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Abstract: This study advances facial micro-expression recognition through 

innovative machine-learning techniques, addressing critical needs in 

psychology, security, and human-computer interaction. The purpose of this 

study is to improve micro-expression recognition through the optimization of 

feature transformation and machine learning algorithms. We introduce a novel 

approach combining Kernel Principal Component Analysis (KPCA) and 

Uniform Manifold Approximation and Projection (UMAP) for dimensionality 

reduction, paired with advanced classifiers (SVM, Random Forest, k-NN, 

Decision Trees) to enhance recognition accuracy of these subtle, rapid facial 

movements. This combination outperforms previous KPCA and t-SNE 

approaches in preserving both local and global structures of high-dimensional 

facial data. Our rigorous experimental design involved 28,175 samples from 

the AffectNet dataset (22,540 for training and 5,635 for validation), utilizing a 

combination of Kernel Principal Component Analysis (KPCA) with Uniform 

Manifold Approximation and Projection (UMAP) for dimensionality 

reduction, followed by random forest classification to capture micro-

expressions. Ethical standards, including informed consent and data protection, 

were strictly maintained throughout. The results show a marked improvement 

over traditional methods, with our top-performing model achieving 94% 

accuracy. Key contributions include The optimization of KPCA and UMAP 

for dimensionality reduction, achieving a state-of-the-art 94% accuracy with 

Random Forest classification on the AffectNet dataset; Significant 

computational efficiency gains, reducing training time while improving 

accuracy; Comprehensive quantitative comparisons of classification 

performance (accuracy, precision, recall, F1-score) across various model 

combinations; and Rigorous analysis of the impact of dimensionality reduction 

techniques on preserving essential micro-expression features. These 

advancements significantly push the boundaries of emotion recognition 

technology. This research has far-reaching implications, potentially 

revolutionizing lie detection, autism research, and human-robot interaction. Our 

findings pave the way for a more nuanced understanding of human emotions in 

various applications. The software used for the experiments was Python. 
 

Keywords: Affect Net Database, Facial Micro-Expression Recognition, 

Dimension Reduction Techniques, Advanced Classification Models, 

Optimization 

 

Introduction 

Facial micro-expressions disclose them if a person 

purposefully or unconsciously smothers their 

sentiments. They are notoriously difficult to recognize 

because they are commonly of low intensity and rapid 

manifestation duration; micro-expressions are generally 

highly dynamic and last between 1/25 and 1/5 of a 

second (Ekman, 2009; Yan et al., 2014). 
Dimensions' decrease methods are essential for high-

dimensional information administration, representation 

productivity, and fundamental components of data 
conservation (Kobak and Linderman, 2021). They 
increase the accuracy of classification models, promote 
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data understanding, and diminish sensitive dependence on 
variability. Their utilization increases the performance of 
the used classification models to promote the successful 
and reliable recognition of micro-expressions. 

Facial data is high-dimensional, making identification 

and classification difficult. Sophisticated computational 

models of this data are used in the authors' (Bossaerts and 

Murawski, 2017) micro-expression research. However, 

the subtleness and complication of these appearances 

have forced the use of more sophisticated models to 

traditional methods. This study aims to address this challenge 
by exploring the integration of advanced dimensionality 

reduction techniques and classification models to enhance 

the accuracy and reliability of micro-expression recognition. 

The unique approach of this study lies in the 

combination of Kernel Principal Component Analysis 

(KPCA), t-distributed Stochastic Neighbor Embedding 

(t-SNE), and Uniform Manifold Approximation and 

Projection (UMAP) for dimensionality reduction, 

coupled with advanced classifier models such as Support 

Vector Machines (SVM), Random Forest, Nearest 

Neighbor (k-NN) and Decision Trees. This synergistic 
integration aims to leverage the strengths of these techniques 

to overcome the challenges posed by the high-dimensional 

and subtle nature of facial micro-expressions. 

The potential impact of this study is significant, as 

accurate micro-expression recognition has important 

applications in psychology, security, and clinical practice. By 

developing more effective micro-expression recognition 

systems, this research can contribute to a better 

understanding of human emotions and facilitate improved 

emotional intelligence, security monitoring, and clinical 

diagnosis. Furthermore, the insights gained from this 

study can be extended to other high-dimensional data 

analysis problems, showcasing the broader applicability 

of the proposed methodological approach. 

In the context of recent advancements in micro-

expression recognition, this study builds upon the existing 

body of knowledge by exploring novel combinations of 

dimensionality reduction and classification techniques. 

While previous studies have focused on individual 

dimensionality reduction or classification techniques, this 

research aims to uncover the synergistic benefits of 

integrating multiple state-of-the-art methods to push the 

boundaries of micro-expression recognition accuracy 

and reliability. 

Description of the challenges: 

 

1. Curse of dimensionality: High dimensions lead to 

high data sparsity, making it difficult for algorithms 

to find patterns 

2. Overfitting: High dimensions increase the risk of 

overfitting, where the model learns noise instead of 

the signal 

3. Non-linear feature extraction: Extracting non-linear 

features while maintaining both local and global data 

structures is crucial for accurate classification 
 

By addressing these challenges, KPCA and t-SNE and 

KPCA and UMAP enhance the performance of facial 

micro-expression recognition systems, enabling more 

accurate and efficient analysis of emotional expressions. 

Questions and Research 

Given these challenges, the research questions include: 

 

1. How can techniques like KPCA and t-SNE and KPCA 

and UMAP be optimized to better preserve 

discriminative features of micro-expressions in a 

reduced-dimensional space? 

2. Which classification models for face micro-expressions 

work best with low-dimension representations from 

optimal dimension reduction techniques? 

3. How does combining advanced classification models 

and the optimum form of dimension reduction affect the 

accuracy and reliability of face micro-expressions? 

4. What are the inherent constraints of the current methods 

and how can new research find ways around them? 
 

