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Abstract: High-dimensional data, lower detection accuracy, susceptibility to 

manual errors, and the requirement of clinical experts are some drawbacks of 

conventional classification models available for Autism Spectrum Disorder 

(ASD) detection. To address these challenges and explore the affiliated 

information from advanced imaging modalities such as Magnetic Resonance 

Imaging (MRI) in structural MRI (sMRI) and resting state-functional MRI (rs-

fMRI), the study applied an Artificial Intelligence (AI) approach. In this 

context, AI is used to automate the feature extraction process, which is crucial 

in the interpretation of medical images for diagnosis. The work aims to apply 

AI-based techniques to extract the features and identify the impact of each 

feature in the Autism diagnosis. The morphometric features were extracted 

using sMRI images and rs-fMRI scans were employed to fetch functional 

connectivity features. Surface-based, region-based, and seed-based analyses 

are performed for the whole brain, followed by feature selection techniques 

such as Recursive Feature Elimination (RFE) with correlation, Principal 

Component Analysis (PCA), Independent Component Analysis (ICA), and 

graph theory are implemented to extract and distinguish features. The 

effectiveness of the extracted features was measured as classification accuracy. 

Support Vector Machine (SVM) with RFE is the best classification model, with 

88.67% accuracy for high-dimensional data. SVM is a supervised learning 

model that outperforms other classification models due to its capability to 

handle high-dimensional data with a larger feature set. Medical imaging 

modalities provide detailed insights and visual differences related to various 

cognitive conditions that must be recognized accurately for efficient diagnosis. 

The study presented an empirical analysis of various Feature extraction 

approaches and the significance of the extracted features in high-dimensional 

data scenarios for Autism classification. 
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Introduction 

Autism Spectrum Disorder (ASD) is a 

neurodevelopmental disorder that restricts the natural 

development of children by affecting their 

communication and social behavior (Genovese and 
Butler, 2020). Autism occurs in the very early stages of 

life and children with autism are characterized by 

repetitive behavior, restricted interaction, and 

communication. This symptomatic variation makes it 

challenging for autistic individuals to perform routine 

tasks (Huang et al., 2017; Randall et al., 2018). Early 

diagnosis of ASD is essential to minimize the adverse 

consequences to the patients and help the professionals 

and caretakers plan therapies and treatment plans 

(McCarty and Frye, 2020). However, the accurate 

diagnosis of autism can be challenging due to the varying 

symptoms and attributes (Jacob et al., 2019). Continuous 
and persistent occurrence of a diverse range of symptoms 

is difficult to diagnose accurately. At present, multiple 

tools are available to diagnose ASD, such as the Autism 

Diagnostic Observation Scale (ADOS) (Adamou et al., 

2018), autism observation scale for infants (Reid et al., 

2024), social orienting continuum and response scale 

(Mosconi et al., 2009) and early social and 

communication scale (Wetherby et al., 2021). This 

diagnosis requires manual efforts and expertise, which 

vary based on the experience, information given by the 
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parent, and the individual's behavior, as well as 

observations. Physicians use clinical biomarkers for the 

early diagnosis of ASD. However, these biomarkers are 
insufficient for the early identification of ASD since the 

patterns of the disease vary for each individual. Recent 

studies have successfully employed computer-aided 

techniques using various data modalities, such as 

Electroencephalogramgram (EEG) signals and MRI to 

understand ASD (Tawhid et al., 2021; Sivasangari et al., 

2022; Ismail et al., 2016). Moreover, advances in imaging 

techniques such as structural MRI (sMRI) and resting 

state functional MRI (rs-fMRI) have resulted in the 

precise identification of ASD. Several research has been 

presented that utilize MRI modalities to identify ASD 
(Hashem et al., 2020; Li et al., 2017; Dekhil et al., 2017). 

