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Abstract: The ever-evolving landscape of digital payments demands 

continuous innovation and self-improvement. This study addresses this 

imperative by simulating a model for payment routing, a crucial aspect of the 
digital payment ecosystem. To achieve this, industry professionals were 

interviewed to inform the approach, emphasizing data randomization for 

effective data collection. Using Python, a randomized dataset is created and 

three Reinforcement Learning (RL) algorithms are implemented and 

evaluated: Epsilon Greedy, Upper Confidence Bound (UCB), and Thompson 

Sampling. The paper adopts the Multi-Armed Bandit (MAB) framework to 

model payment routing as a resource allocation problem, offering a 

computational approach to real-world resource allocation dilemmas. 

Through simulation, we eliminate real-time transaction costs, allowing us to 

focus on algorithmic approaches without implications for customers, 

businesses, or payment providers. Among the RL algorithms studied, UCB 

emerges as the most effective in addressing this Multi-Armed Bandit 
problem, corroborating findings from prior research. This study suggests not 

only the potential of modeling real-world problems as MAB but also the 

superior performance of the UCB algorithm in solving RL problems. The 

paper underscores the need for increased focus on non-consumer-facing 

aspects of the financial services industry, emphasizing cross-disciplinary 

research to create infrastructure and software solutions. Researchers can extend 

this study by exploring MAB algorithms in various domains with options for 

system choices. The simulation-based approach offers a cost-effective means 

of testing system performance and hypotheses across a spectrum of industries, 

fostering innovation and progress. 

 

Keywords: Multi-Armed Bandit Problem, Reinforcement Learning, Digital 

Payments, Transaction, Simulation 

 

Introduction 

The evolution of technology has brought about a 
profound transformation in the financial services sector 

on a global scale. Innovations such as mobile banking 

applications, automated teller machines, credit and debit 

cards, stock prediction, automated savings, e-commerce, 

AI-supported financial advisory, and embedded finance 

have revolutionized the industry. These digitization 

efforts have undoubtedly reshaped the landscape, 

providing unparalleled convenience and accessibility to 

consumers worldwide. 

However, with the increasing prevalence of digital 

transactions (Alessio et al., 2022), the persistent occurrence 

of online transaction failures presents a significant challenge 

to the reliability and widespread adoption of digital financial 

solutions. This ongoing issue underscores the critical 

importance of prioritizing error reduction in the integration 

of technology to enhance financial service delivery, 

particularly considering the far-reaching global implications 

of failures within the financial services industry. 
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The multifaceted nature of transaction failures 

encompasses various factors, including system downtime, 

poor network connections, gateway timeouts, incorrect 

details, and declined transactions by card issuers, among 

others (Flutterwave, n.d.; Parikh, 2019; Stripe, 2023). 

These failures not only erode trust in digital payments but 

also restrict customer options, impeding the transition 

from traditional to digital modes of financial transactions. 

The impact extends to businesses that rely on receiving 

payments and to consumers seeking to make payments or 

transfer funds. Consequently, these failures can lead to 

businesses enforcing policies such as requiring customers 

to wait for transaction alerts before leaving or preferring 

cash payments, thereby leaving customers with limited 

alternatives. This highlights concerns about the reliability 

of online transactions, echoing sentiments expressed by 

Blackmon and Mwesigwa (2021), who identify reliability 

as a key barrier preventing many individuals from 

accessing the formal financial system. 

In response to the complex nature of transaction 

failures, various strategies have been implemented for 

error detection and correction within digital financial 

services. Among these strategies, one of the most 

common is the display of pop-up error messages, which 

provide users with insights into the reasons behind 

transaction failures. For instance, error messages such as 

"Issuer/Switch Inoperative," which usually indicate 

challenges such as the inability to reach the issuer, the 

unresponsiveness of the issuer, or the failure of the 

payment processor to complete payment authorization, or 

"Timeout Transactions," are often displayed when failures 

occur, alerting users to underlying issues (Duò, 2022). 

Going further, discerning between failures originating 

from the switch and those from the issuer is a crucial 

aspect of managing transaction failures. If the failure 

stems from the switch, it may require a change of the 

payment switch by the payment terminal or gateway. 

