

© 2024 Kriti Srivastava, Dhruv Jain, Aarya Kamdar, Anuradha Yeole, Devam Shah and Sowmya Dadheech. This open-access

article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Adaptivity in Role-Based Access Control During Stochastic

Situations: A Comprehensive Study between Graph and

Relational Databases

Kriti Srivastava, Dhruv Jain, Aarya Kamdar, Anuradha Yeole, Devam Shah and Sowmya Dadheech

Department of Computer Science and Engineering (Data Science), Dwarkadas J. Sanghvi College of Engineering, Mumbai, India

Article history

Received: 07-09-2024
Revised: 12-09-2024
Accepted: 07-10-2024

Corresponding Author:
Aarya Kamdar
Department of Computer
Science and Engineering (Data

Science), Dwarkadas J.
Sanghvi College of
Engineering, Mumbai, India
Email: aaryawork1@gmail.com

Abstract: Role-based control is straightforward to implement in static

systems where there are specific policies for role and resource mapping. The

main challenge is faced in dynamic and unpredictable systems with erratic

workflows. Conventional methods prove to be inadequate in dynamic

environments. Over the Years methods suggested include probabilistic,

machine learning, ontology, and decision tree models to improve the

adaptability. However, they fail to build a bridge between operational

methods and flexible approaches. Role-based control systems are based on

previously defined rules and policies. A truly flexible system should run

without human interference, autonomously accessing the user's request and

granting the requirements based on it is genuineness. This research

introduces the need for a based control methodology, using a project

management case study using Neo4j. It generates the responses promptly

based on the authenticity of the user We have computed the time required to

process the results in in SQL as well as Neo4j. A role-based control system

is built to improve coordination among the departments present in the real-

life corporate world and transfer data based on authenticated data requests.

Graph databases outperform relational databases by nearly an average of 8

milliseconds on an average across the queries run. This framework

demonstrates better flexibility, system adaptability, and precise

computational efficiency across various scenarios.

Keywords: Graph Databases, Neo4j, NoSql, Role Based Access, RBAC,

MYSQL, Relational Databases

Introduction

In the digital age, we are witnessing an unprecedented

surge in data volume and complexity. This growth
presents both opportunities and challenges, particularly in

the realm of data management and security. Graph

databases have emerged as a powerful solution for

handling intricate relational data. Unlike a traditional

database, holding data in a table structure, graph databases

use nodes, edges, and properties to represent information.

This would efficiently map out complicated relationships

and produce good results for applications such as fraud

detection and recommendation systems. That is, a

growing necessity for increased strength and adaptiveness

of database management solutions in order to deal with
the rising complexity of digital ecosystems; among them,

graph databases have been fitted into that gap. Robust data

security has become very important with the growth of

data management. An RBAC system is one of the most
reliable ways of providing this. Basically, RBAC is a

well-practiced model of security principles applied in the

storage of data, especially in the corporate world. Such a

system gives permissions for roles rather than users; this

makes the means of handling access control at a large and

complex organization easier and more efficient. This

technique is particularly important in industries like

banking, healthcare, or business information technology,

where tight security is absolutely necessary due to very

sensitive information. Traditionally, RBAC systems have

been implemented using relational databases with access
rights and role assignments stored in tables. While these

systems are well-established and have served their

purpose effectively, they often struggle to meet the

scalability and complexity demands of modern RBAC

implementations. The higher the number of roles,

permissions, and user-to-role assignments, the higher the

Kriti Srivastava et al. / Journal of Computer Science 2024, 20 (12): 1744.1752

DOI: 10.3844/jcssp.2024.1744.1752

1745

complexity and resource intensiveness required in queries

by access control management. Performance bottlenecks

can occur for static schema relational databases and the

partial support of high-dimension relationship cases might
endanger system efficiency. This paper is therefore aimed

at exploring the potential of graph databases with respect

to developing an RBAC system through performance

benchmarking against traditionally favored relational

database reasons that assess the manner by which Neo4j

does the processing of complex queries and handling the

intricate network of user-permission-role relationships

using intrinsic advantages of graph databases. Such

insights that the work is likely to provide reflect the

potential benefits of using graph databases for RBAC

implementations and open up real new ways toward better
methods of data security and management. Through this