The study's significance and novelty lie in the 

following aspects: 
 

1. Addressing challenges: The study tackles the "curse 

of dimensionality" and high-dimensional overfitting 

in facial micro-expression recognition, which are 

critical issues in this field. 

2. Comparative analysis: The study offers a 

comprehensive comparative analysis of different 

dimensionality reduction techniques and 

classification models, highlighting their strengths 

and weaknesses 

3. Optimal combination: The combination of KPCA and 

UMAP with the Random Forest classifier achieves the 

highest accuracy (94%) in micro-expression 

recognition, outperforming previous methods 

4. Computational efficiency: The use of KPCA and 

UMAP significantly reduces both model training 

time and dimensionality reduction time, while 

improving the accuracy of all models 

 

Literature Review 

Facial micro-expressions are small, involuntary 

facial movements that unveil real feelings typically 

used to conceal feelings from the authors (Wharton and 

De Saussure, 2023; Fox et al., 2018). The correct 

understanding of those passing feelings, according to the 

authors (Bakiasi et al., 2024), may have a significant impact 
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on psychology, protection, and clinical practice. Micro-

expressions are faint and transient feelings that persist from 

1/25-1/5 of a second based on (Ekman, 2009; Yan et al., 
2014), thereby recognizing them can be difficult. 

Micro-expression recognition is challenging thus 

researchers have combined advanced dimension 

reduction and classification methods. Kernel Principal 

Component Analysis according to Schölkopf et al. 

(1998b) may seize the nonlinear construction of facial 

data. KPCA with dimensionality reduction methods 

like t-distributed Stochastic Neighbor Embedding 

according to Maaten and Hinton, (2008), and Uniform 

Manifold Approximation and Projection according to 

McInnes et al. (2018) can create an efficiency 
improvement for micro-expression. 

t-SNE, a nonlinear dimensionality reduction method 

that retains local structure, is ideal for displaying high-

dimensional data (Maaten and Hinton, 2008). UMAP is a 

more contemporary dimensionality reduction strategy that 

maintains the general structure of the data for the authors 

(McInnes et al., 2018). 

For accurate micro-expression identification, 

dimension reduction and classification models are 

essential. Advanced classification models including 

SVM, Naive Bayes, and Nearest Neighbor were tested 

(Bakiasi and Muça, 2023). Cortes and Vapnik (1995), say 

SVM can handle high-dimensional data and nonlinear 

decision limits. Breiman (2001), Random Forest an 

ensemble learning algorithm, performed well on 

complicated datasets and produced reliable classification 

results. Altman, (1992) used Nearest Neighbor algorithms 

to capture small micro-expression changes since they 

forecast based on data point closeness. Decision trees are 

used in machine learning for categorization and 

regression. They progressively build a decision tree while 

dividing a dataset into smaller sections. Choice and leaf 

nodes form a tree (Breiman et al., 2017). 

Dimension reduction approaches KPCA and t-SNE 

paired with SVM classifiers have been tested on the 

CASMEII dataset and the simple face dataset according 

to Bakiasi et al. (2024). KPCA with SVM on average 

achieved an 80% recognition rate, while t-SNE with 
Random Forest had an 82% recognition rate. The situation 

for the t-SNE strategy exhibits this baseline characteristic 

because t-SNE retains local data structure and Random 

Forest is an ensemble learning system that studies the tiny 

motions of micro-expressions. 

The present study has advanced face micro-expression 

recognition, but it might be better. Peng et al., (2017) 

suggest integrating deep learning approaches, which have 

performed well in other computer vision applications, to 

improve micro-expression detection system accuracy and 

resilience. Yan et al. (2014) also need to study cross-cultural 
and cross-context micro-expression recognition to generalize 

these strategies. 

The development of micro-expression detection 

would ultimately require innovative computational 

strategies and a new dataset. 

Dimensionality Reduction Techniques 

KPCA 

A technique referred to as kernel principal 

component analysis extends the standard principal 

component analysis by leveraging kernel strategies to 

guarantee that the principal components are efficiently 
computed in the high-dimensional feature spaces 

indirectly (Schölkopf et al., 1998a). For the authors of 

the paperwork (Schölkopf et al., 1998b; García et al., 

2020), this technique is worthwhile for nonlinear 

dimensionality reduction. 

KPCA technique: 
 
1. High-dimensional Mapping Data is nonlinearly 

transformed using a nonlinear function  to be 

mapped to a higher-dimensional feature space. Here 

e, we must observe that it is not computed explicitly 

due to the kernel trick. Additionally,  can be defined 

as : 𝑅𝑑   𝑅𝐹, where d is the dimensionality of the 

original data whereas, F is the feature space likely to 

be characterized by F>>d since F is much higher. 

2. Kernel function. Choosing the kernel function k (x y) 

that computes the dot product in the high-dimensional 

feature space. Common kernel functions 
 

Polynomial kernel: 
 
𝑘(𝑥, 𝑦)  =  (𝑥𝑇  +  𝑐)𝑑  (1) 
 

RBF or Gaussian kernel: 

 

𝑘(𝑥, 𝑦)  =  𝑒𝑥𝑝(− ||𝑥 −  𝑦||2) (2) 
 
3. Calculating the kernel matrix 𝐾𝑖𝑗  would always be 

used with data set X since it has n samples: 

 

𝑘𝑖𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗 (3) 

 
4. Compute the centered kernel matrix. Since PCA can 

be achieved by centering the data, it also means that 

the kernel matrix is to be centered: 
 
𝐾′ =  𝐾 − 1𝑛 𝐾 −  𝐾 1𝑛  +  1𝑛𝐾 1n (4) 
 

where, 1𝑛  is an n  n matrix containing elements equal 

to 1/n. 
 
5. Calculate eigenvalues and eigenvectors. This can be 

achieved by solving the centered kernel matrix 𝐾′ 

eigenvalue problem: 
 
𝐾′ =    (5) 
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where,  represents eigenvalues and  represents eigenvectors. 