Conversely, if the failure lies with the issuer, customers 

may need to complete their transactions using an 

alternative method or try again later. Despite the 

importance of distinguishing between switch and issuer 

failures, this task can be challenging due to the 

coexistence of multiple switches in practice. Payment 

terminals and gateways can select which switch provider 

to utilize and some entities even have multiple switches 

available for processing payments. However, only one 

switch can be used per transaction at a time. This 

complexity underscores the challenges of managing 

transaction failures and emphasizes the importance of 

effective error detection and resolution mechanisms in 

digital financial services. This problem can be effectively 

modeled as a Multi-Armed Bandit (MAB) problem from 

a computing perspective. 

In response to existing challenges within financial 

services on this issue, there has been a growing 

application of technology to address these issues. Some 

notable attempts include portfolio selection and 

optimization (ElectrifAi, 2020; Hambly et al., 2021), 

stock price forecasting (Sahu et al., 2023), credit score 

modeling (Lu et al., 2013), algorithmic trading, risk and 

credit rating assessment, asset pricing, insurance claims 

assessment and fraud detection (Bao et al., 2020). These 

applications utilize a diverse array of technologies, 

including software development, cloud computing, 

embedded systems, artificial intelligence, cybersecurity, 

deep learning, and machine learning (Fong et al., 2021). 
Nevertheless, Chawla et al. (2021) underscore the 

limited focus on transaction failures and correction modes 
in the existing literature on online payment systems, 

highlighting it as a largely unexplored area. While 

machine and deep learning have received considerable 

attention, Reinforcement Learning (RL) remains relatively 

underexplored in specific domains. However, notable 

attempts have been made to apply RL in fields such as 

healthcare (Bastani and Bayati, 2020; Durand et al., 2018; 

Yauney and Shah, 2018) and recommendation systems 

(Zhou et al., 2017). Furthermore, Arthur et al. (2020) 

emphasize the potential applications of RL in risk 

management, market microstructure, and portfolio 

allocation within finance, indicating promising prospects 
for RL techniques in addressing financial challenges. 

In this study, we adopt the RL approach due to its 

suitability for addressing the multi-armed bandit problem, 

a subset within the field of decision-making under 

uncertainty. The paper aims to fill the gap highlighted by 

Chawla et al. (2021) by investigating the potential of 

leveraging RL to enhance the success rates of digital 

transactions. Through this exploration, the goal is to 

contribute to a deeper understanding of transaction 

failures and to advance solutions for improving the 

reliability of digital financial services. 

Related Work 

At the intersection of finance, economics, and 

reinforcement learning, researchers have worked on 

modeling problems and developing computational 

solutions in each of these fields independently and in 

some cases collectively. MAB problems and algorithms 

have gotten significant attention from researchers, further 

justifying this research area. 

Gifford et al. (1995) provide one of the earliest papers 

on payment switching as a part of payment networks. 

They provide a foundation for efficient payment networks 

and a relevant historical context, but their work has 

limited applicability as payments have evolved to include 

more players and are more sophisticated. 

Cheng et al. (2016) address the complexity of payment 

routing for financial credit networks. The authors employ 

the game theory model and investigate the potential of 

algorithmic approaches to optimal payment routing. The 
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combination of theoretics and algorithmic design offers 

valuable insight into the challenge of efficient payment 

routing. However, as game theory is employed, the 

assumption of rational behavior may not be practical in 

real financial networks. 
Comşa et al. (2019) compared the performance of RL 

algorithms in optimizing the management of radio 

resources, and packet scheduling. The authors compare 

ten RL algorithms, using similar values for these 

parameters; learning rate, discount factor, and 

exploration. The simulation performed validates the 

performance of RL over adaptive schedulers and its 

potential to improve 5G network provisioning. The 

problem and solution belonged to the RL field, but they 

did not fit the MAB framework. Therefore, the problem 

did not use any MAB algorithm. 
Nagendra et al. (2017) conducted a study where they 

compared the efficacy of three RL algorithms Q-learning, 

value function approximation, and policy gradient actor-

critic in addressing the cart-pole problem. Additionally, 

they explored an approach integrating the RL algorithm 

with a practical swing-up controller. The best-performing 

algorithm differed in a discrete and continuous space but 

had no performance variations when the swing-up was 

integrated. This makes a good case for the need to 

compare RL algorithms, but it focuses on a singular 

problem for RL algorithms; the cart-pole balancing 
problem. 