comparative analysis, we hope to contribute to the

ongoing dialogue about the evolution of database

technologies and their role in addressing the complex

challenges of modern data ecosystems. By examining the

strengths and limitations of both approaches, we aim to

offer valuable insights to organizations grappling with the

dual challenges of data complexity and security in an

increasingly interconnected world. In this review of the

literature, an overview is given of a few studies that

compare relational databases with graph databases,

particularly focusing on Neo4j and SQL databases. Batra
and Tyagi (2012) performs a performance comparison

between Neo4j and MySQL, outlining the flexibility and

higher performance of graph databases in answering

complex interaction questions. It shows how relational

databases become inefficient when one faces a scenario of

rapid dynamic schema growth, along with a large number

of joint operations. Neo4j will fit better in applications

where advanced management of relationships is a

necessity since it has a schema-less architecture and

improved traversal algorithms. Sharma et al. (2018)

explore the performance of PostgreSQL, MongoDB, and
Neo4j in managing geotagged data within GIS

applications. It involves various databases with query

response times and handling large volumes of data. It was

found that the query response time was fastest with

MongoDB and next with PostgreSQL. Though Neo4j had

a slow speed in queries compared to the first two, Neo4j

handled complex interrelationships. The conclusion of the

study shows that the graph style of Neo4j benefits

applications, which are highly reliant on data association.

Sholichah et al. (2020) show results for a performance

evaluation between Neo4j and MySQL databases by

applying a wide range of benchmark queries, revealing
differences between the two databases due to different data

modeling approaches. If MySQL is better for structured

data with predefined schemas, Neo4j gives better results in

cases where schema changes and updates are much more

frequent. One can notice that query response times in

Neo4j remain rather flat across data volume. Khan et al.

(2017) compare RBAC implementations across NoSQL

databases, focusing on Neo4j, MongoDB, Cassandra, and

Redis. The study highlights Neo4j’s schema-less structure
and built-in roles, which facilitate managing complex

relationships. Medhi and Baruah (2017) presented a

development comparison between a relational and graph

database performance on a simple Cricket application
reaching results were obtained that favored the Neo4J

system. However, their tests were conducted on a

dataset that had 400 objects and 3 queries were

implemented. Jain et al. (2023) compare Neo4j (graph

database) and MySQL (relational database) performance
using the Career Village dataset. It evaluates execution

times for selection, aggregation, recursion, and pattern-

matching queries for SQL and Cypher. The results show

Neo4j outperforming MySQL by up to. However, the

study acknowledges that database performance depends

on specific use cases. Gupta and Aggarwal (2014)

compare Neo4j and MySQL, highlighting Neo4j’s

efficiency in managing evolving schemas and complex

queries. Bechberger and Perryman (2020) focus on data

query performance based on selection, aggregation,

pattern matching, and recursion between Neo4j and
MYSQL. Kotiranta et al. (2022) present a comparison of

Neo4j, MySQL, and Maria DB; Neo4j is the best for

simple queries, and Maria DB outperforms in complex

queries. Relational databases have improved their

indexing and optimizations and are competent for

complex tasks. The results of Neo4j and MySQL

compared for graph data in the Vicknair et al. provenance

system are presented in Vicknair et al. (2010). Neo4j was

faster when there were graph traversals but slower on

numerical queries due to Lucene indexing. MySQL did

very well for numerical data and smaller sets. In the study

Fan (2012); Nguyen and Kim (2017); Do et al. (2022);
Huang et al. (1996) compare graph databases, notably

Neo4j, with traditional relational databases like MySQL.

Comparisons are focused on different query features:

Recursion, partial matching, grouping, and path searches.