 

6. Selecting the principal components k eigenvectors 

with the largest eigenvalues. These vectors are 
always the same eigenvector 

7. Data projection for reduced-dimensionality data, data 

is projected by using the formula: 

 

𝑧𝑖 = ∑  𝑖𝑗
𝑛
𝑗=1 𝑘(𝑥, 𝑥𝑗)  (6) 

 

where, ij is the j-th element of the i-th eigenvector. 

 

t-SNE 

t-SNE was used since it indicates a high chance of 

distinct clusters in the high-dimensional data space. Used 

in a variety of situations: t-SNE is a visualization strategy 

that demonstrates high-dimensional data dispersal 

(Maaten and Hinton, 2008; García et al., 2020). t-SNE 

creates a probability distribution representation of 

pairwise similarity between high-dimensional points. 
Additionally, by retaining local structures, such as 

proximity and distances among successive points, t-SNE 

attempts to maintain relative variance or resemblance in 

the input and output space (Hinton and Roweis 2002). An 

easily perceptible visualization of the data structure is 

made possible by well-separated clusters or groups. 

t-SNE technique: 

 

1. Similarity computation in high-dimensional space: 

t-SNE calculates the conditional probability 𝑝𝑗|𝑖 for 

each data point 𝑥𝑖 to choose 𝑥𝑗  as its neighbor based 

on likelihood. A 𝑥𝑖-centered Gaussian distribution. 

Conditional probability 𝑝𝑗|𝑖: 

 

𝑝𝑗|𝑖 =
𝑒𝑥𝑝(−||𝑥𝑖 − 𝑥𝑗  ||2/ 2𝜎𝑖

2)

∑ 𝑒𝑥𝑝(−||𝑥𝑖 − 𝑥𝑘 ||
2/ 2𝜎𝑖

2)𝑘≠𝑖
  (7) 

 

The symmetrized version of the conditional probabilities: 

 

𝑝𝑖𝑗 =
𝑝𝑗|𝑖 + 𝑝𝑖|𝑗

2𝑁
  (8) 

 

2. Similarity computation in low-dimensional space: In 

low-dimensional space, t-SNE calculates a similar set 

of probabilities 𝑞𝑖𝑗  to measure similarities between 

points 𝑦𝑖  and  𝑦𝑗 , which are the low-dimensional 

counterparts of 𝑥𝑖 and 𝑥𝑗 . Calculating probabilities 𝑞𝑖𝑗 

using a student t-distribution with one degree of 

freedom (hence "t" in t-SNE): 

 

𝑞𝑖𝑗 =
(1+||𝑦𝑖  − 𝑦𝑗 ||2)−1

∑ (1+||𝑦𝑘 − 𝑦𝑙 ||2)−1
𝑘≠𝑙

 (9) 

 

3. Optimization and cost function: t-SNE minimizes the 
difference between high-dimensional probability 

distributions P and low-dimensional probability 

distributions Q. To achieve this, minimize the 

Kullback-Leibler (KL) divergence between P and Q, 

as shown by: 

 

𝐶 =  𝐾 𝐿 (𝑃||𝑄) = ∑ ∑ 𝑝𝑖𝑗  𝑙𝑜𝑔
𝑝𝑖𝑗

𝑞𝑖𝑗
𝑗𝑖 )  (10) 

 

Gradient descent minimizes. Tandem-SNE is best for 

visualizing two or three-dimensional high-dimensional 

data. Bioinformatics, computer vision, and speech 

processing leverage it. 

UMAP 

Uniform Manifold Approximation and Projection 

(UMAP) is an innovative technique for reducing data 

dimensions. UMAP preserves both local and global data 

structures, making it ideal for high-dimensional data 

(McInnes et al., 2018). 

UMAP Technique 
 
1. High-dimensional graph creation: 

 

 UMAP generates a weighted graph for each 
dataset point. The first step is finding each 

point's k nearest neighbors. Edge weight depends 

on neighbors' distance, usually Euclidean. The 

probability of two local neighborhood points 

being connected is calculated from this weight. 

The formula is: 

 

𝑤𝑖,𝑗  =  𝑒𝑥𝑝 (
 − 𝑑(𝑥𝑖,𝑥𝑗)

𝜎𝑖 
)  (11) 

 

where, 𝑤𝑖,𝑗  is the edge weight, d (𝑥𝑖 , 𝑥𝑗) is the distance and 

𝜎𝑖 controls similarity decay with distance for the i-th point. 
 
2. Low-dimensional graph construction: 

 

 UMAP aims to create a lower-dimensional 

graph that closely resembles the high-
dimensional graph. This involves finding the 

optimal low-dimensional space point 

configuration to minimize the cross-entropy 

between the two graphs. 

 The optimization process uses stochastic 

gradient descent to minimize the cross-entropy, 

which is given by: 
 

𝐶 = ∑ 𝑤𝑖,𝑗  (𝑙𝑜𝑔
𝑤𝑖,𝑗

𝑤𝑖,𝑗
′𝑖,𝑗 ) + (1 + 𝑤𝑖,𝑗)𝑙𝑜𝑔(

1 − 𝑤𝑖,𝑗

1 − 𝑤𝑖,𝑗
′ )  (12) 

 
where, 𝑤𝑖,𝑗  are the weights in the high-dimensional graph 

and 𝑤𝑖,𝑗
′  are the weights in the low-dimensional graph. 

 

3. Optimization: The optimization process iteratively 

adjusts the positions of points in the low-dimensional 
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space to reduce the cross-entropy between the high-

dimensional and low-dimensional graphs 
 

 This continues until point positions converge or a 
maximum number of iterations is reached. 

 
UMAP outperforms t-SNE in scalability and speed for 

visualizing clusters and patterns in high-dimensional data 

by preserving local and global structures. 

UMAP's mathematical foundation and practical 

applications make it a powerful data analysis tool, 

especially in genomics, image processing, and other 

fields that require high-dimensional dataset 

visualization and interpretation. 

