
 

 

© 2024 Mubina Malik and Jaimin Undavia. This open-access article is distributed under a Creative Commons 

Attribution (CC-BY) 4.0 license. 

Journal of Computer Science 

 

 

 

Original Research Paper 

Optimizing N-linked Glycosylation Site Prediction in Human 

Proteins with Ensemble Stacking and Cross-Validation 
 

Mubina Malik and Jaimin Undavia 
 
Department of Computer Science and Applications, CMPICA, CHARUSAT, Charotar University of Science and  
Technology (CHARUSAT), CHARUSAT Campus, Changa, India 

 
Article history 

Received: 21-07-2024 
Revised: 30-08-2024 
Accepted: 11-09-2024 
 
Corresponding Author: 
Mubina Malik 
Department of Computer 
Science and Applications, 

CMPICA, CHARUSAT, 
Charotar University of Science 
and Technology 
(CHARUSAT), CHARUSAT 
Campus, Changa, India 
Email: mubinamalik.mca@charusat.ac.in 

Abstract: The most frequent post-translational modification of proteins in 

all territories is glycosylation which impacts many biological activities. The 
most significant and critical of these modifications is N-linked glycosylation 
which is associated with various human diseases including diabetes cancer 
Inflammation Alzheimers and atherosclerosis. This article illustrates recent 
advances in knowledge of biology that are eventually targeting the computer 
science sector. Moreover-identification of N-linked glycosylation helps to 
understand the biological system of humans and the mechanism of 
glycosylation. Machine learning techniques became very important for the 
N-linked glycosylation prediction from human protein because the 
experimental process is time-consuming and costly. This article proposes an 
ensemble machine learning approach for N-linked glycosylation prediction 
integrating updated and experimentally verified databases (UniProtKB 

dbPTM and nGlycositeAtlas) with an optimal window size of 21. MMSeq2 
clustering with a threshold of 0.3 was employed to eliminate duplicate and 
similar protein sequences for improved dataset preparation. A total of 9040 
features were extracted using various descriptors including sequence 
structural and physicochemical features. ANOVA F-score CHI2 and Mutual 
Information were used as ensemble feature selection techniques the 
combination of all these results generated 182 desirable features for the final 
model training. The model was then trained using cross-validation methods 
and ensemble stacking using four base classifiers: SVM LR XGBoost and 
RF. The prediction result demonstrates that ensemble stacking techniques 
with cross-validation give a more reliable and promising result than the 
individual base classifiers. Moreover, ensemble Stacking with cross-

validation performs better than the individual classifier with an Accuracy of 
99.99% Precision of 99.98% Recall of 100% AUC of 99.94% MCC of 
99.96%, and F-score 99.99%. 

 

Keywords: Machine Learning, Ensemble Stacking, XGBoost, Random 

Forest, SVM Cross Validation, Protein N-Linked Glycosylation 

 

Introduction 

Protein Glycosylation is one of the most important 

protein Post-Translational Modifications (PTM) in 

Eukarya Bacteria and Archaea (Moremen et al., 2012). 

The process of adding a sugar molecule to a protein-lipid 

or other organic molecule both inside and outside of the cell 

is known as protein glycosylation. Glycans are the 

carbohydrates that are connected to lipids and proteins during 

this process specifically to a specific residue that forms a 

glycosidic bond. The most complicated post-translational 

modification is glycosylation which is due to the greater 

number of enzyme steps required. Recent developments 

in artificial intelligence eliminate the limitations of 

experiment-based glycosylation detection. N-linked 

glycosylation O-linked glycosylation C-linked 

glycosylation S-linked glycosylation phoglycosylation and 

glypiation are some of the numerous forms of glycosylation 

(Ząbczyńska and Pochec, 2015). The most significant 

kind of all is N-linked glycosylation. Both the ER and the 

Golgi complex engage in N-linked glycosylation. The 

process of an oligosaccharide (glycan) being attached to 

the amide nitrogen of an asparagine (Asn) residue in a 

protein is known as N-linked glycosylation in 
biochemistry. N-linked glycosylation often takes place in 

the sequence N-X-S/T (N-asparagine S-serine T-threonine) 
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while it may also occur in N-X-C (C-cysteine) where X can 

be any amino acid other than proline (Gavel and Heijne, 

1990). Furthermore, the wide variety of glycans linked to 
proteins and limiting the examination of certain 

glycosylation functions make it difficult to comprehend. It 

is difficult to experimentally characterize N-linked 

glycosides in glycoproteins since doing so is costly time-

consuming and technically difficult. Our main objective 

is to Predict the N-linked glycosylation site using 

machine-learning techniques for accurate site prediction 

from human protein sequences considering the limitations 

of available techniques. 

A number of publications were examined in order to 

identify the best approach as well as the dataset 

methodology and constraints of the current models for the 

prediction of human protein N-linked glycosylation. 

There are two approaches for predicting protein N-linked 

glycosylation (1) Protein sequences-based approach and 

(2) Protein structure-based approach. Additionally, there 

are two categories for protein sequence-based 

approaches: Residue level and sequence level. 

Additionally, it demonstrates that the optimal method for 

achieving high accuracy is one that is based on N-linked 

glycosylation sequences (Malik and Undavia, 2022). 