Despite the advancements, it is still uncertain whether the 

structural and functional abnormalities are sufficient in 

distinguishing between individuals with ASD and those 

who are neurotypical. While both sMRI and rs-fMRI can 

accurately identify brain pattern changes and connectivity, 

Artificial Intelligence (AI) based models for ASD 

classification have yet to be fully developed. Furthermore, 

to achieve accurate ASD diagnosis, it is crucial to explore 

and distinctly define disease-related features that capture 

complex brain patterns. This research aims to harness the 

benefits of AI by developing a framework that 
incorporates a feature extraction mechanism to enable 

accurate and efficient diagnosis of ASD. 

The core contributions of the paper are: 

 

 Empirical analysis of dual neuroimaging modalities 

performing the preprocessing, feature extraction, 

dimensionality reduction, and comparative analysis 

of structural features for classification 

 The classification algorithms applied to the structural 

features and proposed to be applied to rs-fMRI features 

 

The research is based on a high-dimensional scenario, 

which is most suitable for studies aimed to explore the 

insights of a specific condition, but the dataset availability 

is limited. The study aimed to achieve higher 

classification using AI methodologies suitable for limited 

datasets having a huge number of features, such as high-

resolution medical images. The hypothesis for the study 

was to investigate the impact of a large feature set coupled 

with a low volume of data on classification accuracy and 

the successive clinical implications. 

Related Work 

Inaccurate or late diagnosis might cause severe 

damage and can result in perilous circumstances. Hence, 

it is essential to develop efficient techniques for consistent 

definition and detection of the symptoms of ASD with 

high accuracy. Recent studies have implemented AI 

techniques to extract complex and multivariate patterns 

from neuroimaging data for diagnosing ASD (Chen et al., 

2020; Ferrari, 2021). In addition, feature extraction plays 

a significant role in providing valuable information about 

the disease and advanced diagnostic tools such as fMRI 

and rs-fMRI provide relevant information about the brain 

(Mohi ud Din and Jayanthy, 2023). Recent research 

proposed a deep multimodal approach, which combines 

the information acquired from rs-fMRI with a deep 

learning model to automate ASD diagnosis (Tang et al., 

2020). This approach achieved a classification accuracy 

of 74%, a recall rate of 95%, and an F1 score of 0.805 in 

distinguishing ASD individuals from neurotypical 

individuals. Another study proposed an informative 

biomarker for ASD diagnosis using rs-fMRI data, where 

static and dynamic connectivity were determined and 

used as inputs for the classifier to select essential features 

(Karampasi et al., 2021). These features comprised 

demographic and motion data, which were critical in 

identifying ASD cases. The classification accuracy 

achieved by the model was 76.63% with static and 

dynamic connectivity being key factors. The authors Koc 

et al. (2023) implemented sMRI and resting-state MRI 

(rsMRI) data to detect ASD. For the experimentation, the 

authors utilized two-dimensional rs-fMRI images that 

were transformed into 3D sMRI images for analysis. The 

data was collected from the ABIDE dataset and the fusion 

of sMRI and rs-fMRI data enabled the Hybrid 

Convolutional Recurrent Neural Network (HCRNN) 

model to achieve a phenomenal accuracy of 96% in 

classifying ASD. A Convolutional Neural Network 

(CNN) combined with rs-fMRI modality was applied by 

Mahadevaswamy and Manjunath (2022) for detecting 

autism. The CNN was trained using the scan images 

obtained from rs-fMRI, which yielded an accuracy of 

97%. The effectiveness of feature selection and extraction 

was validated, and a comprehensive explanation was 

provided. In the work presented by Lamani et al. (2023); 

Hazim Hammed and Albahri (2023). It implies that 

feature extraction is a crucial process that helps the AI 

models to identify the patterns or characteristics in the 

data to differentiate individuals with ASD from Normal 

Control (NC). Multi-level feature extraction has a more 

significant role in enhancing the accuracy of AI models 

such as neural networks given by Alam et al. (2023). 

Although AI models, along with sMRI and rs-fMRI, are 

more effective in automating the ASD detection process, 

there are specific challenges due to complicated structures 

and inconsistent biomarkers. Most of the existing work 

does not consider the biological diversity of individuals 

and less cognitive functional individuals with severe ASD 

symptoms are often neglected, which affects the 

generalization capacity of the models. 
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Materials and Methods 

The material applied for the research is the 

neuroimaging modalities of autistic and normal subjects. 