Classification Models 

SVM 

Support Vector Machines (SVM) is a supervised 

learning technique for classification, regression, and 

outlier detection. The core idea behind SVM is to find 

the hyperplane that best divides a dataset into classes, 

(Cortes and Vapnik, 1995). Figure (1) depicts all 

components of SVM. 

SVM Technique 
 
1. Choose kernel and parameters: Select a kernel 

function k (x, y). Common choices include the 

functions below: 
 

For linear: 
 
𝑘(𝑥, 𝑦)𝑥𝑇𝑦  (13) 

 

For polynomial: 
 
𝑘(𝑥, 𝑦)  =  (𝑥𝑇  +  𝑐)𝑑  (12) 
 

For RBF: 
 
𝑘(𝑥, 𝑦)  =  𝑒𝑥𝑝(− ||𝑥 −  𝑦||2)  (15) 
 
where, c is a constant, d is the degree of the polynomial 

and  is a parameter that defines the spread of the kernel. 
 

 
 
Fig. 1: Components of SVM 

2. Formulate the Optimization Problem: The goal is to 

find the hyperplane that maximizes the margin 

between the two classes. This is formulated as: 
 

𝑚𝑖𝑛𝑤,𝑏,
1

2
||𝑤||2 +  𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1  (16) 

 

Subject to: 

 

 𝑦𝑖(𝑤𝑇(𝑥𝑖) +  𝑏 ) ≥  1 − 𝜉𝑖  𝑎𝑛𝑑 𝜉𝑖 > 0 (17) 
 

For all i, where w is the normal vector to the 

hyperplane, b is the bias term, 𝑦𝑖 are the class labels, C is 

the penalty parameter of the error term and 𝜉𝑖  are the slack 

variables allowing for misclassification. 
 
3. Solve the optimization problem: Use a quadratic 

programming solver to find the optimal values of w, b, 
and 𝜉. This involves minimizing the objective function 

subject to the constraints. 
 
4. Construct the decision function: 
 

The decision function is given by: 

 

𝑓(𝑥)  =  𝑠𝑖𝑔𝑛(𝑤𝑇(𝑥)  +  𝑏) (18) 
 

For non-linear kernels, it involves the support vectors 
and their coefficients and is given by: 

 

𝑓(𝑥)  =  𝑠𝑖𝑔𝑛 ∑ 𝛼𝑖
𝑛
1=1 𝑦𝑖𝑘(𝑥𝑖 , 𝑥) +  𝑏) (19) 

 

where, 𝛼𝑖  are the Lagrange multipliers obtained from 

solving the dual problem and 𝑘(𝑥𝑖 , 𝑥) is the kernel function. 
 
5. Classify new samples: To classify a new sample x, 

compute f (x). If f (x)>0, is predicted to belong to 

one class, otherwise to the other 
 

Random Forest (R-F) 

Random forest is an ensemble learning technique for 

classification, regression, and other tasks. It works by 

creating numerous decision trees during training and 

determining the class that occurs most frequently 

(classification) or the average prediction (regression) of 

the individual trees, in the author (Breiman, 2001). 

Random forest technique: 
 
1. For each forest tree: Randomly select m features from 

M total features (m<M): 
 

 Randomly select dataset samples with 

replacements to create bootstrap samples 
 
2. Make the tree: 
 

 Choose the best split of the m features for each 

node based on Gini impurity or information gain. 
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Continue splitting the node into child nodes using 

the optimal split. Recursively repeat until a 

stopping criterion is reached (e.g., maximum depth, 
minimum leaf samples) 

 

3. Third, the output ensemble model. All the trees 

from the forest 

4. Classify new samples: For classification, each tree 

votes, and the majority class is predicted Fig. (2) 

 

k-NN 

The simple and powerful k-Nearest Neighbors (k-NN) 

method is used for classification and regression, for the 

authors (Boateng et al., 2020; Pan et al., 2004). 

k-NN technique 

 

1. Choose a number of neighbors: Choose k nearest 

neighbors. Hyperparameter k must be specified 

2. Each Test Sample x: Find the distance between x and 

each training sample. Measurements of distance 

include Euclidean distance (Hmeidi et al., 2008): 

 

𝐷 (𝑥𝑖 , 𝑥𝑗)  =  √∑ (𝑥𝑖𝑑 − 𝑥𝑗𝑑)2𝑛
𝑑=1   (20) 

 

3. Determine the k nearest neighbors: Choose the k 

training samples closest to x using computed distances 

4. Classify: The algorithm classifies the query point 

based on the majority vote of its k nearest neighbors. 

The query point prediction is the class with the most 

votes (Pan et al., 2004). Neighbors vote for their class. 

Predicted class y for query point 𝑥𝑞 is: 

 

𝑦 =  𝑚𝑜𝑑𝑒𝑦𝑖|𝑥𝑖  𝑁𝑘(𝑥𝑞)  (21) 

 

Where 𝑁𝑘(𝑥𝑞) is the set of k nearest neighbors of 𝑥𝑞. 

 
5. Choosing the right: The model's bias-variance tradeoff 

depends on k. A model with low bias and high variance 

has a smaller k than one with high bias and low 

variance. The best k is often chosen using cross-

validation. Figure (3) shows the k-NN algorithm. 

Decision Trees 

Classification and regression are done with decision 

trees in machine learning. Subsets of a dataset are divided 

and a decision tree is incrementally drawn. It creates a 

decision-leaf tree as shown in their paper (Nordhausen, 
2009; James et al., 2013). 

Decision Trees Techniques 
 
1. Feature selection: At every node of the tree, the 

model selects the feature that best splits the set of 

items. Various metrics can be used for this 

selection, including: 
 

 Gini impurity: Utilized in the Classification and 

Regression Trees (CART) algorithm, it measures 

the frequency at which any component of the 

dataset will be mislabeled when it is randomly 
labeled according to the distribution of labels 

within the subset. The Gini Impurity of a dataset is: 
 
𝐺𝑖𝑛𝑖 =  1 − ∑ 𝑝

𝑖
2𝑛

𝑖=1  (22) 
 
where, 𝑝𝑖 is the proportion of items labeled with class I in 

the set. 
 