According to Birgit and Frank Eisenhaber, 

"glycosylation prediction is still not acceptable and 

sequence-based approach has low prediction rate 

because the number of glycosyltransferases is not 

investigated and indeed" (Eisenhaber and Eisenhaber, 

2010). Manikandan Muthu Sechul Chun and others have 

emphasized the bioinformatics resources that are already 

accessible and concluded that there is a significant gap 

between the tools that are currently available and real-

world applications. Even though many different 

glycosylation prediction methods have been created only 

1% of them have been employed to study glycosylation 

in tumors (Muthu et al., 2020). Most of the machine 

learning and deep learning prediction models have 

assessed their performance at every N in protein 

sequences without the confirmation of N-X-S/T sequon 

according to several authors. Moreover, additional 

factors like disordered regions and physicochemical 

properties can be leveraged to provide more precise 

results (Chien et al., 2020; Pakhrin et al., 2021). 

Literature Review 

We have reviewed articles based on the protein N-linked 

glycosylation prediction of human protein to identify the 

research gap. Following are a few sequence-based feature 

prediction approaches for N-linked glycosylation: 

NetNGlyc uses Artificial Neural Network (ANN) (Gupta 

and Brunak, 2001) GPP uses RF (Hamby and Hirst 2008) 

EnsembleGly uses ensemble SVM (Caragea et al., 2007) 

GlocoPP uses RF (Chauhan et al., 2012) GlycoEP uses 

SVM (Chauhan et al., 2013) NGlycoGo uses XGBoost 

(Chien et al., 2020) GlycoMine uses RF (Li et al., 2015) 

and SprintGly uses DNN and SVM to construct large 

dataset (Taherzadeh et al., 2019). The two structure-based 
approach models that have been developed are 

GlycoMinestruct, which uses RF (Li et al., 2016), and 

NGlycPred, which uses RF (Chuang et al., 2012). 

However, some of the hybrid approaches using both 

sequence and structural features are N-GlycDE uses SVM 

(Pitti et al., 2019) DeepNGlycPred uses deep neural 

network (Pakhrin et al., 2021) PUStackNGly uses ensemble 

stacking (Alkuhlani et al., 2022) and LMNGlycPred uses 

Deep Learning Approach (Pakhrin et al., 2023) With the 

exception of a few machine learning approaches such as 

NetNGlyc (Gupta and Brunak, 2001) N-GlycDE (Pitti et al., 
2019) PUStackNGly (Alkuhlani et al., 2022) and a few 

deep learning approaches such as DeepNGlycPred 

(Pakhrin et al., 2021) LMNGlycPred (Pakhrin et al., 2023) 

nearly every model listed in the aforementioned paragraphs 

evaluated their performance using residue N without 

confirming N-X-[S/T] motif to identify N-linked 

glycosylation. As a result, performance was overstated 

and generated high accuracy. In order to achieve 

comparable performance, the N-X-[S/T] consensus 

sequence needs to be taken into account for analysis. This 

literature review highlights the drawbacks of previous 

models of prediction despite their comparatively high 
accuracy. Overlooking the high accuracy of available 

models following motivating factors were found to have 

better accuracy in addressing the limitations. 
 

 The presence of N-X-S/T sequon was not considered 

 The datasets used in the previous model are 

relatively small 

 Experimentally confirmed protein sequence data 
were not used 

 Incomplete amino acid information for feature 

encoding was taken in an experimental study 

 Feature selection techniques used without proper 

comparative study 

 Inappropriate window size was used 

 Disordered regions and physicochemical properties 

were ignored in many previous studies. 
 

N-X-[S/T] consensus sequence should be considered 

to include in the analysis for attaining similar 

performances. However, since one-third to half of the 

consensus sequence is buried deep inside the protein and 

is inaccessible to the glycosylation enzyme its existence 

does not prove N-linked glycosylation (Schulz, 2012; 

Nita-Lazar et al., 2005). Therefore, a performance 

evaluation with only consensus sequences may result in 

false positives. Along with the sequence features a few 

predicted structural features are also used to enhance the 

accuracy of the prediction model. These include 

disordered residue Secondary Structure (SS) to check 
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helix-strand-coil in a sequence and Accessible Surface 

Area (ASA) to check the accessibility of N residue. 

While utilizing structural features GlycoMinestruct (Li et al., 

2016) SprintGly (Taherzadeh et al., 2019) evaluate the 

performance without verifying the N-X-[S/T] sequence. 

Recent developments in DeepNGlycPred (Pakhrin et al., 

2021) with its focus on deep learning and the SVM-

based approach in N-GlycDE (Pitti et al., 2019) have 

made key steps toward predicting N-linked 

glycosylation from protein sequences based on the N-X-

[S/T] consensus sequence. 

Proposed Model 
 

 
 

Fig. 1: Proposed model 
 

The proposed approach illustrated in Fig. (1) uses a 

comprehensive approach to predict N-linked 

glycosylation sites in human proteins which involves five 

steps (1) Data preparation (2) Feature extraction (3) 

Feature selection (4) Ensemble Learning Model using 

Stacking and (5) Evaluation. 

Step (1) data preparations: The model's data is 

combined from N-Glycosite Atlas dbPTM and 

UniProtKB into a single independent dataset. Sequence 

similarity is decreased using MMSeq2 ensuring a high-

quality non-redundant dataset. Step (2) feature extraction: 

Sequence structural and physicochemical features are 

extracted. Step (3) Feature selection: To determine which 

features from the original set are the most informative an 

ensemble-based feature selection technique is applied 

using ANOVA F-score Chi-Square (CHI2) and mutual 

information. Step (4) Ensemble learning model using 

Stacking: The model combines many classifiers at two 

levels using a stacking ensemble learning technique. 

