 
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Quantum K-Mean 

The k-mean algorithm using a quantum mechanism 

provides an exponential speed-up for very high-

dimensional data. To load n-dimensional input vectors 

only log N qubits are required. Quantum k-mean is 

performed using subroutines swap test, distcalc and 

Grover optimization. The swap Test calculates the overlap 

between two quantum states ⟨state1|state2⟩ based on the 

measurement probability of control qubit |0⟩. The |state1⟩ 
and |state2⟩ consist of n-qubit each prepared using 

amplitude encoding. The outcome of the swap test is used 

to calculate the distance in the DistCal subroutine. Grover 

optimization depends on the Grover algorithm used to 

calculate the closest cluster centroid. Data points are 

assigned to the cluster and centroids are recomputed by 

calculating the mean of all the data points in the respective 

cluster (Wittek, 2014). Quantum k-mean calculates the 

distance between the high-dimension data points with 

exponential speedup by encoding N-dimensional classical 

information by using log2N qubits. 

Distance Calculation 

Data and centroid matrix is stored in QRAM. Select 

the initial centroids 0 0 0

1 2, ,... kg g g . Calculate the distance 

between each data point with cluster centroids. To 

perform the mapping: 
 

    ( )2

1 1

1 1
0 ,

n n
t

j jk j k
i i

i j i j d vi g
n n

 
= =

    (15) 

 

Assign Minimum Distance Cluster 

Estimate the minimum distance between the data point 

and cluster centroids such as 0 0 0

1 2, ,... kg g g . Minimum 

distance is: 

 

( )2 0 0 0

1 2, , ...t

j k
j

d vi g g g g


     
 (16) 

 

Centroid State Formation 

Label register provides the centroid state as: 

 

( )

1
.

t
j

t

jt

j
t

i g
j

g
S i with prob

ng 

=   (17) 

 

Update the Centroids 

For time t = 1, perform state tomography for the states 
1t

jg + . Update the QRAM data structure for the next 

iteration with new centroid vectors 1 1 1

1 2, ....t t t

kc c c+ + + . 

Running Time of DNS Using Quantum K-Mean 

The running time of Quantum k-mean is estimated 

as O log
k

nd
  
  
  

. ε is the desired accuracy, n is the 

number of vectors and d is their dimension. ε0, ε1, ε3 and ε4 

are the errors calculated at every level of the algorithm. 

Objective of Unsupervised Learning 

Our goal is to examine the differences between droplets 
in locations of high and low vorticity. There are always three 
coordinates used to describe the position of a droplet: x, y and 
z. The location of the droplet within the specific region is a 
critical factor in the examination of the droplet. This indicates 
that we are looking for a droplet inside of an enclosure with 
a high vorticity. K-mean clustering will look through the 
boxes with the highest vorticity. The algorithm receives as 
input the values that are associated with the various vortices. 
There are a variety of tests that are carried out in order to 
estimate the number of clusters. 
 
Algorithm 2: DNS data processing using Quantum k-means 

Require: DNS domain data 128mm3, velocity, mixing 

 ratio, temp 

Ensure: Dataset D has vector vi of feature dimension d 

 Step 0: BEGIN 

 Iteration t ∈ T, Select initial centroids 0 1, ,...t t t

kg g g  

 t = 0 

 Selection is based on high and low vorticity values. 

 Step 1: Centroid selection and mapping 

 Clusters k ∈ 
t

jg  where j ∈ [k] 

    ( )2

1 1

1 1
0 ,

n n t

i jj k j ki i
i j i j d v g

n n
 = =

    

 Step 2: Distance Calculation and Assign the Cluster  

 for all gt
j do 

 while vi ≤ N do 

 if vi is True then 

 Calculate ( ) 2 , t t

i j j jd v g g G  

 end if 

 end while 

 end for 

 Select MinDist ( )  0,i jv g j k  

 Create a superposition of all points and their labels 

 
( )

1
.

t

jt n

j j
t

j

c
S i g with prob

ng
=  | 

 Step 3: Update Cluster Centroid by using tomography 
1 1 1

0 0, ..t t t

kg g g+ + +  

Step 5: Repeat Step 2,3,4 until reach convergence. 

Step 6: Stop 
 
Droplet Data Analysis 

The major objective is to analyze and contrast the 

droplet characteristics of the simulated domain’s low and 

high vortex regions. With the help of the quantum 
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computing process, we looked into the following droplet 

characteristics in both the low and high vortex zones. As a 

consequence of this, the cloud density, evaporation rate, 

droplet size, droplet distribution and concentration are all 

determined. These characteristics are then incorporated into 

a model that is used for weather forecasting. The initial 

conditions are the same with the exception of the humidity 

levels, which are (22% and 85%). (By making reference to 

the SION format that is connected with pertinent DNS data). 