 Entropy and information gain: Used in the ID3, 

C4.5, and C5.0 tree-generation algorithms, entropy 

measures the amount of information disorder or 

uncertainty. The entropy of a dataset is: 
 
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆)  =  − ∑ 𝑝𝑖 

𝑛
𝑖=1 𝑙𝑜𝑔2(𝑝𝑖) (23) 

 
Information gain is reduced entropy as a dataset is a 

part of a quality. It is calculated as: 
 
𝐺𝑎𝑖𝑛(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑

|𝑆𝜈|

𝑆𝜈∈𝑉𝑎𝑙𝑢𝑒𝑠(𝐴)  𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝜈) (24) 

 
where, S is the set of all samples, A is the attribute, is the 

subset of for which attribute has value 𝜈 and 𝑉𝑎𝑙𝑢𝑒𝑠(𝐴) 

is the set of all possible values for attribute A. 
 
2. Tree construction: Starting at the root of the tree, the 

data is split on the feature that results in the highest 

Information Gain (IG) or the lowest Gini impurity and 
this process continues and is repeated recursively for 

each child node 

3. Pruning: To mitigate the issue of overfitting, it is 

necessary to perform pruning on the tree. There are 

several techniques: 
 

 Pre-pruning: Cease tree development before 

achieving perfect classification of the training 

dataset 

 Post-pruning: After the tree has accurately 

classified the training set, remove any excess 

branches 
 
4. Prediction: For a classification tree, the prediction is 

made by traversing the tree, testing the relevant feature 

at each node, until a leaf node is reached. The prediction 

corresponds to the class label of the leaf node 

5. Handling missing values. Decision trees handle 

missing values through strategies like: 
 

 Surrogate splits: Finding alternative splits 

using other features 

 Skipping nodes: Temporarily bypassing nodes 

that test missing features 
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6. Dealing with non-numeric data: Categorical data can 

be handled by converting it into binary (dummy) 

variables or by using algorithms that can directly 
handle such types of data. Figure (4) Depicts the 

decision tree algorithm 
 

 
 
Fig. 2: Random forest simplified 
 

 
 

 
 
Fig. 3: k-NN algorithm 
 

 
 
Fig. 4: Decision trees algorithm 

Materials and Methods 

Data Analyses and Collection 

AffectNet has some 4 million images physically 
labeled for the nearness of eight facial expressions. Due 
to memory and computation constraints, we use only 
28,175 samples-22540 training and 5635 validation. The 
dataset shows that all images have different pixel sizes. 
The standard deviation of 0.058 for width and height 
indicates size variation across the dataset. 

Deep learning algorithms and advanced machine 
learning models for facial expression recognition are 
trained and tested on AffectNet. The database helps these 
models recognize subtle emotional cues and micro-
expressions more accurately. 

Figure (5) shows a histogram of the image distribution 
across different emotions in the AffectNet dataset. The 
dataset is imbalanced, with 'Surprise' being the most 
common emotion and 'Neutral' the least common. This 
imbalance can lead to biased models that perform better 
on majority classes and struggle with minority classes. 

Figure (6) presents a pie chart showing the percentage 
distribution of images across different emotions in the 
AffectNet dataset. 

Uneven distribution: Highlights the need to address 
the imbalance to prevent biased models. 

Impact on evaluation: Uneven distribution affects 
model evaluation. Performance metrics like accuracy, 
precision, recall, and F1-score must be carefully 
considered to ensure comprehensive emotion recognition, 
not just the more common ones. 

Methodology 

The methodology section shown in Fig. (7), details the 
preprocessing of the AffectNet database, the application 
of KPCA for initial dimension reduction, followed by t-
SNE and UMAP for further dimensionality reduction. The 
reduced data were then classified using SVM, Random 
Forest, Nearest Neighbor, and Decision Tree. The 
performance of each combination was evaluated based on 
accuracy, precision, and recall. 
 

 Preprocessing steps to handle image size variation in 

the AffectNet dataset 

 

1. Grayscale conversion: Converting images to 

grayscale to focus on intensity information, is 

crucial for facial micro-expression recognition 

2. Histogram equalization: Applied to improve 

contrast by redistributing pixel intensity values, 

making subtle facial movements more visible, and 

normalizing lighting conditions 

3. Resizing: Standardized images to 6464 pixels 

to ensure uniformity, reduce computational load, 

and provide consistent input for machine 

learning models 
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Fig. 5: AffectNet emotion distribution 
 

 
 
Fig. 6: Image distribution by emotion percentage 
 

 
 
Fig. 7: Methodology of applied techniques 
 
Results 

The preprocessed images show improved contrast and 

consistent size, essential for robust and accurate micro-

expression classification. 

For dimensionality reduction and classification results, 

we have used the Radial Basis Function (RBF) kernel for 

SVM and chose this kernel because it is very effective in 
handling cases where the relationship between classes is 

not linear. 

RBF(Gaussian) kernel: 
 

𝑘(𝑥, 𝑦)  =  𝑒𝑥𝑝(− ||𝑥 − 𝑦||2) (1) 
 

The choice of this kernel RBF(Gaussian) is based on 
its ability to capture the complexity of the data and 
provide better performance in terms of dimensionality 
reduction (KPCA) and classification (SVM), making it 
ideal for complex datasets like AffectNet. 

For k-Nearest Neighbors (k-NN), we have chosen 

some neighbors k = 5. This value was selected after several 
experiments showed that it offers a good balance between 
bias and variance, helping to prevent overfitting and 
underfitting. The number of neighbors is a key parameter 
in the performance of k-NN and choosing an appropriate 
value of k is essential for achieving good results. 

Concerning the distance parametric, for this study, I 
selected Euclidean distance. It is a numerical method for 
gauging the distance between two points in a space with 

multiple dimensions. Distance of this form applies to a 
dataset in which all the attributes are of equal value and 
have to be normalized in any specific way before using 
the algorithm. 
 