Data for the experimental analysis was collected from a 

multisite data repository known as ABIDE containing rs-

fMRI and sMRI images. The ABIDE II was a set of 1114 

scans with a balanced combination of 521 ASD and 593 

control subjects and greater phenotypic characterization. 

The dataset applied in the presented work belongs to the 

University of California Los Angeles (UCLA). The 

dataset information is available at 

http://fcon_1000.projects.nitrc.org/indi/abide/, which 

specified that the data repository has followed all the 

protocols released by the US Health Insurance Portability 

and Accountability Act (HIPAA) as well as approved by 

the regional Institutional Review Board to collect the data. 
The scans obtained from sMRI and rs-fMRI were 

preprocessed to achieve artifact and noise-free images 

for feature extraction. The research implements a five-

stage process for detecting ASD. The flowchart 

displayed in Fig. (1a), the detailed execution of the steps 

given in Fig. (1b). The first step was to collect the data 

as input from the ABIDE dataset, which consisted of 

images obtained from sMRI and rs-fMRI scans. The 

second step was the preprocessing stage, wherein the 

input images were processed and a regression model was 

created. In the third step, feature extraction from sMRI 

containing the Gray Matter (GM), White Matter, and 

Cerebro Spinal Fluid (CSF) volumes of brain regions, 

Total Intracranial Volume (TIV), and surface thickness. 

Features for the rs-fMRI scan images are extracted using 

Functional Connectivity analysis (FC), graph theory, 

and ICA, followed by PCA in the fourth step. The 

extracted features are applied to various AI classification 

models to validate the significance of extracted features 

for autistic subjects. 

The Graph theory approach was employed to calculate 

the correlation coefficients between every voxel in the 

brain and to categorize them. Based on the correlation, a 

thresholding level was identified using which the 

redundant edges from the brain images are eliminated and 

only relevant brain regions are considered for detecting 

ASD. Figure (1a-b) depicts the whole methodology 

applied to the current work. 

 

 
(a) 

 
(b) 

 
Fig. 1: (a) Flow chart for the complete analysis; (b) 

Methodology flow chat 
 
Data Preprocessing 

Preprocessing was performed to remove external 
noise, such as physiological and thermal noise, and 

prevent the influence of uncertainties. The MATLAB, 
Statistical Parametric Mapping (SPM), and the Functional 

Connectivity (CONN) toolbox were applied to perform 
preprocessing. The preprocessing was executed 

individually on sMRI and rs-fMRI with different steps. 
The functional scans are processed in six different steps, 

which are as follows: (i) Functional realignment and 
unwarp (ii) Slice-timing correction, (iii) Outlier 

identification (iv) Direct segmentation and normalization, 
and (vi) Functional smoothing (Nieto-Castanon, 2020). 

The preprocessing steps for sMRI scans are registration, 
segmentation, and normalization. The original images, the 

pipeline of the preprocessing stages, and the preprocessed 
images are displayed in Fig. (2). 

Realignment: The MRI data was realigned with a 6-
parameter rigid-body affine transformation and least 

squares approach. The image co-registration was 
performed with the first image of the scan of the session 

considering it as a reference scan. Further, the scans were 
resampled using the b-spline interpolation so that the data 

the resampled data can be applied for motion and 
magnetic susceptibility interactions. 

Slice Timing Correction (STC): The slice acquisition was 
in interleaved mode and Repeat Time (TR) was 3, which was 

a comparative larger and needed to be corrected to remove 
any time difference effects on the slices. The temporal 

misalignment between different slices of the functional data 
was corrected using the STC process (Parker et al., 2017). 