RBAC features are less developed than MySQL’s

robust security controls, making it less suitable for

applications requiring stringent data security. Despite

Neo4j’s strengths in handling frequent schema updates, its

security mechanisms remain underdeveloped compared to

traditional relational databases. Research Gap One of the

challenges is to find the right balance between the security
of a system and its adaptability. While the framework

presented above tries to offer flexible access control, the

ideal balance still has to be found. Overly inflexible

systems can impede their ability to respond quickly and

effectively. However, excessive flexibility may

jeopardize security. This is a delicate balance that needs

to be carefully considered. Certain frameworks are

intended to manage emergency scenarios requiring

Kriti Srivastava et al. / Journal of Computer Science 2024, 20 (12): 1744.1752

DOI: 10.3844/jcssp.2024.1744.1752

1746

dynamic access granting. There might be shortcomings

in the system’s ability to accurately recognize true

emergencies and stop malicious actors from abusing it

by posing as authorized requesters. In an evolving
emergency scenario, the adeptness of time as a factor

in obtaining the results should also be of primary

importance. Incorporating time as a factor allows the

system to dynamically adjust permissions based on the

current state and elapsed time, enhancing the system's

responsiveness and effectiveness. Materials and

Methods Data Collection Taking into account earlier

research on the subject, the proposed system

outperforms the traditional methods used for role-

based. The approach makes use of graph databases,

Neo4j to represent the role-based access. A detailed
and highly structured tracheal dataset is designed to

present 10,000 users, 500 hierarchical roles comprising

5000 allocated permission roles user-role assignments,

role inheritance, and constraints like mutually

exclusive roles and role prerequisites. To fully

comprehend the interconnected and complex structure

of the dataset, it is essential to illustrate the

relationships between users, roles, and permissions:

1. Has role: Connects a User node to a Role node,

representing the roles assigned to a user

2. Inherits from: Connects a Role node to another Role

node (its parent), showing that one role inherits
permissions from another

3. Requires: Connects a role node to another role node

(its prerequisite), indicating that a role requires

another role before it can be assigned

4. Visualizing this complicated information contributes

to a better understanding of the complex hierarchies

and restrictions inside this RBAC system, offering

clarity on structural dynamics

5. Users: visualized as nodes

6. Roles: Visualized as nodes with hierarchical

relationships with other roles
7. Permissions: Connected to roles, inherited through

their hierarchy

8. Constraints: Outline special constraints like mutually

exclusive roles or prerequisite roles

Materials and Methods

Graph Databases

This section describes the use of Role-Based Access

Control when it comes to a graph database. Hence, it

indicates Some of the main phases related to the

application of the RBAC model, focusing on constraints

and the formation and attachment of the nodes. The rest,

together with the data loading, turn out to be equally

important in ensuring proper recording and execution of a

graph database with robust Access Control across this

system. Figure (1) presents the system architecture.

Data Load

The initial step in this approach is to load the data. Neo4j

imports all relevant data for the RBAC model from a

structured JSON file. This data includes all the information
about the users, roles, permissions, and restrictions that

establish the RBAC system. The data import process utilizes

the apoc.load.json method from the APOC library. This stage

lays the foundation for developing a reliable and accurate

RBAC model within the system.

Figure (2) explains the Principles of role-based access

control model. Node and relationship creation User creation

in this stage, User nodes are created in the graph database,

where each User denotes a person who requires access

control. Each user is given a distinct to ensure that every

subject in the RBAC model is taken into consideration.
Since they serve as the foundation for subsequently

granting roles and permissions, these User nodes are built

initially. To set up the basis for role assignments, the array

of users from the ’users.json’ file must be unwound. For

each user, a corresponding User node must be created.

Fig. 1: System architecture of Neo4j

Fig. 2: Principles of role-based access control model

Kriti Srivastava et al. / Journal of Computer Science 2024, 20 (12): 1744.1752

DOI: 10.3844/jcssp.2024.1744.1752

1747

Role Creation Role nodes are essential to the RBAC

model because they allow a flexible, hierarchical access

control structure by encapsulating permissions and

allowing them to inherit permissions from other roles.
Based on the role information from the JSON file, each

Role node is created. After that, permission

relationships and, when applicable, inherits from

relationships are used to link these nodes to Permission

nodes in order to capture role inheritance. This step is

essential in order to define the actions that fall under each

position and to ensure that roles can be managed and

maintained efficiently.