Mahajan and Teneketzis (2008) take a mathematical 

approach to explaining MAB problems including features 

of classical MAB problems, computational issues, and 

variations of MAB problems. While this approach 

provides a problem definition and modeling, it does not 

account for the factors that come into play in real-world 

applications as many assumptions are made in 

mathematical modeling. 

Bouneffouf et al. (2020) conducted a survey 

examining the practical applications of both MAB and 

contextual bandits. Their aim was to underscore the 

significance of these techniques in addressing real-world 

challenges. Their work creates a taxonomy of MAB 

application domains which include healthcare, finance, 

recommender systems, and anomaly detection. As it 

reports the outcome of a survey, it does not detail the 

application domains or how domain-specific systems can 

leverage RL. 

Bouneffouf and Féraud (2016) consider the scenario 

where the agent is aware of the reward function for each 

arm but is unaware of the distribution. The reward 

function aimed to improve the efficiency of the financial 

system in conducting transactions (Gambo et al., 2023). 
The authors develop a new algorithm which they name the 

Adjusted Upper Confidence Bound algorithm (AUCB) 

that is adjusted to fit the problem scenario and compare it 

with the regular Upper Confidence Bound algorithm 

(UCB) and five other MAB algorithms. The AUCB 

outperformed all others across sigmoid, Gaussian, and 

decreasing reward functions but is only relevant for 
scenarios that fit the context of the solution. 

Zhou et al. (2019) formulate the route selection 

problem for transportation as an MAB problem, with the 

varying routes to a destination as the possible "arms" that 

can be selected. By viewing vehicles as servers and 

sensors, they apply the UCB algorithm and MAB 

algorithm to find the shortest route for a vehicle that has a 

fixed start location and destination. By using the shortest 

path algorithm as the benchmark, the UCB algorithm had 

a lower mean regret value and improved arrival time by 

4.8%. While it validates the potential of MAB algorithms 

in routing problems, its domain specificity means their 

solution cannot be directly applied in another problem 

domain such as humanities, healthcare, or finance. 

Arthur et al. (2020) highlight the applicability of RL 

in finance and economics, particularly MAB problems. 

Their work highlights the theoretics in RL problem 

formulation, leveraging mathematical notations to model 

how RL can be used in economic modeling, risk 

management, and game theory. However, their work does 

not point to the applicability of RL in payments or provide 

a code implementation of the mathematical models. 

Huo and Fu (2017) modeled portfolio selection as a 

stochastic multiarmed bandit problem, exploring the 

exploration-exploitation dilemma in selecting portfolios. 

They highlight how MAB is a suitable model for decision-

making in an uncertainty. They introduce risk awareness 

in their research, combining asset filtering, an MAB 

policy, and risk minimization in their algorithm to achieve 

a risk-return balance. Their research highlights the 

potential of MAB and RL solutions in financial services 

but is limited by domain specificity. 

The next section describes the approach taken to 

designing the model and the algorithms for payment 

switch selection. From requirement gathering to 

simulation and evaluation. 

Materials and Methods 

The simulation of the model was conducted in a basic 

Multi-Armed Bandit (MAB) problem environment. Since 

the model does not leverage GPU capabilities, its 

hardware requirements are minimal. The simulation was 

run on a laptop or desktop computer with at least 2GB of 

RAM and a processor with a speed of 2.0GHz or higher. 

The modeling and simulation were done within a code 

editor, making the choice of operating system flexible. 

Any operating system that can accommodate a code 

editor, such as Windows, Linux, or macOS, is sufficient. 

For this research, however, the simulation was conducted 

in a Windows environment. The model does not require 

an internet connection or virtual machine, and it operates 
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efficiently under these conditions without high-end 

computing resources. 