The STC involves correcting and shifting the slices using 
slice Acquisition Time (TA) for the first slice of the TR 

parameters to ensure temporal alignment. 
Outlier detection: Possible outlier scans are detected 

using Artifact detection Tools (ART). A frame-wise 
displacement was determined at each time step by 

creating a bounding box of dimension 140180115 mm 
across the brain. The time series for each subject 

transformed into MNI template space using 12°C of 
Freedom linear affine transformation. The distorted 

BOLD signals and filtered signals with the outlier are 
shown in Fig. (3). 
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Fig. 2: Methodology flow chat 
 

 
 
Fig. 3: Outlier detection-sample output for single image demising 
 

Structural segmentation and normalization: The 

functional and structural data are normalized into a 

standard default Tissue Probability Map (TPMT1-152) 

template (Pecco et al., 2022). The segmentation was 
performed on the sMRI scans to achieve GM, WM, and 

CSF tissue types followed by resampling to 2 mm 

isometric voxels. The normalization was performed using 
forward deformation and B-Spline interpolation 

algorithms. The voxel size and resolution need to be 

adjusted to enhance the quality of normalized scans, the 

image voxel size was considered for resampling. 
Functional smoothing and filtering: The functional 

scan smoothening was achieved with an eight-mm Full 

Width Half Maximum (FWHM) Gaussian kernel with a 
spatial convolution, to maximize the Signal-To-Noise 

Ratio (SNR) to minimize the impact of residual variations 

in both functional and anatomical scans across different 
subjects. The ‘F’ statistic is a ratio of the mean square 

between and within a group. The noise removal for low-

frequency ranges or drift high pass filter was applied to 

the fMRI scans. The brain activity signals can be as slow 
as noise but not below the range of 0.008 Hz which is 

equivalent to a cycle below 125 sec. To preserve the 

significant signals and to remove the noise high pass filter 
was applied to the time series ranging from 0.008 Hz and 

0.09 Hz. The range of filtered signal was estimated to be 

from 13.6-40.2. The average ratio for the de-noised signal 

was 35.6 for all individuals. 

Feature Extraction and Feature Selection 

The data applied in the current work is high-

dimensional data with a small set of images, such 

scenarios are challenging and known as the curse of 

dimensionality. Several methodologies were applied 

under the trial-and-error strategy. Least Absolute 

Shrinkage and Selection Operator (LASSO), FeatureWiz, 

and RFE applied to sMRI scans for feature extraction. To 

perform the whole brain analysis, ICA was applied to rs-
fMRI scans for feature extraction. PCA algorithm applied 

to rs-fMRI scans for dimensionality reduction. Functional 

Connectivity maps and features were observed using 

Graph theory. 

Recursive Feature Elimination (RFE)-sMRI 

RFE is an ML-based wrapper-type feature selection 

methodology that applies ML methods to evaluate the 

significance of a feature. RFE is a recursive elimination 

process to reach a predefined count of features. 
Correlation analysis was performed to remove the highly 

correlated and redundant features. To achieve the most 

significant features, RFE was performed using Random 

Forest (RF), Support Vector Machine (SVM), and 

Logistic Regression (LR). 

Seed-Based Connectivity Maps (SBC)-rs-fMRI 

The spatial pattern of functional connectivity was 
observed from seed or Region of Interest (RoI)/seed to 
each voxel in the brain using the 32 HPC-ICA network 
ROIs. The FC is determined using Fisher-transformed 
bivariate correlation coefficients obtained using the 
weighted General Linear Model (GLM). The z-score for 
transforming the coefficients into a score is defined 
using Eq. (1): 
 
𝑧 = 0.5[𝑙𝑛(𝑙 + 𝑟) − 𝑙𝑛(𝑙 − 𝑟)]  (1) 
 
where, z is the z-score, r is the correlated coefficient and 

ln is the natural log. 
The coefficients are determined for each seed and 

target voxel, as shown in Eq. (2): 
 

r(x)=
∫ S(x,t)R(t)dt

( ∫ R2(t)dt ∫ S2(x,t)dt)
1
2

 (2) 

 
where, R is the average BOLD time series within an ROI, 
r is the spatial map of pearson correlation coefficients and 

Z is the SBC map of Fisher-transformed correlation 
coefficients for the ROI. 