MATCH (u:User)-[:HAS_ROLE]->(r:Role)

RETURN u.id AS User, r.id AS Role;

1. Query for retrieving user-role assignments

Permission creation roles’ permitted actions and

resources are delineated by their permissions. The

Permission nodes are created by unwinding the list of

permissions linked to each role in the JSON file. Next, the

nodes corresponding to the respective roles are connected,

creating associations with permission. Permissions may
be moved or changed without affecting the RBAC model,

which makes the system more modular and scalable. This

is achieved by decoupling permissions from roles within

the graph structure.

MATCH (r:Role)-[:HAS_PERMISSION]->(p:
Permission)

RETURN r.id AS Role, p.id AS Permission;

2. Query for retrieving role-permission assignments

Role assignment and constraint definition role
assignment Once the nodes are created, roles are assigned to

users by establishing Hasrole relationships between user and

role nodes. This step is crucial as it defines each user’s

access rights within the system. The role assignments are

pulled from the JSON file and the corresponding

relationships are created in the graph database to reflect

these assignments. By setting up these relationships, the

system ensures that users have the appropriate permissions

according to their designated roles.

MATCH (r:Role)-[:INHERITS_FROM*]->(parent:

Role)
RETURN r.id AS Role, parent.id AS

ParentRole;

3. Query for retrieving role inheritance

Role Prerequisites Some roles require users to hold

specific prerequisite roles before they can be assigned.

These dependencies are managed by creating required

relationships between the relevant roles. This step

enforces these prerequisites, ensuring that users meet all

necessary criteria before gaining access to certain roles.

This feature is essential for maintaining the integrity of

the access control model, preventing users from bypassing
critical role qualifications.

MATCH (r:Role)-[:REQUIRES]->(

 erequisiteRole:Role)
RETURN r.id AS Role, prerequisiteRole.id

AS PrerequisiteRole;

4. Query for retrieving role prerequisites

Mutually exclusive roles in certain scenarios, roles

may be mutually exclusive, meaning a user cannot hold

both roles at the same time. The system manages these

constraints by marking specific roles as mutually

exclusive, ensuring that conflicting roles are not assigned

to the same user. This is critical for preventing security

breaches or unintended access within the RBAC model.

These constraints are enforced during the role assignment

process, helping to maintain a consistent and secure

access control environment.

MATCH (r: Role)
WHERE r.mutually_exclusive = true

RETURN r.id AS MutuallyExclusiveRole;

5. Query for retrieving mutually exclusive roles

Query Execution and Analysis

Retrieving users with specific permissions a crucial

query in the RBAC system is identifying users who have

been granted a specific permission, whether directly or

through inherited role relationships. This query is vital for

verifying that users possess the correct permissions and

for auditing access within the system. By querying the

graph, the system can efficiently determine which users

have access to particular actions or resources, ensuring

that access control policies are properly enforced.

MATCH (u:User)-[:HAS_ROLE]->(r:Role)-[:
HAS_PERMISSION*]->(p:Permission {id: 1})

RETURN u.id AS user_id;

6. Query for Retrieving Users with Specific Permissions

Listing roles inherited from a specific role an

important query involves listing all roles that inherit
permissions from a particular parent role. This query is

essential for understanding the role hierarchy within the

RBAC model. It enables system administrators to

visualize how permissions are propagated through

inherited roles, ensuring that the hierarchical structure is

Kriti Srivastava et al. / Journal of Computer Science 2024, 20 (12): 1744.1752

DOI: 10.3844/jcssp.2024.1744.1752

1748

correctly maintained and that all inherited permissions are

properly accounted for.

MATCH (r:Role {id: 1})
CALL apoc.path.subgraphNodes(r, { relationshipFilter:

’INHERITS_FROM’, labelFilter: ’+Role’

})

YIELD node

RETURN node.id AS role_id;

The query for listing roles inherited from a specific
role and finding ancestor roles of a specific role this query

identifies all ancestor roles of a given role, offering insight

into the role’s lineage and the inheritance path of

permissions. This information is critical for debugging

and verifying that role inheritance functions as intended.

By examining the ancestor roles, the system can confirm

that permissions are inherited correctly, ensuring

consistency in the access control model.