Requirement Gathering Phase 

The requirement-gathering phase involves the 

identification of the features required for the development 
of the model. The interview approach was selected owing 
to the nascent and sensitive nature of digital payments. To 
identify the relevant features in the dataset, payment 
experts in Nigeria were interviewed. 

In practice, payment success requires the connectivity 
of APIs provided by varying companies in the payment 
chain. However, these APIs are usually paid for and 
require licensing in some cases. These were pointed out 
by industry experts, making modeling and simulation the 
best approach to addressing this problem. 

Owing to the sensitivity of the data in the payments 

industry, no public dataset on payment transactions exists. 

Hence, the a need to create a randomized dataset to 

address the problem. The data required included the 

feedback codes for switch/issuer inoperative error and 

payment success; 91 and 00, transaction amounts, and 

card network. We used the provided list of all possible 

error codes in payments as described by Stripe (2023). 

While the error codes and card networks are fixed, the 

transaction amount can be any value acceptable by 

payment systems. In this study, the range of 500 and 
100,000 is used for the transaction amount. 

Modeling and Design Specification 

This phase involved the development of a skeletal 

framework for how the system will operate. The models 

developed in this phase are based on the requirements 

gathered in the previous phase. The system design 

provides a blueprint of the system that can be developed 

into a working solution (Gambo and Agbonkhese, 2024) 

using suitable programming languages. The unified 
object-oriented modeling framework was used to model 

the adjustment the system makes to the existing payments 

system and the workings of the algorithms in the model.  

The sequence diagram, shown in Fig. (1), illustrates 

the interactions occurring in the payment process and the 
flow of payments when a switch selection exists in the 

routing process. When payment is initiated, the routing 

system selects a switch with which to route a payment. 

Based on the transaction feedback received in return, it 

can select the switch for the next transaction, learning on 

the go. This shows the difficulty of balancing exploration 

and exploitation in the MAB problem. 

The class diagram depicted in Fig. (2) offers a clear 

high-level view of the interactions existing in the system 

modeled in this study. The base class for all the MAB 

algorithms; the Bandit algorithm, generalizes on all the 

algorithms, having all the common attributes of each the 

number of arms and total rewards for each arm. Each of 

the three algorithms is presented as a subclass, with its 

own separate features. The Bandit algorithm class is 

associated with both the Streamlit app and the data class. 

The data class abstracts the randomized dataset and the 

streamlit app abstracts the streamlit interface used to 

simulate the transactions. 

Dataset 

The dataset, though randomized, accounts for specific 

scenarios that could occur in a payment routing process. 

Following the interviews in the requirement phase, four 

switches were settled for in the dataset. Hence, the routing 

is to occur among 4 switches. The scenarios accounted for 

include: Three switches fail, one succeeds; Two switches 

fail, two succeed; One switch fails, three succeed and all 

switches succeed. These scenarios are plausible in a real-

world payment process and are accounted for. The case of 

all switches failing is ignored as there is no routing to 

happen in this case and it is a nearly impossible scenario. 

The row items under the switches are randomized using 

00 for success and 91 for failure, following the standard 

error codes as seen in Stripe (2023). 
 

 
 

Fig 1: Sequence Diagram of expected payment routing flow 
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Fig 2: Class Diagram showing classes and their methods 

 

The dataset also contains the card network and 
transaction amount columns. The card network is 

randomly distributed but follows a weighted distribution. 

Today, three card networks active in Nigeria are 

Interswitch's Verve, Mastercard, and VISA. The 

weighting followed the data from Statista (2023) 

highlighting that 18% of Cardholders had a VISA card, 

28% MasterCard and 54% Verve. Hence the weights 0.18, 

0.28, and 0.54 are allocated to each of the card networks. 

The transaction amounts are randomly generated but 

within the range of 500 and 100,000 as this is a fair 

bandwidth, as industry experts interviewed highlighted 

that the largest volume of digital transactions falls within 
the range. The data randomizations are all done with 

Python code. The language’s random module, NumPy 

library, and Pandas library are leveraged to achieve this. 
The dataset of 4,000 rows is used in training the RL 

algorithms to learn from the dataset. The selections made 
in the simulation are benchmarked with a test dataset that 

is unknown to the algorithms. An 80-20 split between 
training and validation sets is used in this study. 