Support Vector Machine (SVM) Random Forest (RF) XG 

Boost and Logistic Regression (LR) are the base models 

(Level 1). The predictions of these models are combined 

using a meta-model (Level 2) in this case XG Boost 

classifier that was selected based on its performance and 

robustness. Step (6) evaluation: Evaluation of the model 

is performed on an independent dataset to ensure 

generalizability. The detailed description of each step is 

demonstrated in the below section. 

Materials and Methods 

Data Preparation and Preprocessing 

Data is the main obstacle to protein analysis so we 

selected the dataset to include reliable and experimentally 

verified protein sequence data for N-linked glycosylation 

with the confirmed consensus sequence N-X-S/T. In this 

study, we have selected three datasets with a different 

version: UniProtKB (ver. 2022) (Caragea et al., 2007) 

dbPTM (ver. 2019) (Pakhrin et al., 2021), and n-

GlycositeAtlas (ver. 2016) (Chauhan et al., 2012). These 

data are filtered to match the objective of the problem 
statement. For the UniProtKB Dataset (ver. 2022) we used 

the filter including reviewed and human data PTM as 

glycosylation with keyword N-linked to filter newly added 

and updated sequence information from UniProtKB this 

dataset consists of 8995 experimentally confirmed sequences 

from 3330 unique proteins. The dbPTM Dataset contains 

481 distinct glycosides from 222 distinct proteins. The n-

GlycositeAtlas Dataset includes 9260 unique proteins and 

24383 proteins. For more research and forecasting these 

datasets were integrated. To obtain reliable and confirmed 

data these three datasets were combined before being 
preprocessed. It is necessary to select a proper window size 

for the protein sequence as the whole protein sequence 

cannot be processed at a time to train the model. We have 

studied a few research articles and important features such 

as protein structure hydrophobicity for N-linked 
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glycosylation prediction and have selected the window 

size 21 for further model implementation (Malik and 

Undavia, 2022) (Chauhan et al., 2013) (Li et al., 2015). 
We have further studied and divided the proteins that had 

modifications at the N-terminal the C-terminal and 

everywhere in between to ensure the accuracy of N-linked 

glycosylation prediction at various locations. After the 

combining dataset, we got 33858 N-linked glycosylation 

sites with a total of 11255 unique proteins. The statistics 

of the data that we have selected for the model are 

described in Table (1). 

Classification and clustering are two main tasks in 
machine learning research. Sequence-clustering 
algorithms that can analyze massive volumes of 
sequencing data are becoming more and more necessary 
as Next-Generation Sequencing (NGS) technology 
advances. It is required to cluster the protein sequence and 
eliminate duplicate or similar identity protein sequences 
according to a threshold to increase the efficiency of 
sequence analysis and reduce sequence redundancy from 

the chosen datasets. A number of tools are commonly 
known for this purpose including MMSeqs2-Fast and 
sensitive clustering for large datasets (Hauser et al., 2016; 
Steinegger and Söding, 2017) USEARCH-Versatile 
clustering and searching (Edgar, 2010) CD-HIT Sequence 
similarity-based clustering (Fu et al., 2012; Li and Godzik, 
2006) KClust Kmer similarity-based clustering. We have 
chosen MMSeqs2 for clustering and the search performed 
rapidly and sensitively enough to find sequence matches 
down to 30% residue-wise sequence identity and fulfilled 
by MMseqs2. According to Steinegger and Söding 2017 in 
aligning sequences, MMseqs2 is more sensitive and best in 

accuracy compared to USEARCH and CD-HIT. Their 
study showed that MMseqs2 was able to find some kinds 
of homologous sequences not detected by other programs. 
Thus, it has enabled more comprehensive studies to be 
performed (Steinegger and Söding, 2017). Therefore, the 
MMseqs2 is a protein sequence analysis tool economically 
viable since it is open-source free software. On the other 
hand, alternatives such as USEARCH would be an issue for 
some researchers since they are propriety programs 
requiring licenses. Table (2). Describe the details of the 
various feature comparisons for the clustering algorithms 
and the results clearly show that MMSeqs2 is outperformed 

as compared to the rest of the algorithms. 

For dataset preparation, we used MMSeq2 techniques 

to remove the redundancy with a 0.3 threshold and as a 

result, we got 30225 protein sequence clusters as positive 

samples to train and test the model. Also, negative 

samples were collected from the nGlycDE (Pitti et al., 

2019). We have considered 3964 negative protein 

sequences for human protein which have N at the middle 

position in protein sequences from the N-GlycDE dataset. 

The alignment sequence logo and the position-specific 

scoring matrix depict the positive and negative datasets 

shown in Figs. (2-3) respectively. 

From the aligned sequence logos, it is clearly identified 

that the data that is considered for the prediction confirms the 

consensus sequence N-X-S/T as positive samples and N at 
position 11 in the negative samples. Moreover, previous 

work indicates that N-X-S/T is the simplest substrate for 

Oligo Saccharyl Transferase (OST) to transfer N-linked 

glycans; nevertheless, it has been demonstrated that the 

improved sequons F-X-N-X-T and F-X-X-N-X-T which 

include the adjacent aromatic amino acid phenylalanine (F) 

ensure successful N-glycosylation (Chen et al., 2013; 

Culyba et al., 2011). After confirming the accuracy of N-

glycosylation sites dataset is split into train and test using 

machine learning techniques with 80% (24180 positive 3171 

negative glycosites) and 20% (6045 positive 793 negative 
glycosites) respectively with positive and negative data 

which can be used for the prediction model. 
 