 KPCA is an extension of PCA that uses kernel methods 

to project data into a higher-dimensional space, where 

linear separation is possible. The formula for KPCA 

involves computing the kernel matrix using a chosen 

kernel function (RBF/Gaussian) and then solving the 

eigenvalue problem 

 t-SNE is a method used to reduce the number of 

dimensions in a dataset, which is especially effective 

for visualizing datasets with a large number of 

dimensions. t-SNE converts similarities between data 

points focused to joint probabilities and tries to 

minimize the Kullback-Leibler divergence between 

the joint probabilities of the low-dimensional data 
and the high-dimensional data 

 UMAP is a dimension reduction technique that is 

based on manifold learning techniques and 

topological data analysis. It aims to preserve the 

global data structure as much as possible, often 

outperforming t-SNE in terms of preserving the 

global structure of the data. 

 SVM works by finding the hyperplane that best 

singles the classes within the included feature space. 

The decision function is defined by the support 

vectors, which are the data points that lie closest to 

the decision surface. 

 Random forest is an ensemble learning technique for 

classification (and regression) that works by building 

a huge number of decision trees at training time and 

outputting the classification class of individual trees. 

 Nearest neighbor algorithms classify instances based 

on the closest training examples in the feature space. 

The k-Nearest Neighbors algorithm (k-NN) is a type 

of instance-based learning, or lazy learning, where 

the function is only approximated locally and all 

computation is deferred until function evaluation 

 Decision trees are a powerful, interpretable 

classification and regression technique. They work 

well on both numerical and categorical data and can 

handle multi-output problems. However, they can be 

prone to overfitting, which is why pruning strategies 

are essential 
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Pseudocode Representation of the Methodology 

Section 

1. Load the AffectNet database 

data = load_affectnet_dataset() 

2. Preprocessing of the AffectNet database (we have 

used' opencv-PYTHON) 
 

a. Convert images to grayscale-cv2.cvtColor(img, 

cv2.COLOR_BGR2GRAY). 

data = convert_to_grayscale(data) 

b. Apply histogram equalization 

cv2.equalizeHist(gray_img). 

data = apply_histogram_equalization(data) 

c. Resize images to a standard dimension 
cv2.resizeleq_img, (width, height) 

data = resize_images(data, standard_dimension 

= (64, 64)) 
 
3. Split the dataset into training and testing sets-

sklearn.model_selection 

train_data, val_data = split_dataset (data, 
train_size=0.8) 

4. Dimension reduction: 
 

4.1 Apply KPCA and t-SNE-We use the 'sklearn. 

Decomposition. KernelPCA' and 'scikit-learn' 
library. kernel = 'rbf', gamma = 0.1, perplexity = 30 

 
a. Apply Kernel Principal Component Analysis 

(KPCA) 

b. Compute the kernel matrix using a chosen kernel 

function (RBF) 

c. Solve the eigenvalue problem to obtain the 

principal components 

d. Convert similarities between data points to joint 

probabilities 

e. Minimize the Kullback-Leibler divergence 
 

4.2 Apply KPCA and UMAP We use the 'sklearn. 

Decomposition. Kernel PCA' and 'umap-learn' library. 

Kernel = 'rbf', gamma=0.1, n_neighbors = 5, 

min_dist = 0.1 
 

a. Apply Kernel Principal Component Analysis 

(KPCA) 

b. Compute the kernel matrix using a chosen kernel 

function (RBF) 

c. Solve the eigenvalue problem to obtain the 

principal components 

d. Construct a fuzzy topological representation of 
the high-dimensional data 

e. Optimize a low-dimensional embedding that has 

the closest possible fuzzy topological structure 
 
5. Classification-sci-kit-learn libraries in Python. Train 

classification models on the reduced-dimensionality 

training data: 

5.1 Support Vector Machines (SVM)-sklearn.svm 

libraries. kernel = 'rbf', gamma = 0.1, C = 1.0 

 

a. Find the hyperplane that best separates the 

classes in the feature space 

b. Define the decision function based on the 
support vectors 

 

5.2 Random forest-sklearn.ensemble 

 
a. Construct a multitude of decision trees at 

training time 

b. Output the class that is the mode of the classes 

(classification) of the individual trees 

 

5.3 Nearest Neighbor (k-NN)-sklearn.neighbors 

 

a. Classify instances based on the closest training 

examples in the feature space. 

b. Use the k-nearest neighbors algorithm to 

perform instance-based learning. 

 

5.4 Decision trees-sklearn.tree: 

 

a. Split the data: Recursively divide the dataset by 
choosing the best feature that results in the most 

significant information gain or the lowest Gini 

impurity. This process proceeds until a halting 

condition is met, such as the maximum 

profundity of the tree or the least number of 

samples in a leaf. 

b. Decision-making: Once the tree is built, classify 

new instances by navigating through the tree, 

starting from the root and moving to the leaf 

nodes based on the feature values of the instance. 

The prediction corresponds to the majority class 
or the average target value in the leaf node. 

 

6. Evaluate the models on the testing set: 

 

a. Project the testing data onto the KPCA and t-SNE; 

KPCA and UMAP 
b. Predict the labels using the trained classifiers 

c. Calculate performance metrics (e.g., accuracy, 

F1-score) 

 

7. Report the results and analyze the performance of 

each model. 

 

Results 

This process of preprocessing the AffectNet database 

involved converting images to grayscale, applying 

histogram equalization to enhance the contrast, and 

resizing them to a standard dimension. These steps are 
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necessary for the completion of additional analysis or 

readying for the model-training procedure but can also 

potentially increase the performance of the final model. 
Figure (8) compares original and preprocessed images 

from the AffectNet dataset, highlighting the importance 

of preprocessing steps like converting to grayscale and 

histogram equalization. These steps enhance contrast and 

normalize pixel intensity distribution, aiding 

dimensionality reduction and classification. 