Streamlit Simulation 

The need for an interface to test the workability of 

using MAB algorithms in payment routing gives credence 

to the use of Streamlit to create an interface that simplifies 

the payment data relevant to the system; transaction 

amount and card network. Added to this interface is a 

selection pane with the three algorithms allowing for the 

selection of different algorithms while leaving transaction 

amount and card network unchanged to see the decision 

the algorithm will make. The code implementation is seen 

in Fig. (3). 
As Fig. (3) reflects, the code creates a Streamlit web 

interface with options to select between epsilon greedy, 

Thompson Sampling, and UCB algorithms. Depending on 

the selected algorithm, it displays simulation results such 
as total rewards and mean regret. 

Implementation and Evaluation 

In this study, we chose the upper confidence bound 

algorithm, epsilon greedy algorithm, and Thompson 

Sampling algorithm as the algorithms to use. 

The ɛ-Greedy algorithm is an MAB algorithm that 

attempts to balance exploration and exploitation by 

allocating some rounds of selection to exploration, i.e., 

random selection of arms and the rest to exploitation. 

Each arm in an environment has an estimate of its reward 

Qt(a) at a time t. The ɛ parameter defines the rate of 

exploration and the action At follows that Eq. (1): 

 

𝐴𝑡 = {
𝑎𝑟𝑔𝑚𝑎𝑥 𝑄𝑡(𝑎), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 −  𝜀

𝑟𝑎𝑛𝑑𝑜𝑚 𝑎𝑟𝑚 (𝑎), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜀
 (1) 

 

The ɛ parameter is used to define the exploration-

exploitation trade-off. Usually between 0 and 1, higher ɛ 

values favor exploration and lower values favor 

exploitation, defining how the algorithm adapts to the 

problem (Mohan, 2014). While its simplicity and 

computational efficiency are worthwhile, the ɛ-Greedy 

algorithm may struggle in environments where the reward 

distribution changes rapidly (Sutton, 2018). 

 

 
 
Fig. 3: Streamlit code for web interface 



Ishaya Gambo et al. / Journal of Computer Science 2024, 20 (11): 1519.1529 

DOI: 10.3844/jcssp.2024.1519.1529 

 

1524 

As its name implies, the UCB algorithm uses the UCB 

of the estimated reward of an arm in its attempt to balance 

exploration and exploitation. Usually based on 
Hoeffding's inequality, the algorithm estimates the upper 

bound of the reward of each arm and selects the arm 

having the highest upper board. At time step t, the UCB 

for an arm a is defined in Eq. (2): 
 

𝐴𝑡 = 𝑎𝑟𝑔max
𝑎

[𝑄𝑡(𝑎) + 𝑐√
ln 𝑡

𝑁𝑡(𝑎)
] (2) 

 
In Eq. (2), Qt(a) represents the estimated reward of arm 

a, c denotes the degree of exploration and Nt(a) indicates 

the number of times arm a has been selected. The 

algorithm's approach to the exploration-exploitation trade-
off involves selecting arms having higher uncertainty in the 

estimates of the reward, thus encouraging exploration while 

favoring arms with likely higher rewards (Zhang, 2019). 
While the UCB algorithm is better at adapting to changing 

rewards than ɛ-Greedy, it is more complex to implement. 

The Thompson Sampling algorithm uses a Bayesian 

method to address the MAB problem. Thompson 
Sampling keeps a probability distribution (Beta 

distribution) over the arms and uses the sampling from the 

probability distributions to make a decision. At time step 
t, the algorithm selects the arm having the highest sampled 

value from the distribution samples. 

Operating a “belief” system, Thompson Sampling 
balances the trade-off by sampling the arms by their 

probability distribution, making it effective in 

environments having complex reward structures 

(Russo et al., 2018). However, it can require 
computational more resources than other algorithms 

especially when many arms are involved. 