Table 1: Protein N-linked glycosylation dataset insights 

Dataset 

Total 

Number 

of n-

linked 

glycosite 

C-

terminal 

(End) 

Modifie

d 

Betwee

n 

Modifie

d 

N-

terminal 

(Begin) 

Modifie

d 

dbPTM 481 5 476 0 

n-GlycositeAtlas 24382 258 24124 0 

UniProt 8995 76 8378 541 

Total 339 32978 541 
 
 
Table 2: Feature comparison of clustering techniques for 

protein sequences 

Feature MMSeqs2 USEARCH CD-HIT KClust 

Speed Very High High High High 

Accuracy High High High Moderate 

Memory 

usage 
Moderate Moderate Low Low 

Scalability Yes Yes Yes Yes 

Handles large 

datasets 
Yes Yes Yes Yes 

Supports 

parallel 

processing 

Yes Yes Yes Yes 

Easy to use Yes Yes Yes No 

Open-source Yes No Yes Yes 

 

 
 
Fig. 2: Sequence logo of positive protein sequences 
 

 
 
Fig. 3: Sequence logo of negative protein sequences 
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Feature Extraction 

Dimensionality reduction is the process of reducing 

the number of variables or features in review. 

Dimensionality reduction can be divided into two 

subcategories which are Feature Selection and Feature 

Extraction. Feature extraction and selection are critical 

steps in developing accurate and interpretable prediction 

models. The 20 letters that make up a protein sequence 

are called amino acids. To predict n-linked glycosylation 

using machine learning or deep learning the amino acid 

sequence must be converted to binary representation. 

Protein sequence data can be encoded by three encoding 

methods which convert protein sequences into numeric 

features (Malik and Undavia, 2022). Feature extraction is 

the process of extracting a set of valuable features from 

raw data that may be used for prediction. Using a 

variety of sequence-based features that we extract from 

protein sequences; our method captures the properties 

of N-linked glycosylation sites. Based on the 

techniques listed in Table (3) protein features are 

extracted. Protein sequence-based features structural 

features and physicochemical properties are all 

extracted using Bio-python and iLearnPlus (Chen et al., 

2021; Cock et al., 2009). 

For N-linked glycosylation, three types of features 

are important to apply machine learning techniques for 

precise prediction. (1) Sequence-based feature (2) 

Structural features and (3) Physicochemical properties. 

As N-linked glycosylation identification is based on the 

Amino Acid Property’s Secondary structure folding 

and various physicochemical properties We have 

encoded a total of 9040 features which include 8846 

sequence-based features 127 structural features and 67 

Physicochemical features mentioned in Table (3). 

Sequence-based features include the various forms of 

amino acid compositions of each possible amino acid 

and its groups such as A N S NS TP EAF etc. Structural 

features include secondary structures such as alpha helix 

beta-sheet and coil at each position. Solvent 

Accessibility represents specific amino acids at each 

position that is accessible to the surface or not which 

include Exposed Buried and Intermediate state. 

 
Table 3: Protein sequence encoding techniques 

Binary encoding method 

One-hot encoding method (20-
bit), PAM Metrics (6-bit), PAM 
Metrics (5-bit) 

Substitution Metrix Position independent – PAM, 
BLOSUM. 
Position dependent – PSSM, 
PSI-BLAST 

Physicochemical 
property encoding 

VHSE Scale 

Feature Selection 

To determine which features are most important to use 

in machine learning algorithms the feature selection 

approach is considered. Feature selection techniques are 

used to reduce the number of input variables by 

eliminating unnecessary or redundant features and 

limiting the set of features down to those that are most 

significant to the machine learning model. Techniques for 

feature selection not only eliminate unnecessary features 

but also optimize the model reduce variance and shorten 

training times. When using feature selection techniques, it 

is crucial to consider the nature of the problem statement 
for each input variable in the dataset. Both continuous 

(floating point and integer) and categorical (Boolean 

ordinal and nominal) variables are commonly employed 

as inputs. We obtained both types of variables as features 

after feature encoding. Physicochemical qualities 

molecular weight and amino acid compositions are 

examples of continuous numerical data whereas solvent 

accessibility and secondary structure are examples of 

categorical data. 

Feature Selection-Collectively or Individually: 

Feature selection techniques can be applied either to all 
features together or separately to individual feature types 

depending on the context and objectives. Our main 

objective is to develop a reliable and efficient prediction 

model for N-linked glycosylation in human proteins using 

protein sequence structure and physicochemical 

properties. The relationship between protein sequence 

structure and physicochemical properties is deeply 

interconnected forms the foundation of protein biology and 

impacts the N-linked glycosylation site (Ramírez and 

Locher, 2023). The way a protein folds into its 3D 

structure is driven by interactions between the amino 

acids in the sequence such as hydrogen bonding 
hydrophobic interactions and disulfide bonds. Slight 

alterations in the sequence can lead to misfolding and 

potentially result in alteration of the glycosylation 

process. The physicochemical properties of a protein 

are derived from its amino acid sequence and influence 

how the protein behaves in different environments. 