ICA-rs-fMRI 

ICA performed a whole-brain analysis and extracted 
40 statistically Independent Components (ICs) to analyze 

the communication between brain regions. A Singular 
Value Decomposition (SVD) on the z-score normalized 
BOLD signal (subject-level SVD) is performed for each 
feature. Mathematical representation is given in Eq. (3): 
 
𝑋 = 𝐴𝑆 (3) 
 
where, X is the observed data matrix with dimensions’ n  m, 

n is the number of observations (samples) and m is the 

number of variables (features). S represents the matrix of 

independent source signals with dimensions’ n  m and A 
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is the mixing matrix with dimensions’ n  m. GICA3 back 

projection is used to compute the ICA maps associated with 

the same brain regions for each subject separately. 

Graph Theory 

A graph theory is applied to determine the correlation 

between the features and to estimate the correlated 

coefficients. In the graph, the nodes denote the regions 

and the edges are the connections. A threshold value is 

defined to remove the redundant edges or regions; only 

relevant regions are considered. Graph theory produces 

two essential features: Clustering coefficient, 

betweenness centrality, eigenvalue centrality, global 

efficiency, and modularity. 

Results and Discussion 

The most commonly used methods to analyze MRI 

data modalities are GLM, FC analysis, Voxel-Based 

Morphometry (VBM), and Surface-Based analysis 

(Ecker et al., 2017; Nickl‐Jockschat et al., 2012; Müller, 

2014). The study aimed to achieve the most significant 

features to optimize the classification accuracy for autistic 

neuroimages. Due to high dimensional data, 

dimensionality reduction was challenging to achieve. The 

selected features are discussed in detail and the 

classification accuracy for the sMRI scans is compared 

and evaluated using ML methodologies. 

Structural Features 

Morphological aspects for sMRI scans are - Gray 

matter volume within a particular region, Cortical 

thickness, that is, the average distance between the 

outermost (the pial surface) and the innermost layer of 

GM, and the surface area of the cortex. Curvature is the 

local folding pattern of the cortex, which is calculated by 

calculating the Gaussian curvature at every point on the 

cortical surface. Computational Anatomy Toolbox-

CAT12, applied to perform volumetric and surface 

analysis to the sMRI images. VBM calculates and 

compares the GM volume between both groups at the 

voxel level. The GM Volume (GMV), Total Brain 

Volume (TBV), and Total Intracranial Volume (TIV) are 

extracted as significant features for classification. Cortical 

thickness and surface area differences are measured using 

surface-based analyses. Surface-based analyses involve 

the reconstruction of the cortical surface and alignment of 

the surfaces across the subjects, followed by statistical 

analyses to calculate the differences in the cortical 

thickness or surface area between groups. The segmented 

regions GM (green), WM (pink), and CSF (blue) are 

shown in Fig. (4). 

RFE applied to all the 134 regions defined in the 

neuromorphometry atlas. Best performing features were 

observed as right caudate, left caudate, right cerebral WM, 

left cerebral WM, left lateral ventricles, left ventral dorsal 

caudate, left anterior cingulate gyrus, left central 

operculum, right occipital pole, Left superior parietal 

lobule. For WM analysis the volume variations are 

observed in the right cerebellum white matter, right 

cerebral white matter, right OCP occipital pole, Left INF 

LAT vent, right pallidum, right GRE gyrus rectus, brain 

regions where most of them are common for both GM and 

WM, but notable changes in WM was found in right Palli-

dum and Right GRE gyrus rectus. 

Functional Connectivity Analysis for fMRI 

SBC for individual subjects was implemented to measure 

the connectivity between seed and voxels. Figure (5a) 

depicts a default mode connectivity map for a single 

subject. Group-level analysis executed with GLM and 

voxel-level assumptions is performed using multivariate 

parametric statistical analysis. The cluster (set of adjacent 

voxels) evaluation and cluster-level implications are 

obtained using the parametric statistics. The selected 

clusters for group-level analysis are shown in Fig. (5b). 

The clusters are obtained using p-value, p<0.001 voxel-

level threshold, and a familywise corrected p-FDR <0.05 

for cluster-size threshold. 

 

 

 
Fig. 4: Gray matter, white matter, and CSF 

 

 
(a) 
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(b) 

 
Fig. 5: (a) First level SBC analysis for autistic brain; (b) Group 

level SBC analysis for autistic brain 

 

The ROI approach was performed on the 32 ROIs to 

observe the connectivity patterns among individual 

subjects and between groups. The ASD group has 13 

subjects and the NC group has ten subjects. 