The algorithms were implemented in code using Python 
in separate files before they were imported for use by 

Streamlit and evaluation. Owing to their disposition as 

algorithms that attempt to address the exploration-exploitation 

dilemma and specifically, the MAB problem, there are 
similarities between them. These similarities are highlighted in 

the class diagram in Fig. (2). The code implementations for 

these algorithms are presented in Figs. (4-6). 
The Python code in Fig. (4) defines the class 'epsilon 

greedy' for the epsilon greedy algorithm in multi-armed 

bandit problems, initializing parameters and selecting 

arms accordingly. In Fig. (5), the Python class "Thompson 
sampling" implements Thompson Sampling for multi-

armed bandit problems, initializing parameters and 

sampling from Beta distributions. Updates occur based on 
observed rewards. Moreover, in Fig. (6), the Python class 

"UCB" implements the UCB algorithm for multi-armed 

bandit problems, initializing parameters and selecting 
arms based on UCB values. Updates are performed based 

on observed rewards. 
Overall, the three algorithms are encapsulated within 

Python classes, each designed to initialize parameters, 
select arms, and update values based on observed 

rewards. This implementation facilitates 
experimentation and analysis of various strategies for 
optimizing decision-making processes in scenarios with 
uncertainty and limited information (Olivier and Lihong, 
2011; Auer and Ortner, 2010). 

The algorithms consider the number of arms possible 

and the possible rewards. For the ɛ-Greedy algorithm, the 

value for epsilon, a number 0> ɛ >1 is passed as a 

parameter in its function. 

In RL, a range of evaluation metrics exist to assess the 

performance of the learning process of an agent. 

However, different metrics are prioritized for different RL 

problems, the metrics that align with the learning outcomes 
and the task at hand are usually selected. For MAB 

problems, the important metrics are as shown in Table 1. 
 

 
 
Fig 4: Python code for epsilon greedy algorithm 
 

 
 
Fig. 5: Python code for Thompson sampling algorithm 
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Table. 1: Important metrics used for MAB problems 

SN Metrics Remarks 

1 Total cumulative regret The total cumulative regret is the sum of the gaps between the rewards that the bandit 

  algorithm received and the rewards that the optimal arm would have given. It shows 
  how much the algorithm "regrets" it had chosen differently throughout the experiment 
2 Mean cumulative regret Mean cumulative regret is the average regret per round or time step. It provides a 
  normalized view of how well the bandit algorithm is performing over time. Lower 
  mean cumulative regret indicates better performance 
3 Total reward  Total reward represents the cumulative sum of rewards earned by the bandit algorithm 
  throughout the experiment. Maximizing this metric is a primary goal of  
  the bandit algorithm 

4 F1-score This metric serves as a balance between precision and recall, serving as a harmonic 
mean. It is mostly in binary classification but is a prominent metric in the computations 
  that involve machine learning models 
5 Accuracy It measures the extent of the correctness of the predictions made. In this study, it 
assesses 
  the number of times each algorithm correctly predicts the right switch in comparison  
  with the dataset 

 

 
 
Fig. 6: Python code for UCB algorithm 
 

Results and Discussion 

Streamlit is used to simulate a payment transaction via 

a web interface, where both transaction amount and card 

network are selected. This web interface is presented in 

Fig. (7). In a real-world scenario, more card information 

is required to authenticate the transaction such as CVV 

and card expiry date. However, these are not required for 

the simulation. Also, on the web interface, is a list of the 

three algorithms. This allows for the selection of an MAB 

when a transaction is initiated. This way, each of the three 

algorithms can be tested for the arm (switch) they select 

when benchmarked against the same transaction amount 

and card network. 

The three algorithms performed differently when 

benchmarked against the randomized dataset. As it is an 

RL problem, the benchmark metrics differ slightly from 

regular ML problems. In Fig. (8), the total reward for each 

algorithm is presented visually. It highlights the number 

of times each algorithm made the right decision by 

selecting the best switch. Thus, earning it a reward. The 

dataset was passed through each algorithm and this allowed 

for the generation of the reward count for each of them. 

The three algorithms performed differently when 

benchmarked against the randomized dataset. As it is an RL 

problem, the benchmark metrics differ slightly from regular 

ML problems. In Fig. (8), the total reward for each 

algorithm is presented visually. It highlights the number of 

times each algorithm made the right decision by selecting 

the best switch. Thus, earning it a reward. The dataset was 

passed through each algorithm and this allowed for the 

generation of the reward count for each of them. 