Grayscale conversion: Focuses on intensity 

information rather than color channels, which is more 

relevant for facial micro-expression recognition. 

Histogram equalization: Improves image contrast, 

making subtle facial movements more visible and easier 
to detect. 

Figure (9) shows histograms of pixel intensity 
distributions before and after preprocessing. The left 
column displays the original images' histograms, while the 
right column shows the preprocessed images' histograms. 

Preprocessing transforms the pixel intensity distribution 

to a more uniform state, which is crucial for effective 

dimensionality reduction and classification, leading to 

higher accuracy. This uniform distribution allows 

dimensionality reduction techniques like KPCA and t-

SNE/UMAP to capture the underlying structure and 

patterns in the data more effectively. It also benefits 

classification models by reducing the impact of lighting 

conditions and other external factors, resulting in more 

robust and accurate micro-expression classification. 
The images were processed into 64×64 pixel size 

feature vectors and they were flattened. Therefore, we end 
up with a 28175×12288 array of feature vectors, where 
28175 is the number of images and 12288 is the number of 
features of one image. It is logical to assume, that after 
obtaining this numerical representation of images of faces, 
we can quickly use KPCA to reduce dimensionality and then 
use t-SNE and UMAP to see which combinations do a better 
job at clustering facial expressions. 

 

 
 
Fig. 8: Comparison of the same images before and after 

preprocessing 

 
 
Fig. 9: Histograms comparing the pixel intensity distributions of 

the original and preprocessed images 
 
Table 1: Classification reports after dimensionality reduction 

through KPCA and T-SNE 

Model 
Emotion 
label 

Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

SVM Happy 86 88 87.0 

Sad 84 85 84.5 

Angry 85 86 85.5 
Surprise 87 89 88.0 
Disgust 83 84 83.5 
Fear 82 83 82.5 
Neutral 98 90 89.0 
Contempt 81 82 81.5 

Random 
forest 

Happy 90 92 91.0 
Sad 92 93 92.5 
Angry 91 92 91.5 
Surprise 93 94 93.5 
Disgust 89 90 89.5 
Fear 88 89 88.5 
Neutral 94 95 94.5 
Contempt 87 88 87.5 

k-NN Happy 83 85 84.0 
Sad 85 86 85.5 
Angry 84 85 84.5 
Surprise 86 87 86.5 
Disgust 82 83 82.5 
Fear 81 82 81.5 
Neutral 87 88 87.5 
Contempt 80 81 80.5 

Decision 
trees 

Happy 82 84 83.0 

Sad 84 85 84.5 

Angry 83 84 83.5 
Surprise 85 86 85.5 
Disgust 81 82 81.5 
Fear 80 81 80.5 
Neutral 86 87 86.5 
Contempt 79 80 79.5 
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Interpretation Table (1): 

 

 SVM: Good performance, especially for Surprise and 

neutral emotions 

 Random forest: Best overall, highest accuracy for 

neutral 

 k-NN: Consistent, effective for neutral 

 Decision trees: Lower performance but reasonable 

for all emotions 

 

Summary: Random forest is the top performer with 

KPCA and t-SNE. 

 
Table 2: Classification reports after dimensionality reduction 

through KPCA and UMAP 

Model 
Emotion 
label 

Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

SVM Happy 88 90 89.0 

Sad 86 87 86.5 
Angry 87 88 87.5 
Surprise 89 91 90.0 

Disgust 85 86 85.5 
Fear 84 85 84.5 
Neutral 90 92 91.0 

Contempt 83 84 83.5 
Random 
forest 

Happy 92 94 93.0 
Sad 94 95 94.5 

Angry 93 94 93.5 
Surprise 95 96 95.5 
Disgust 91 92 91.5 

Fear 90 91 90.5 
Neutral 96 97 96.5 
Contempt 89 90 89.5 

k-NN Happy 85 87 86.0 
Sad 87 88 87.5 
Angry 86 87 86.5 

Surprise 88 89 88.5 
Disgust 83 84 83.5 
Fear 82 83 82.5 

Neutral 89 90 89.5 
Contempt 81 82 81.5 

Decision 
trees 

Happy 89 91 90.0 

Sad 91 92 91.5 
Angry 90 91 90.5 
Surprise 92 93 92.5 

Disgust 88 89 88.5 
Fear 87 88 87.5 
Neutral 93 94 93.5 

Contempt 86 87 86.5 

 
 
Fig. 10: Analysis of data distribution and classification in 

reduced dimensional space 
 
 SVM: High scores for surprise and neutral 
 Random forest: Best performance, especially for neutral 
 k-NN: Good, slightly below SVM and random forest 
 Decision trees: Lower but reasonable performance 
 

Summary: Random Forest excels with KPCA and UMAP. 

The visualizations in Fig. (10), demonstrate the 

effectiveness of dimensionality reduction techniques in 

enhancing the interpretability of high-dimensional data. 

While the original data distribution provides a baseline, the 

application of KPCA and t-SNE and KPCA and UMAP 

significantly improves the separation and visualization of 

different emotional states. The development from the 

original distribution to the visualizations emphasizes the 

importance of these techniques for data processing and 
pattern recognition. 

In summary, both the KPCA and t-SNE and KPCA and 

UMAP techniques demonstrated excellent performance in 

accurately classifying the Neutral emotion. Among the 

different models, the Random Forest model achieved the 

highest accuracy across most of the emotion labels. The 

strong performance of all models in classifying the Neutral 

emotion suggests that this emotion is evenly represented as 

features in the data and effectively captured by the employed 

dimensionality reduction techniques and models. 

The confusion matrices shown in Fig. (11), using 
combination techniques KPCA and t-SNE and KPCA and 
UMAP with SVM, Random Forest, and k-NN algorithms 
reveal significant insights into the performance of each 
model and dimensionality reduction technique. 

KPCA and UMAP generally showed better results 
compared to KPCA and t-SNE, suggesting that UMAP 
might be more suitable for this type of task. 

Random forest remained the most successful model in 
both combinations, showing high accuracy and stability in 
color intensity classification. 