MATCH (r:Role {id: 3})-[:INHERITS_FROM
*]->(ancestor:Role)

RETURN ancestor.id AS ancestor_role_id;

7. Query for finding ancestor roles of a specific role

Detecting Users Missing Required Prerequisites

This query identifies users who have been assigned

roles without meeting the necessary prerequisite

conditions. It is crucial to ensure that all role

assignments adhere to the RBAC model's rules,

especially those related to prerequisites. By running

this query, the system helps maintain the integrity of

role assignments, preventing users from acquiring roles

for which they are not qualified and safeguarding the

system against potential security risks.

Finding Users with Specific Permissions via Role
Inheritance The system can also identify users who

have acquired specific permissions through role

inheritance. This query is crucial for auditing purposes,

ensuring that inherited permissions are correctly

assigned. It confirms that users have the appropriate

access rights, even when those rights are obtained

indirectly through inherited roles, thereby upholding

the integrity of the access control model.

MATCH (p:Permission {id: 4533})<-[:
HAS_PERMISSION]-(r:Role)<-[:HAS_ROLE

*]-(u:User)

RETURN u.id AS user_id;

8. Query for finding users with specific permissions via

role inheritance

Relational Databases

During the process of setting up data management, a

fully functional instance of the MySQL server is

needed. Specifically, five different CSV files exist

within the dataset:

• Permissions.csv

• Users.csv

• User roles.csv

• Permissions csv.csv

• Constraints.csv

Among these, each file is sequentially imported into

the MySQL Server. The server then converts them into

different database tables. It does more than just an

importation; it also provides detailed schema definitions

for each of the created tables, such as defining data
types, column characteristics, and relations among fields

across tables.

Constraint Implementation

The import process is enhanced by the implementation

of various constraints, such as:

• Primary keys

• Foreign keys

• Unique constraints

These constraints are crucial in the preservation of

data integrity and consistency. They are well applied in

ensuring that the database conforms to the rules for

referential integrity, averting anomalies, and ensuring

relationships between tables properly mirror the base

data model.

Database Visualization

An entity-relationship diagram in Fig. (3) incorporates

and represents the complex interrelations of the database.

In essence, the ER diagram is a full-form graphical

representation that maps out what each table represents

and the relationships between them.

Fig. 3: ER-Diagram

Kriti Srivastava et al. / Journal of Computer Science 2024, 20 (12): 1744.1752

DOI: 10.3844/jcssp.2024.1744.1752

1749

The elements are interrelated in an ER diagram

schematic representation, through which one obtains:

 A well-organized and clear description of the

architecture of the database

 Enable deep understanding of the data model

 Insight into the logical flow of information within

the system

This visualization is critical for both the design phase

and ongoing database management, as it allows for:

 Identification of potential issues

 Optimization of database performance

Query execution and analysis retrieval of users with

Specific Permissions One of the main issues it addresses

is how to determine the users who have been assigned a

particular privilege. In this regard, it deals with the direct

privileges of the user but not those inherited through the

associated roles. It would be very critical to confirm that

a user is rightfully allocated permission; this shall be in

addition to being very beneficial when carrying out user
system access audits. It clearly defines who is to have

what and how much of the specific resources are to be

made available for each of the nominated users based on

the access control policy implemented when this query is

executed in MySQL.

SELECT DISTINCT ur.user_id
FROM UserRoles ur

JOIN RolePermissions rp ON ur.role_id = rp .role_id

JOIN Roles r ON ur.role_id = r.id

LEFT JOIN Roles parent ON r.parent_role_id

= parent.id

LEFT JOIN RolePermissions prp ON parent.id

= prp.role_id

WHERE rp.permission_id = ’1’ OR prp.

permission_id = ’1’;

9. Query for retrieving users with specific permissions

Listing Roles Inherited from a Specific Role A useful

query should include all the roles that inherit rights from
a specific parent role. This query is very important in

understanding the hierarchy of roles in the RBAC. It

allows the system administrator to understand how

permissions are propagated across inherited roles,

ensuring the correctness of the role hierarchy with all the

inherited rights.