The three algorithms performed differently when 

benchmarked against the randomized dataset. As it is an 

RL problem, the benchmark metrics differ slightly from 

regular ML problems. In Fig. (8), the total reward for each 

algorithm is presented visually. It highlights the number 

of times each algorithm made the right decision by 

selecting the best switch. Thus, earning it a reward. The 

dataset was passed through each algorithm and this allowed 

for the generation of the reward count for each of them. 

Figure (9) indicates the mean regret for the algorithm. 

Worth mentioning, that regret is a common feature in RL 

problem formulation and solution presentation. The aim of 

RL solutions is to minimize regret and maximize rewards. 

This means that having lower regrets and higher rewards 

positions an algorithm as a better performer for the problem 

at hand. Regret can be viewed in two ways, mean regret and 

cumulative regret. The mean regret shown in Fig. (9) 

reflects the average difference between the returns achieved 

through the use of the three algorithms and the returns that 
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would have been obtained had the optimal strategy been 

selected retrospectively. Essentially, it quantifies the 

opportunity cost or loss incurred due to suboptimal 

decision-making over a period of time (Li et al., 2021). 

The cumulative regret for the algorithms is presented in 

Fig. (10). As Fig. (10) reflects, the cumulative regret is not 

only a sum of regrets but a highlight of the trend in regret 

from the first round to the last round. 

We applied the f1-score and accuracy metrics, which 

are widely used for evaluating ML models, to measure the 

performance of the algorithms. These metrics are also 

suitable for RL. In this study, these metrics helped to a 

benchmark for comparing the efficiency of the algorithms 

implemented in a form that can be compared with 

traditional algorithms. A snapshot of the values obtained 

is presented in Table 2. 
 

 
 
Fig. 7: Streamlit simulation interface 
 

 
 

Fig. 8: Total reward chart for the algorithms 
 

 
 
Fig. 9: Mean regret for the algorithms 

 
 
Fig. 10: Cumulative regret for the algorithms 
 
Table 2: Accuracy and f1-score for each algorithm 

Algorithm Accuracy F1-score 

Epsilon greedy 0.315 0.478 
Thompson sampling 0.274 0.428 

UCB 0.937 0.966 
 

Epsilon-Greedy Algorithm approach to balancing 
exploration and exploitation is influenced by the value of 
ɛ selected. As observed by Mohan (2014), smaller values 
favor exploitation. Owing to the number of arms in the 
environment, a value of 0.1 was chosen. Assessing 
cumulative regret in Fig. (10), the ɛ-Greedy algorithm 
sees a slow but upward slope, indicative of exploration, as 

the algorithm attempts to understand the environment and 
the reward functions. 

However, between round 400 and 600, the cumulative 
regret has a steady and upward trend, exceeding that of 
Thompson Sampling by round 600. This highlights the 
problem of the ɛ-Greedy algorithm with exploitation. It 
continues to exploit an arm that already proved to be a 
good result and could stay with it without exploring other 
arms that could have higher rewards. 

The total reward chart in Fig (8) shows the ɛ-Greedy 
algorithm slightly edges the Thompson algorithm in its sum 
of rewards. Looking at the cumulative regret chart in 

Fig. (10) helps give an explanation for this small but 
significant difference. ɛ-Greedy retained a lower regret up 
until a point between round 600 and 800 before exceeding 
the Thompson Sampling algorithm at round 800. The 
ɛ-Greedy mostly retained a lower regret and higher reward 
compared to the Thompson Sampling algorithm but there is 
no certainty that this would not have significantly changed if 
the number of rounds was increased by 50 or 100%. 

The mean regret chart in Fig. (9) highlights a higher 
mean regret for the ɛ-Greedy algorithm which is only 
slightly higher than the Thompson Sampling algorithm. 
This trend somewhat conflicts with cumulative regret. 

However, the Thompson sampling algorithm maintained 
an upward yet steady increase in its cumulative regret, 
ensuring that its mean regret would be lower than that of 
the ɛ-Greedy algorithm which saw a rapid increase in its 
cumulative regret. 