Droplet Size Distribution 

Poly-dispersed distribution is Min radius 9.2 µm-

maximum 17.6 µm and mono-dispersed distribution is 

Initial drop radius will be taken is 9.2 µm. 

Number of Droplets Tracked in DNS Domain 

2.09 million (approx.) and 2.09×16 million on projection. 

Average Vorticity 

The vorticity threshold is set between 0-43s−1 and the 

Average vorticity is taken as 20s−1. 

Distortion Test 

This analysis will identify a number of 3D-Cuboids on 

several dimensions. On targeted coordinates of high vortex 

regions, the following size cuboids are searched. The size of 

the cube used for analysis is 2×2×2, 4×4×4 and 8×8×8. 

Figure 11 shows distortion test statistics. Estimation 

for DNS domain labeled as G1. Total data points with 

vorticity greater than 20 are 41381 (Table 3). 

Silhouette Analysis 

This analysis is used to find the distance between 

separating dimensions where high vorticity regions are 

identified. Symmetric method (same size cuboid) 

Asymmetric method (cuboid size can vary). 

Silhouettecoef Ficient = (a-b)/max(a, b) 

Where ‘a’ represents the average distance between all 

points in the cuboid and ’b’ represents the average 

distance between all points within the cuboid. 
 

 
 
Fig. 11: Distortion test 

Table 3: Statistics of clusters estimation 

   Number    

   of clusters   Factor 

 G1  Cuboid Targeted Estimated Clustering affects/ 

domain size (approx.) clusters test score errors 

Total 222 5172 2734   Distribution 

points 444 646 398 0.89  of points, 

are 888 81 69   clustering 

41381      accuracy, 

       computa 

       tional 

       errors 

       Vorticity 

       collision 

       would be 

       more in 

       given 

       cuboid 

 

The silhouette coefficient, often known as the cluster 

distance, can range anywhere from +1 to -1. A score of 

one indicates that the cluster is located a significant 

distance from any nearby clusters. The optimal value for 

k should be somewhere close to +1. 

Analysis of Eulerian Variable in HV and LV 

Variables like flow velocity, mixing ratio and 

temperature are in the Eulerian frame. This means that at 

every point in the 128×128×128 domain a grid size of 1mm. 

For analysis of Eulerian variable in HV region mixing ratio 

and temperature steps for analysis of Eulerian variable: 

 

1. At time ‘t ‘second 

2. Take the sorted array of all HV points according to 

the threshold 

3. Take the mean of all mixing ratios and temperature 

4. Mean (mixing ratio) 

5. Mean (temperature) 

 

Discussion 

Several droplet features are compared in this article 

between high vortical and low vortical areas in three-

dimensional regions of turbulent cloudy and clear air 

interaction. These regions are characterized by the 

presence of clear air. DNS setup that was identically as 

the one (Kumar et al., 2014) used. The design is more 

realistic and encompasses the mixing and entrainment 

processes that are essential to an accurate simulation. A 

Lagrangian frame is used to trace the location and velocity 

of droplets, which are represented as particles in the 

Lagrangian frame. In their study, Kumar et al. (2021) 

investigate both the analysis of cloud droplet attributes 

using a traditional technique and the examination of high 

and low vorticity zones in DNS data using unsupervised 

learning. Both of these investigations are based on 

learning without supervision. Using traditional techniques 

to analyze meteorological data presents a number of 

challenges, the most significant of which is taking care of 
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the complexity and the timely behavior of the data. A 

quantum method will be utilized in order to identify high 

and low vorticity zones in a simulated environment, 

which is the objective of the research that has been 

presented. In this study, we use a quantum computing 

technique to compare numerous droplet-related metrics 

with data acquired from a three-dimensional diffusion 

network (DNS) of turbulent cloudy and clear air 

interaction. The DNS has high and low vortical zones. 

Quantum computing is prone to sophisticated data 

processing, which is employed for processing extremely 

dynamic droplet data. This is because quantum computing 

is being used. 

Conclusion 

In this particular study, the (128 mm3) DNS domain 

was utilized. As a result of segregating the data into two 

independent regions, we were able to determine that the 

high vortex zone constitutes fewer than 2% of the total. 

The findings presented here are consistent with those that 

(Kumar et al., 2014) made public in 2021. The high vortex 

zone was determined by employing a threshold value 

of 20s-1, which is lower than what the researchers 

(Kumar et al., 2021) considered. The first thing that is 

done is a lookup of the HV and LV droplet data points. 