For N-linked glycosylation where complex interactions 

between sequence structure and physicochemical properties 

determine the glycosylation sites applying feature 

selection to all features together is particularly effective. 

This method is superior to applying feature selection to each 
type separately because it captures the complex interactions 

between sequence structure and physicochemical properties 

providing a more comprehensive and accurate prediction 

model. (Pakhrin et al., 2023; Ramírez and Locher, 2023). 

Techniques for Feature Selection: The optimal 

feature selection methods are chosen according to the 

input and output variables. Targeting the problem 

statement and encoded feature we have selected 

ensemble feature selection techniques using ANOVA 
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F-score (Suresh and Naidu, 2022; Hasan and Hasan, 

2020) CHI2 (Liu and Setiono, 1995; Zhang et al., 2020) 

and Mutual Information (Jorge and Pablo, 2014) for the 
feature selection. Table (4) Describes the individual 

feature selection technique with input and output 

variables. Mutual Information is applicable to both 

continuous and categorical data while ANOVA F-

Score is best suited for continuous data and CHI2 for 

categorical data. The ratio of within-group variability 

to between-group variability is compared using the 

ANOVA f-score and is expressed in Eq. (1): 

 

𝑓 =  
∑ 𝑛𝑖

𝑘
𝑖=0 (�̅�𝑖− �̅� )2/(𝑘−1)

∑ ∑ (𝑥𝑖𝑗−𝑥̅𝑖)
2𝑛𝑖

𝑗=1
𝑘
𝑖=0 /(𝑁−𝑘)

 (1) 

 

where, k is the number of groups ni is the total of 

observations in the ith group xi is the mean of the ith group 

�̅� is the overall mean of the observed group and N is the 

total number of observations. 

Based on the variations between observed and 

expected frequencies for every cell in the contingency 

table the chi-square statistic (χ²) is computed. It is stated 
in Eq. (2): 

 

χ² = ∑
(𝑂𝑖 − 𝐸𝑖 )

2

𝐸𝑖 
 (2) 

 

where, Oi is the observed frequency and Ei is the expected 

frequency i. 

Mutual information is frequently used in feature 

selection to assess how closely a feature relates to the 
target variable in classification tasks. The mutual 

information 𝐼(𝑋;  𝑌)between a feature X and the target 

variable Y is defined in Eq. (3): 

 

𝐼(𝑋; 𝑌) =  ∑ ∑ 𝑝(𝑥𝑦)𝑦∈𝑌 𝑥∈𝑋  𝑙𝑜𝑔 (
𝑝(𝑥𝑦)

𝑝(𝑥)𝑝(𝑦)
) (3) 

 
Table 4: Feature selection techniques 

Method 
Input 
VARIABLE 

Output 
variable Purpose 

ANOVA  
F-Score 

Numerical Categorical 

Statistically 
significant 
differences in 
means between 
two or more 

groups. 

CHI2 Categorical Categorical 

Assess the 
association 
between two 
categorical 
variables. 

Mutual 
Information 

Numerical 
or 

Categorical 
Categorical 

Measures the 
relevance or 

association 
between a 
feature and the 
target variable 

Table 5: Feature selection outcome of ensemble method 
using ANOVA F-score, CHI2, mutual information 

Description 
Group Descriptor 

No. of 
Feature 

No. of 
Selected 
Feature 

Sequence 
based features 

Amino Acid 
Composition 

20 11 

Dipeptide 
Composition 

400 21 

Tripeptide 
Composition 

8000 64 

CKSAAP (Gap 3) 400 11 

Enhanced Amino 
Acid Composition 

21 10 

Grouped Amino 

Acid Composition 
5 4 

Structural 
feature 

Secondary 
Structure 

63 32 

Solvent 
Accessibility 

63 14 

Disorder Region 1 1 

Physicochemi
cal properties 

Hydrophobicity 63 12 

Molecular Weight 

4 2 
Aromaticity 

Isoelectric Point 

Instability Index 

3 14 9040 182 

 

Ensemble Model Approach Classifiers 

The use of ensemble techniques in machine learning 

approaches has gained popularity recently as seen in 

multiple approaches. Wang et al. have implemented an 

ensemble two-stage model for cancer survival prediction 

(Wang et al., 2019) Suraj Gattani et. al. used a two-stage 

ensemble approach for the prediction of protein-

carbohydrate binding (Gattani et al., 2019) Xiao et al. 

proposes an ensemble learning method to improve 

traffic incident detection using SVM and KNN (Xiao, 

2019; Alkuhlani et al., 2022) applied ensemble method to 

predict positive unlabelled N-linked glycosylation 

prediction using Stacking techniques (Pitti et al., 2019). 

To integrate the result various base predictors are 

assembled using ensemble techniques called stacking. It 

increases the model's capacity and scalability which is 

unachievable with just one predictor. Ensemble approaches 

are based on base models and meta models where base 

models are machine learning classifiers that operate 

independently to produce predictions which are then 

combined to produce an integrated prediction result. The 

final machine learning classifier or meta-model generates 

the final prediction result by utilizing the input as an 

integrated prediction result. 
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In this study, we have used Support Vector Machine 

(SVM) developed by Cortes and Vapnik (1995) Random 

Forest (RF) (Breiman, 2001; Hamby and Hirst, 2008) 

Extreme Gradient Boosting (XGBoost) (Chen and 

Guestrin, 2016) and Logistic Regression (LR) (Tolles and 

Meurer, 2016) machine learning predictive model for 

evaluating the performance of the proposed model. For 

the selection of a classifier, we have reviewed research 

articles on machine learning classifiers as well as the 

previous machine learning predictors that were mentioned 

in the Introduction for N-linked glycosylation. 