Across the regret and reward metrics, the UCB algorithm 
retained impressive results. The cumulative regret in Fig. 
(10) stands out as it highlights the algorithm's approach to the 
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exploration-exploitation dilemma in favor of exploration and 
arms with likely higher rewards. As a better adapter to 
changing rewards, the UCB algorithm initially has an 
upward trend in its cumulative regret which starts to steady 
then sharply increase before remaining steady till the end. 
This learning is impressive as it means the algorithm learns 
quickly and is less likely to choose the wrong switch among 
the available options. 

The UCB algorithms have higher total reward and low 

mean regret seen in Figs. (8-9) which aligns with its 
cumulative reward values. This impressive results from UCB 
are reinforced in the F1 and accuracy results seen in Table 2. 
On a scale of 0 and 1 for both metrics, UCB tends closer to 1 
with 0.966 and 0.937 F1-score and accuracy, respectively. 
In practice, this high accuracy might not be attainable due 
to the dynamic nature of systems when deployed for use. 
However, this high threshold indicates that its performance 
in practice will be within reasonable ranges. 

The ɛ-Greedy algorithm outperforms the Thompson 
algorithm on both metrics, though with smaller margins 
than the UCB's. This highlights the possibility of 
improving the ɛ-Greedy algorithm to perform better. This 
could mean adjusting the value of the ɛ parameter to favor 
exploration by opting for higher values of ɛ. 

Evidently, the UCB algorithm significantly 
outperforms the other two algorithms. The approach to 
balancing exploration and exploitation works well in 
environments with uncertainty, aligning with the 
environment of a switch routing system. While ɛ-Greedy 
performs better than Thompson Sampling across most 
metrics, the slightly lower mean regret score means the ɛ-
Greedy had a higher regret per round on average. 

Conclusion 

It is possible to infer that switch selection in the 
payment process can introduce an automated routing 
system between the terminal and switches to improve the 
payment process and address transaction failures due to 
switch failures. This would improve the payment flow and 
reduce losses for consumers and businesses. 

Payment processors can improve payment success by 
implementing similar solutions that fit their own 
organizational context, as variations exist in the internal 
payment flow of many processors. However, they can 
build upon the approach taken in this study to develop 
custom switch selection solutions that attempt to 
eliminate the switch/issuer inoperative error and better 
serve the customers and businesses who use their services. 

This study exposes the urgent need for the financial 

services industry to be under the radar of researchers, 

from a non-consumer-facing perspective. Researchers can 

consider improving the existing model by considering 

API deployment, as an API will be capable of 

communicating with APIs of payment switches and 

payment terminals. This will require partnering with 

industry players for free access to their APIs. 

Notably, there is a dearth of research in the 
development of infrastructure and internal software for 
financial services. Researchers can explore these gaps 
from a cross-disciplinary perspective. This is because it 
is a heavily regulated industry that cuts across law, 
International Trade, technology, and finance. 
Multifaceted research would deliver infrastructure for 
the industry that not only works but also fits the industry 
context. As Shafiq et al. (2024) suggest, handling 

conflicts in stakeholder goals using machine learning 
approaches can provide a useful framework for 
addressing such interdisciplinary challenges. 

There are many situations where the explore-exploit 
dilemma exists, such as stock portfolio selection, medical 
trials, and recommender systems. These problems can be 
modeled as MAB problems and have MAB algorithms 
applied to address them. Researchers can explore MAB 
algorithms in the development of automated systems 
where options exist for the system to choose from. In 
environments where funding is limited, modeling and 
simulations provide an opportunity to test the performance 

of systems without incurring significant costs. 
In conclusion, this study underscores the critical need 

for ongoing research into the financial services industry's 

infrastructure from a non-consumer-facing perspective. 

By building on the foundation laid in this study, future 

research can significantly advance the development of 

automated routing systems and custom switch selection 

solutions. Additionally, interdisciplinary approaches and 

the exploration of MAB algorithms hold promise for 

addressing complex problems within the financial 

services sector and beyond. 
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