The high vortex zones that are produced as a result of this 

are utilized for unsupervised learning. Quantum k-mean 

is the modeling technique that is used for the system that 

searches for clusters with high vorticity. The search for 

these clusters in the HV region that is accessible is done 

with cubes of different sizes. It is decided what the 

average vorticity of each cube will be. After counting the 

number of clusters that exist inside the provided domain, 

the total number of clusters is then used to make an 

estimation, as stated in the result section for droplet 

analysis. The droplets that make up a cluster are evaluated 

in this process. In this analysis, the impacts of using both 

conventional and quantum approaches to solve the 

problem are studied and analyzed. By analyzing data 

pertaining to cloud droplets, quantum computers could be 

utilized to improve the processing of weather predictions. 

A DNS cloud domain size of 128 mm3 is utilized in the 

investigation of the findings of this study. An inquiry into 

the building of a quantum feature map and a quantum 

kernel for a certain domain is made possible by the 

classification of data points into high and low vorticity 

sectors. The usual difficulties of computing these data are 

brought to light and the results demonstrate the 

advantages of using quantum computing. Using this 

knowledge, it is possible to conceive of larger DNS 

domains with sizes ranging from 256-2048 mm3, 

respectively. When using this projection, users will have 

an ideal view of the larger clouds. In addition to this 

quantum mechanism, a classical mechanism's outcomes 

are compared with those of the suggested problem using 

the quantum mechanism. The quantum superposition and 

entanglement process are utilized in the development of 

the quantum feature set in order to analyze all of the 

attributes that are present in the data set. In order to 

prepare a high-dimensional quantum state from the data, 

classical analysis is performed on it. Quantum advantage 

was obtained by representing the data on a high-

dimensional feature space, while simultaneously 

producing a quantum feature set composed of classical 

features. During the processing of data utilizing a 

quantum mechanism, a number of potential advantages in 

terms of computations have been examined. In summary, 

the quantum mechanism can be utilized to accomplish 

complex computations to study droplet dynamics at an 

exponentially enhanced pace in order to process the data. 

Future Work Direction 

Quantum computers have the potential to improve 

weather forecasting by doing in-depth analyses of data 

relevant to clouds and precipitation. This investigation 

makes use of a DNS cloud domain size that is somewhere 

in the range of 128-2048 mm3 for the purpose of 

evaluating the findings. Examining is possible for us since 

we are actively attempting to improve the precision of our 

earlier findings. due to the inherent restrictions that come 

with the use of computation in quantum devices. When it 

comes to correcting errors, there is a vast range of 

alternative strategies from which to select. The data on 

DNS droplets is particularly complicated because they are 

monitored at a large number of time stamps and with a 

wide variety of parameters, such as temperature and 

velocity. This makes the data exceedingly difficult to 

interpret. It is difficult to accurately forecast the behavior 

of a droplet using a method that is basic because droplet 

behavior is incredibly dynamic. Clouds are an integral 

aspect of the climate, thus future quantum computers will 

undoubtedly be able to build more accurate weather 

forecast models by incorporating clouds as a component. 

This is because clouds are a vital part of the climate. There 

is the possibility that a number of quantum machine 

learning algorithms might be presented within the DNS 

domain in order to make data management more effective. 

This article presents an analysis of droplets, as well as an 

investigation into the existence of vorticity zones in the 

HV region. If we first calculate the vorticity collision rate 

at a number of different time stamps, then we can 

potentially use vorticity collision for further modeling and 

composing of the systems. Within the scope of this study, 

we investigated and analyzed a number of the droplets' 

micro-physical characteristics. In order to proceed with 
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the micro-physical feature analysis of droplets, more 

methodologies need to be researched and investigated in 

order to understand the extremely dynamic behavior of 

droplets. In order to do more research on droplet data, we 

have suggested conducting an analysis of the droplet 

spectra for a certain DNS domain. The size of the droplets, 

the total number of them, the distance between them and 

their radius are going to be researched in both high and 

low-vorticity regions. 

Data and Software Availability 

Upon obtaining a request, the Indian institute of tropical 

meteorology in Pune, India is delighted to provide DNS 

simulation data for droplet analysis. The expert at IITM for 

questions regarding DNS data requests is Dr. Bipin Kumar, 

a senior scientist there. The network Common Data Format 

(netCDF) serves as the foundation for DNS data. Data for 

128 mm3 of the DNS domain is made available in CSV 

format and can be accessed through the web address. The 

DNS data has been made public and can be view. The data 

was made available. 

Source Data 

Data is published as it becomes compliant with 

government regulations. DNS data is made available upon 

request, however privacy concerns are taken into account. 
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