SELECT @@GLOBAL.MAX_EXECUTION_TIME,
@@SESSION.MAX_EXECUTION_TIME;

SET SESSION cte_max_recursion_depth =

1000000000;

WITH RECURSIVE RoleHierarchy AS(

SELECT id, parent_role_id

FROM Roles

WHERE id = ’role_id’
UNION ALL

SELECT r.id, r.parent_role_id

FROM Roles r

JOIN RoleHierarchy rh ON rh.

parent_role_id = r.id)

SELECT id AS role_id FROM RoleHierarchy;

10. Query for listing roles inherited from a specific role

Finding Ancestor Roles of a Specific Role This returns

all roles passed through by any given position, hence

laying a chain to the genealogy and permission

inheritance chain of the role. Such information is useful to

debug and ensure that the role inheritance actually
works. This guarantees that permissions are correctly

inherited by checking the ancestor roles in the access

control architecture.

SET SESSIONcte_max_recursion_depth =1000000000;
WITH RECURSIVE AncestorRoles AS (

SELECT id, parent_role_id

FROM Roles

WHERE id = 3

UNION ALL

SELECT r.id, r.parent_role_id

FROM Roles r

JOIN AncestorRoles ar ON ar.

parent_role_id = r.id)
SELECT parent_role_id AS ancestor_role_id

FROM AncestorRoles

WHERE parent_role_id IS NOT NULL;

11. Query for finding ancestor roles of a specific role

Detecting users missing required prerequisites this

query detects users who are assigned a role but do not pass

prerequisites associated with restrictions. Each role

assignment must be totally compliant with the design of

the RBAC model and, most significantly, with the
governance needs. It is thus that this query also brings out

the enhancement of integrity in role assignment because

it will prevent placing the users under roles for which they

can pose threats to security within the system.

WITH RolePrerequisites AS (
SELECT role_id, prerequisite_role_id FROM

Constraints

WHERE prerequisite_role_id IS NOT NULL)

SELECT DISTINCT ur.user_id, rp.role_id AS

role_without_prerequisite_id, rp.
prerequisite_role_id AS

missing_prerequisite_role_id

Kriti Srivastava et al. / Journal of Computer Science 2024, 20 (12): 1744.1752

DOI: 10.3844/jcssp.2024.1744.1752

1750

FROM UserRoles ur

JOIN RolePrerequisites rp ON ur.role_id = rp.role_id

WHERE NOT EXISTS (

SELECT 1
FROM UserRoles ur2

WHERE ur2.user_id = ur.user_id

AND ur2.role_id = rp.prerequisite_role_id);

12. Query for detecting users missing required prerequisites

Finding users with specific permissions via role

inheritance it can be used to determine who has been

granted some rights by role inheritance. The following is

a query that can be very useful, actually serving as an

audit check to ensure such rights are correctly being

inherited. It guarantees the user really has that right

although these have been achieved by some indirect

inheritance of roles so that the integrity of the access

control model is not at stake.

SELECT DISTINCT ur.user_id
FROM UserRoles ur

JOIN RolePermissions rp ON ur.role_id = rp .role_id

JOIN Roles r ON ur.role_id = r.id
LEFT JOIN Roles parent ON r.parent_role_id

= parent.id

LEFT JOIN RolePermissions prp ON parent.id

= prp.role_id

WHERE rp.permission_id = 4533 OR prp.

permission_id = 4533;

13. Query for searching users with specific permissions

from role inheritance

Results

This section presents a comparative analysis of the

performance between Neo4j and MySQL databases based

on the execution times of various queries related to

RoleBased Access Control (RBAC) which is visible from

Figs. (4-5). This research concentrates on the efficiency

of execution for complex queries, with respect to

hierarchical relationships, recursive operations, and

inheritance of permissions.

Query Execution Time Comparison

Table (1) condenses the execution time of five queries

executed on both graphs as well as relational databases.

The study found that graph-based architecture
particularly excels in the processing of queries that require
deep relationship traversals typical of RBAC models. This

is very evident through huge time differences in recursive
and ancestor retrieval queries where relational databases
either did not complete the query within a reasonable time
or encountered a complete timeout. On the other hand,
graph databases efficiently ran such queries, thus making
them effective in managing the complex relationships
germane to graphs.