SVM: Because SVM clearly defines decision 

boundaries it excels at binary classification. They are 

particularly helpful when working with datasets that 

have a lot of features since they are less prone to 

overfitting than other techniques, especially in high-

dimensional data situations. The SVM polynomial 

kernel uses this high-dimensional feature space to 

linearly distinguish the glycosylated and non-

glycosylated classes. 

LR: We have decided to use the Logistic Regression 

(LR) classifier as our regression technique of choice. 

Using a sigmoid function the linear regression model 

converts the continuous value output of the linear 

regression function into a categorical value output. 

Though its intrinsic linearity logistic regression can be 

expanded to accommodate non-linear correlations by 

using interaction terms or polynomial features. 

XGBoost: An ensemble learning technique called 

XGBoost aggregates many decision trees to get a single 

prediction. The primary goal is to build new trees that 

rectify the errors of the ones that already exist. 

RF: By building an ensemble of decision trees 

Random Forest generates a class that is the mean of the 

classes that each individual tree predicted. Multiple 

decision trees are constructed and high dimensional 

features are handled by Random Forest. Ensemble of 

decision trees trained on bootstrapped data with 

randomly selected features. In regards to the dataset 

features hold numerous amino acids and their 

combinations interact in protein sequence. 

Ensemble Stacking Approach with Cross Validation 

Stacking is an enhanced ensemble learning technique 

that is intended to enhance the predictive performance of 

machine learning models by combining several base 

learners. The main concept is to minimize each model's 

unique weaknesses while utilizing its strengths (Dey and 

Mathur, 2023). Base classifiers (Level 1) such as 

Support Vector Machine Logistic Regression XGBoost 

and Random Forest are initially trained on the same 

dataset in a stacking framework. Predictions are 

generated by each base classifier and used as input 

features by a meta-classifier XGBoost (Level 2). The 

meta-classifier is trained to produce final predictions 

based on these inputs. By using a two-level strategy, the 

meta-classifier can learn how to optimally integrate the 

base classifiers predictions hence enhancing overall 

accuracy and capturing complex patterns. But only the 

stacking approach might lead to overfitting if any one of 

the base models over-fittings and is sensitive to data. 

There are two techniques that can help to solve meta 

learner overfitting problem (1) Hold out method which is 

commonly known as blending (Wu et al., 2021), and 2 k-

fold cross-validation (Nti et al., 2021). We have selected 

k-fold cross-validation techniques with an ensemble 

stacking method to ensure the data will not overfit to the 

selected classifier. Cross-validation is the method that 

divides the dataset into training and testing data using k-

fold cross-validation. To assess the cross-validation 

performance k experiments were carried out after the 

dataset was divided at random. The kth partition data is 

used to average accuracy data over the experiments which 

can be used for testing and training. To ensure that the 

training set remains unseen during model training cross-

validation is done to each base model to create out-of-fold 

predictions instead of using their predictions directly. 

Then a meta-model also known as a meta-learner uses the 

new dataset which is the result from the base learner and 

learns to give the prediction on the test dataset. To prevent 

overfitting this meta-model is trained on a different fold 

of the data which improves the generalization and 

robustness of the ensemble model. 

Figure (4) represents the entire architecture of 

stacking with cross-validation. In this architecture, the 

training set is divided into k-folds at the start of the 
process. The training set is made up of the remaining 

folds in each fold, with one portion designated as the 

validation fold. Level-1 predictions (P1-P4) are 

generated by training each classifier (C1-C4) on the 

training folds and testing it on the validation fold. To 

guarantee that every instance in the dataset is used for 

both training and validation, this process is repeated 

over all folds. This helps to produce reliable level-1 

predictions that are less likely to overfit. 

 

 
 

Fig. 4: Stacking ensemble based on cross-validation 
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Evaluation Criteria 

Model performance was evaluated using several 

criteria to judge the quality of the model. Rainio et al. 

(2024) described evaluation metrics and statistical test 

for binary classification problem in machine learning. 

The most common binary classification indicators to 

express correctly classified instances are (1) Accuracy 

(2) Specificity (3) Sensitivity commonly known as 

Recall and (4) precision. There are other evaluation 

criteria F1-score that depends on all values of confusion 

metrics and gives the same weight to accuracies within 

the positive and negative instances and Matthews' 
Correlation Coefficient (MCC) measures the correlation 

between the real and the predicted values of instances 

Cohen’s kappa which is applied to measure the 

agreement between the predicted and actual classes and 

ROC curve obtained by plotting sensitivity against the 

false positive rate (Rainio et al., 2024). The most 

significant evaluation indicator for machine learning 

models is Accuracy (ACC) Precision Recall MCC and 

F-Score which are evaluated on TP FP FN and TN stand 

for true positives false positives false negatives and true 

negatives respectively. Evaluation criteria for possible 

value measurement are defined below: 
 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∈  [0,1], 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ∈ [0,1], 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∈
 [0,1], 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑅𝑒𝑐𝑎𝑙𝑙 ∈ [0,1], 𝐹1 ∈ [0,1], 𝑀𝐶𝐶 ∈
[−1,1], 𝑅𝑂𝐶 ∈ [0,1] (4) 
 

Results and Discussion 

Hyperparameter Optimization for Classifier 

For tuning the parameter of the selected classifier, we 

have implemented Grid Search techniques with the 182 

selected features on the selected classifier. The details of 

the parameters are mentioned in Table (6). 
 