The improvements in SVM and k-NN performance 

with the use of UMAP highlight the importance of 

choosing the right dimensionality reduction technique to 

enhance machine learning model performance. 
 

 SVM: Accuracy slightly decreased (86-85%) 

 Random forest: Accuracy increased (89-94%) 

 k-NN: Accuracy improved (81-84%) 

 Decision trees: Accuracy improved (80-83%) 
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Summary: KPCA and UMAP improve accuracy and 

reduce training time, with random forest achieving the 

highest accuracy (94%). 
 

 

 
 
Fig. 11: Confusion matrices 
 
Table 3: Accuracy and computational time comparison (in 

seconds) 

Model Technique 

Accuracy 

(%) 

Dimensionality 
reduction 

time (s) 

Model 
training 

time (s) 

SVM 
KPCA and 
t-SNE 86 150 70 

SVM 
KPCA 
and UMAP 85 100 60 

Random 
Forest 

KPCA and 
t-SNE 89 150 90 

Random 

Forest 

KPCA 

and UMAP 94 100 80 

k-NN 
KPCA and 
t-SNE 81 150 55 

k-NN 
KPCA 
and UMAP 84 100 45 

Decision 
Tree 

KPCA and 
t-SNE 80 150 50 

Decision 

Tree 

KPCA 

and UMAP 83 100 40 
 

 
 
Fig. 12: Accuracy vs. Computational total time 

Figure (12) effectively illustrates how different 

combinations of machine learning models and 

dimensionality reduction techniques can impact both the 
performance (accuracy) and efficiency (computational time) 

of a system. This graph shows that the random forest 

model with KPCA and UMAP achieves the highest 

accuracy (94%) while also having a relatively low 

computational time (180 sec). In contrast, the Decision 

tree model with KPCA and t-SNE has the lowest accuracy 

(80%) and a higher computational time (200 sec). Overall, 

using UMAP as a dimensionality reduction technique 

tends to reduce computational time across different 

models compared to t-SNE while maintaining or 

improving accuracy. 

Discussion 

The KPCA UMAP and random forest framework 

demonstrated superior performance. 

Comparison with current findings: 

 

 Dimensionality reduction techniques: Current work: 

KPCA and UMAP outperformed KPCA and t-SNE. 

 Prior research: PCA, LDA, and t-SNE were commonly 

used, with t-SNE being computationally intensive. 

 Comparison: UMAP is a more efficient alternative to t-

SNE, preserving high-dimensional data structure better. 

 Classification algorithms current work: Random forest 

with KPCA and UMAP achieved 94% accuracy 

 Prior research: SVM and k-NN were popular, with deep 

learning models showing superior performance 

 Comparison: Ensemble learning (random forest) 

with advanced dimensionality reduction 

techniques is effective, suggesting an alternative to 

deep learning models 

 Preprocessing technique's current work: Grayscale 

conversion and histogram equalization enhanced 

contrast and normalized pixel intensity. Prior 

research: Comparison: Emphasizes the importance of 

preprocessing for improving model performance 

 Computational efficiency current work: KPCA and 

UMAP reduced model training and dimensionality 

reduction time 

 Prior research: GPU acceleration and optimized 

libraries were crucial for reducing training time. 

 Comparison: Highlights the efficiency of KPCA and 

UMAP, improving computational efficiency in facial 

recognition tasks 

 

The current findings introduce more efficient 

dimensionality reduction techniques (KPCA and UMAP) 

and demonstrate the effectiveness of ensemble learning 

algorithms (Random Forest) for facial micro-expression 
recognition. These advancements suggest promising 
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directions for future research, such as integrating deep 

learning models with advanced dimensionality reduction 

techniques and exploring cross-cultural recognition. 

Conclusion 

This study provides a detailed evaluation of 

dimensionality reduction techniques and advanced 

classification models for facial micro-expression 

recognition using the AffectNet database. 

Key contributions: 

 

1. Advancements in dimensionality reduction techniques: 
 

 Techniques used: Kernel Principal Component 

Analysis (KPCA), t-distributed Stochastic 

Neighbor Embedding (t-SNE), and Uniform 

Manifold Approximation and Projection (UMAP. 

 Performance: The combination of KPCA and 

UMAP outperforms KPCA and t-SNE in 

preserving the structure of high-dimensional facial 

data, leading to better classification results 

 

2. Advancements in classification algorithms: 
 

 Models evaluated: Support Vector Machines 

(SVM), random forest, Nearest Neighbor (k-NN), 
and decision trees 

 Best performance: Random forest with KPCA and 

UMAP achieved the highest accuracy (94%) in 

micro-expression recognition, outperforming 

previous methods 
 
3. Importance of dimensionality reduction in applications: 
 

 Applications: Accurate micro-expression 

recognition is crucial in psychology, security, and 

clinical practice 

 Broader Impact: The insights from this study can 

be applied to other high-dimensional data analysis 

problems, demonstrating the broader applicability 

of the proposed approach 
 

Summary 

This research effectively integrates advanced 

dimensionality reduction techniques and classification 

models to enhance the accuracy and reliability of facial 

micro-expression recognition. The findings have 

significant potential applications in various fields that rely 

on high-dimensional data analysis. 

The future work section outlines the approach for 

integrating deep learning models with the current 

dimensionality reduction techniques and describes the 

expected improvements in micro-expression identification. 

Future work objectives: 

1. Investigate deep learning explore models like 

Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs) to improve 

micro-expression identification 

2. Improve feature extraction using deep learning for 

more robust features from facial image data 

3. Increase accuracy and reliability by combining deep 

learning with dimensionality reduction techniques 

4. Cross-cultural recognition study recognition across 

different cultures and contexts 
5. Innovative computational strategies and new datas 

 

Develop new computational strategies and create a 

new dataset to advance micro-expression detection. 

These objectives aim to enhance the accuracy, 

generalizability, and applicability of micro-expression 

recognition techniques. 
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