Table 1: Comparison of query execution times between Neo4j
and MySQL

Query Neo4j Time (in ms) MySQL Time (in ms)

Query 1 8 16

Query 2 7 – 42 1888000 - failed

Query 3 6 – 9 1800000 - failed

Query 4 1 – 7 32

Query 5 7 – 11 31

Fig. 4: Result of query 4 execution in Neo4j

Fig. 5: Result of query 4 execution in SQL

The results also prove that graph databases are far
better at enforcing the RBAC restrictions, for instance,
identifying users who do not have the prerequisites
required and permission inheritance through role
hierarchies. The efficiency of graph databases in making
such queries quickly without much latency proves its
superiority over relational databases where robust and
dynamic methods of access control are required.

Overall, the findings suggest that Neo4j is a more
appropriate choice for systems that require efficient handling

of complex relationships and hierarchical data structures.
MySQL, with its relational model, struggles to perform at the
same level, particularly in queries that involve deep recursion
or intricate role hierarchies. This performance gap illustrates
the inherent advantages of using a graph database like Neo4j
for implementing advanced access control systems and
managing intricate data relationships.

Discussion

The results indicate a huge performance gap between
Neo4j and MySQL, at least in the case of queries that involve
deep recursion and hierarchical traversal-a scenario most
typical for Role-Based Access Control systems.
Conceptually, Neo4j provides a graph-based architecture
visible in Fig. (6) leads to faster and more efficient handling
of relations, making dynamic access control feasible.

Kriti Srivastava et al. / Journal of Computer Science 2024, 20 (12): 1744.1752

DOI: 10.3844/jcssp.2024.1744.1752

1751

Fig. 6: Nodes and relationship in Neo4j

Indeed, the table and figures illustrate how graph

databases outclass relational databases that either perform

abysmally or fail in strict conditions of high complexity

and execution-time constraints.

Neo4j graph databases support scalability and

flexibility of access, allowing them to suit modern

systems much better where rapid data access is a high

priority, especially when dealing with complex structures.

MySQL's relational model is less flexible and ranges,

especially when dealing with some extremely recursive

operations or multi-level permission hierarchies.

Conclusion

This research underscores the critical differences

between graph databases, such as Neo4j, and traditional

relational databases, like MySQL, in the context of Role-

Based Access Control (RBAC).

By employing a project management case study, we

illustrated that Neo4j significantly outperforms MySQL
in managing complex relationships, offering superior

query processing speed and enhanced flexibility in

representing hierarchical structures and dynamic roles.

While MySQL remains a robust solution, particularly in

scenarios demanding strict and well-defined access

controls, the inherent scalability and adaptability of Neo4j

present compelling advantages for modern, large-scale

RBAC systems.

Looking forward, the integration of graph databases in

RBAC systems holds immense potential for further

exploration, especially in the realm of real-time access

control in dynamic and distributed environments. Future

research could delve into the application of Neo4j in

hybrid systems that combine relational and graph

databases to harness the strengths of both, potentially

leading to more robust, scalable, and adaptable RBAC

frameworks. As organizational data structures continue to

grow in complexity, the role of graph databases in

securing and managing access will only become more

pivotal, driving innovation in access control mechanisms.

Acknowledgment

Thank you to the publisher for their support in the

publication of this research article. We are grateful for the

resources and platform provided by the publisher, which

have enabled us to share our findings with a wider

audience. We appreciate the efforts of the editorial team

in reviewing and editing our work, and we are thankful for

the opportunity to contribute to the field of research

through this publication.

Funding Information

There was no external funding for this article.

Author’s Contributions

Kriti Srivastava: Designed the research plan and

organized the study.

Dhruv Jain, Aarya Kamdar, Anuradha Yeole,

Devam Shah and Sowmya Dadheech: Participated in all

experiments, coordinated the data-analysis and

contributed to the writing of the manuscript.

Ethics

The authors declare no ethical issues.

References

Batra, S., & Tyagi, C. (2012). Comparative Analysis of
Relational and Graph Databases. International
Journal of Soft Computing and Engineering (IJSCE,
2(2), 509–512.