Table 6: Hyperparameter Tunning for SVM, LR, XGBoost 

and RF 

SVM 
Kernel 

Linear, poly, 
rbf, sigmoid Poly 

C 0.1,1,10 1 

gamma Scale, Auto Scale 

LR 

C 0.1,1,10 10 

max_Iter 1000 1000 

Solver liblinear, lbfgs liblinear 

RF 

n-estimator 50,100,150 150 

max_depth None,10,20 10 

min_sample_split 2,5,10 10 

XGBoost 

learning_rate 0.1,0.2,0.3 0.3 

max_depth 3,4,5 3 

n_estimators 50,100,150 50 

Performance of Base Model Classifiers on Cross-

Validation 

To improve the predictive performance of our 

machine learning models we utilized a complex model 

selection process in this study that included stacking 

and cross-validation techniques. First, we put into 

practice four base models: Support Vector Machine 

(SVM) Logistic Regression (LR) XGBoost, and Random 

Forest (RF). Each base model was thoroughly trained and 

validated using cross-validation to guarantee reliable and 

objective performance estimates. Next, we used stacking 

techniques to combine the strengths of these various base 

models. Specifically, predictions from the SVM LR 

XGBoost and RF models were used as input features for a 

meta-model. For the selection of the meta-model, we have 

performed cross-validation on the individual base model 

and the base model with the highest performance was 

selected as the meta-model for the ensemble approach. 
To improve the predictive performance of our 

machine learning models we utilized a complex model 
selection process in this study that included stacking and 
cross-validation techniques. First, we put into practice 
four base models: Support Vector Machine (SVM) 
Logistic Regression (LR) XGBoost, and Random Forest 
(RF). Each base model was thoroughly trained and 
validated using cross-validation to guarantee reliable 
and objective performance estimates. Next, we used 
stacking techniques to combine the strengths of these 
various base models. Specifically, predictions from the 
SVM LR XGBoost and RF models were used as input 
features for a meta-model. For the selection of the meta-
model, we have performed cross-validation on the 
individual base model and the base model with the highest 
performance was selected as the meta-model for the 
ensemble approach. 

The k-fold cross-validation with k = 2-k = 20 with the 

gap 2 result in Table (7) shows that Initial folds (0 and 2) 

showed significant variability but from fold 4 onwards the 

classifiers' performance became more consistent and 

reliable. In fold 8-20 accuracy stabilized with minor 

variations and all classifiers consistently performed well, 

especially from fold 12 onwards where accuracy 

remained high and stable. The findings show that 

XGBoost performs consistently across several folds 
achieving the highest mean accuracy (0.96) with a low 

standard deviation (0.04). SVM Random Forest and 

Logistic Regression all indicate robust performance with 

mean accuracies of 0.94 0.95 and 0.93 respectively. The 

models that indicate the least variability are Random 

Forest and XGBoost while the standard deviation values 

indicate that all models offer consistent predictions. 

To analyze the central tendency and variability of 

model accuracies and to check the stability of the 

model we have plotted the Gaussian distribution of the 

model accuracy which is defined in Fig. (5). 
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Table 7: Accuracy of SVM, LR, XGBoost, and RF Over k-
Fold cross-validation with mean accuracy and 
standard deviation 

k- Fold 

Accuracy 

SVM LR XGBoost RF 

0 0.99 0.98 1 0.99 
2 0.81 0.80 0.83 0.83 
4 0.89 0.86 0.94 0.92 
6 0.92 0.90 0.96 0.94 
8 0.94 0.92 0.95 0.95 
10 0.95 0.93 0.97 0.95 
12 0.96 0.97 0.98 0.96 
14 0.96 0.97 0.98 0.96 

16 0.96 0.98 0.98 0.97 
18 0.96 0.98 0.98 0.97 
20 0.96 0.98 0.98 0.97 
Mean 
Accuracy 

0.94 0.93 0.96 0.95 

Standard 
Deviation 

0.05 0.06 0.04 0.04 

 

 
 
Fig. 5: Accuracy density Plots for SVM, LR, XGBoost and 

RFclassifier 
 

Figure (5) Accuracy Density Plots for SVM LR, 

XGBoost and RF classifier. From the Gaussian distribution 

plot, we observed accuracies of all four models satisfy 
Gaussian distributions meaning that the performance of each 

model is distributed normally around its mean. The peaks of 

these distributions fit the accuracy levels that are most 

observed during the testing of models. From the cross-

validation result and Gaussian distribution plot, we have 

selected XGBoost as a meta-model (Level 1). XGBoost was 

chosen as the meta-model due to its proven ability to handle 

complex patterns and interactions effectively. 

Performance Metrics Comparison: Base Classifiers 

vs. Ensemble Stacking with Cross-Validation 

When different machine learning models were 

compared to predict protein N-linked glycosylation it was 

shown that the Ensemble Stacking model with Cross-

Validation (CV) performed significantly better than the 

other individual classifiers. This model is the most robust 

and reliable choice for this prediction task with nearly 

perfect performance metrics across all evaluation criteria. 

Most significantly the Ensemble Stacking model achieved 

an outstanding 0.9999 accuracy demonstrating nearly 

perfect prediction ability. The model demonstrated the 

capacity to accurately detect all real positive 
glycosylation sites without producing any false negatives 

as evidenced by its specificity recall and sensitivity both 

reaching 1.0000. Additionally, the 0.9987 of the models 

indicates its ability to minimize false positives and 

ensure a high level of confidence in discriminating 

between glycosylated and non-glycosylated locations. 

Its ability to predict positive instances with accuracy is 

further supported by its precision of 0.9998. The model 

performs even better as proven by the ROC AUC value 

of 0.9994 which shows nearly perfect classification 

abilities between the two groups. With a Matthews 
Correlation Coefficient (MCC) of 0.9996 the model can 

manage class imbalances exceptionally well and produce 

accurate predictions. Furthermore, the model's balanced 

performance in terms of recall and precision is confirmed 

by the F-Score of 0.9999. All the base models' kappa scores 

are above 0.8 which denotes strong to extremely strong 

agreement between the predicted and real labels. This 

implies that every base model performs satisfactorily on the 

dataset on its own. The stacking model achieves an 

exceptional performance by combining the advantages of 

the different base models as evidenced by its nearly perfect 

kappa score. This suggests that the stacking method 
successfully captures and improves the basic models' 

predictive ability. 

Together the results shown in Table (8) indicate that 

the Ensemble Stacking model with Cross-validation is the 

optimal solution to predicting protein N-linked 

glycosylation from human protein sequences. It provides 

surpassed accuracy robustness and reliability when 

compared to other models that were assessed including 

SVM Logistic Regression XGBoost and Random Forest. 

Because of its exceptional performance, it is a very useful 

tool for both researchers and practitioners who study 

glycosylation prediction. 

 
Table 8: Base classifier and ensemble stacking performance 

metrics for N-linked glycosylation prediction 

Model SVM LR 
XG
Boo
st 

RF 
Ensemble 
Stacking 
With CV 

ACC 0.96 0.97 0.98 0.96 0.9999 

Specificity 0.96 0.91 0.98 0.97 0.9987 

Pre 0.99 0.99 0.99 0.99 0.9998 

Recall 0.96 0.98 0.98 0.96 1.0000 

ROC AUC 0.96 0.94 0.98 0.97 0.9994 

MCC 0.83 0.86 0.93 0.86 0.9996 

F - Score 0.98 0.98 0.99 0.98 0.9999 

Cohen's 
Kappa 

0.82 0.86 0.93 0.86 0.9996 
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A complete list of abbreviations is listed in Appendix I. 

Appendix I 
 
Sr. No. Abbreviation  Description 

  1 PTM Post-translation modification 
  2 MMSeq2 Many-against-many 
  sequence searching 

  3 UniProtKB UniProt knowledgebase 
  4 ANOVA Analysis of variance 
  5 SVM Support vector machine 
  6  RF random forest 
  7 LR Logistic regression 
  8 XGBoost Extreme gradient boosting 
  9 CV Cross-validation 
10 ACC Accuracy 

11 MCC Matthews’correlation coefficient 
12 ROC Receiver operating characteristic 
13 AUC Area under the curve 
 

Conclusion 

In this study, we developed a comprehensive approach 
to predict protein N-linked glycosylation from human 
protein sequences. The methodology integrates multiple 
stages starting from data preparation and feature 
extraction to feature selection and ensemble learning 
model construction. We obtained our data from reliable 
protein databases such as UniProtKB dbPTM and N-
Glycosite Atlas considering the diversity of the dataset. 
To ensure a broad and representative collection of protein 
sequences we carefully selected an independent dataset 
using MMseq2 and a 30% similarity threshold. To 
effectively predict N-linked glycosylation sites it is 
essential to incorporate structural and physicochemical 
properties alongside sequencing features. These features 
offer complementary information about the protein's 
location confirmation and chemical composition. These 
characteristics improve the model's capacity to capture 
complex interactions and amino acid dependencies that 
affect glycosylation beyond simple sequence patterns. 
The feature selection step is used to enhance the model's 
efficiency and predictive power. An ensemble feature 
selection technique was employed using ANOVA f-score 
CHI2 and Mutual Information which have different 
efficiency to select features. As a result, we got 182 
optimal features from 9040 features that were extracted. 
The model was constructed using a stacking technique 
that combines the results of SVM Logistic Regression 
XGBoost and Random Forest classifiers with 12-fold 
cross-validation. We experimented with folds ranging 
from 1-20 with a gap of 2 and selected 12 folds for optimal 
performance. XGBoost was chosen as the meta-model 
due to its superior performance in our experiments. When 
compared to individual models the suggested ensemble 
stacking approach performed better obtaining almost 
perfect metrics for all evaluation criteria with accuracy 
99.99% Precision 99.98% Recall 100% ROC AUC 
99.94% MCC 99.96% and F-Score 99.99%. With this 

method, glycosylation site prediction is made robust and 
accurate with implications for proteomics and 
bioinformatics research. Abnormality in N-linked 
glycosylation is detected in many diseases such as 
diabetes cancer Inflammation and Alzheimer's disease. 
Future work will focus on the clinical diagnosis of such 
diseases and consequently their drug development. 
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