Bechberger, D., & Perryman, J. (2020). Graph Databases
in Action (1st ed.). Manning.
ISBN-10: 9781617296376.

Do, T.-T.-T., Mai-Hoang, T.-B., Nguyen, V.-Q., &
Huynh, Q.-T. (2022). Query-based Performance
Comparison of Graph Database and Relational
Database. The 11th International Symposium on
Information and Communication Technology,
375–381. https://doi.org/10.1145/3568562.3568648

Fan, W. (2012). Graph Pattern Matching Revised for
Social Network Analysis. Proceedings of the 15th

International Conference on Database Theory, 8–21.
https://doi.org/10.1145/2274576.2274578

Gupta, M., & Aggarwal, R. R. (2014). Transforming
Relational Database to Graph Database Using Neo4j.
Proceedings of the Second International Conference
on Emerging Research in Computing, Information,
Communication and Applications, 322–331.

Huang, Y.-W., Jing, N., & Rundensteiner, E. A. (1996).
Effective Graph Clustering for Path Queries in
Digital Map Databases. Proceedings of the Fifth
International Conference on Information and
Knowledge Management - CIKM ’96, 215–222.

 https://doi.org/10.1145/238355.238497

https://doi.org/10.1145/3568562.3568648
https://doi.org/10.1145/2274576.2274578
https://doi.org/10.1145/238355.238497

Kriti Srivastava et al. / Journal of Computer Science 2024, 20 (12): 1744.1752

DOI: 10.3844/jcssp.2024.1744.1752

1752

Jain, M., Khanchandani, A., & Rodrigues, C. (2023).

Performance Comparison of Graph Database and

Relational Database.

https://doi.org/10.13140/RG.2.2.27380.32641

Khan, W., Ahmed, E., & Shahzad, W. (2017). Predictive

Performance Comparison Analysis of Relational and

amp; NoSQL Graph Databases. International

Journal of Advanced Computer Science and

Applications, 8(5).

 https://doi.org/10.14569/ijacsa.2017.080564

Kotiranta, P., Junkkari, M., & Nummenmaa, J. (2022).

Performance of Graph and Relational Databases in

Complex Queries. Applied Sciences, 12(13), 6490.

https://doi.org/10.3390/app12136490

Medhi, S., & Baruah, H. (2017). Relational Database and

Graph Database: A Comparative Analysis. Journal of

Process Management. New Technologies, 5(2), 1–9.

https://doi.org/10.5937/jouproman5-13553

Nguyen, V.-Q., & Kim, K. (2017). Estimating the

Evaluation Cost of Regular Path Queries on Large

Graphs. Proceedings of the Eighth International

Symposium on Information and Communication

Technology, 92–99.

 https://doi.org/10.1145/3155133.3155160

Sharma, M., Sharma, V. D., & Bundele, M. M. (2018).

Performance Analysis of RDBMS and No SQL

Databases: PostgreSQL, MongoDB and Neo4j. 2018

3rd International Conference and Workshops on

Recent Advances and Innovations in Engineering

(ICRAIE), 1–5.

 https://doi.org/10.1109/icraie.2018.8710439

Sholichah, R. J., Imrona, M., & Alamsyah, A. (2020).

Performance Analysis of Neo4j and MySQL

Databases using Public Policies Decision Making

Data. 2020 7th International Conference on

Information Technology, Computer, and Electrical

Engineering (ICITACEE), 152–157.

 https://doi.org/10.1109/icitacee50144.2020.9239206

Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., &

Wilkins, D. (2010). A Comparison of a Graph

Database and a Relational Database: A Data

Provenance Perspective. Proceedings of the 48th

Annual Southeast Regional Conference, 1–6.

 https://doi.org/10.1145/1900008.1900067

https://doi.org/10.13140/RG.2.2.27380.32641
https://doi.org/10.14569/ijacsa.2017.080564
https://doi.org/10.3390/app12136490
https://doi.org/10.5937/jouproman5-13553
https://doi.org/10.1145/3155133.3155160
https://doi.org/10.1109/icraie.2018.8710439
https://doi.org/10.1109/icitacee50144.2020.9239206
https://doi.org/10.1145/1900008.1900067