The matrix display for the first-level analysis is 

displayed in Fig. (6a) and the group-level analysis is 

presented in Fig. (6b). Regions with the network strength 

are shown in the circular representation and different 

colors, where each color has a predefined strength, are 

shown in Fig. (6c). A 2D matrix display was generated to 

understand the network strength of all subjects better. 

Figures (7a-b) represent the upper triangle connectivity of 

the brain regions and connectivity strength for ASD and NC 

groups, respectively. The matrix displayed an observable 

difference in the network pattern among the groups. 

The selected graph theory features are global efficiency 

and clustering coefficient. The graph theory results for ASD 

and NC datasets are displayed in Figs. (8a-b), respectively. 

The ROIs selected are analyzed concerning the 

threshold value of 0.15, eliminating the redundant edges 

and nodes. If the clustering coefficient is 0.94, the graph 

states that 94% of the neighboring nodes are connected to 

the selected ROI. Results of the experimental analysis 

show that using the coefficients for all ROIs, the proposed 

approach effectively distinguishes the connectivity 

between the brain regions for both groups. 

ML Classification strategies were applied using 

structural feature sets to assess the significance of the 

features. The ML models were selected using high-

dimensional data based on the existing neuroimaging 

results. GM volumes for neuromorphometry regions are 

considered as features. Four ML models, including RF, 

LR, Gradient Boost, and Naïve Bays, were implemented 

with 40, 30, 25, 20, 15, and 10 features. The features for 

Naïve Bays are selected using select best and the chi-

square test. Classification accuracy of 80% was achieved 

with Naïve Bays using the features selected with a chi-

squared test. The highest classification accuracy of 

88.67% was achieved using SVM and RFE. 

 
 (a) (b) (c) 

 

Fig. 6: (a) ROI analysis for a single subject; (b) ROI analysis 
group ASD; (c) ROI functional connectivity analysis 

 

 
 (a) (b) 

 
Fig. 7: (a) Connectivity matrix for ASD; (b) Connectivity matrix 

for NC 

 

 
 (a) (b) 

 
Fig. 8: (a) Results of graph theory for ASD; (b) Results of graph 

theory for NC 

 

The comprehensive explanation of the features 

achieved by both imaging modalities proved the 

significance of features for specific analysis. The VBM 

and SBM analysis for sMRI provide the structural 

information for the disorder and are useful for exploring 

spatial differences. In contrast, the features extracted from 

rs-fMRI images, such as functional connectivity measures 

and network information, helped to study the brain's 

functional activities during the resting state. 
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SVM with RFE performed better than other classifier 

methods. The features collected with different methods 

were assessed using the classification accuracy achieved 
by distinct AI models. SVM has outperformed in multiple 

medical imaging studies because it can handle large 

volume data. RFE feature extraction works well with a 

low volume of data and a huge amount of features. 

Based on the achieved resulting images, it is 

confirmed that neuroimages in distinct modalities are 

noisy and attenuated by external signals such as 

mechanical fluctuations, physical movements, and other 

physiological effects. The pre-processing pipelines are 

implemented with multiple methodologies and achieved 

higher quality images for further analysis, which needs to 
be performed for classification and region of interest for 

autism disorder. The results and the visual analysis of pre-

processed images displayed the signal changes in the 

extracted time series for each voxel present in the number 

of frames of an MRI scan. The original scans and the pre-

processed scans provide a huge set of information but the 

noisy or raw images contain inaccurate information, 

which needs to be filtered using specific strategies to 

extract the data without noise. Medical image pre-

processing is a crucial step to achieve a higher accuracy 

rate. In the study, a comprehensive comparison was 

performed on the neuroimaging dataset modalities and 
presented the various levels of denoising. The 

deliverables of the work are the strategies and the results 

for future research works in the field of cognitive 

disorders using neuroimaging scans. 

Conclusion 

Autism is a condition with a cluster of comorbid 
conditions with no definite symptoms or biomarkers. In 

the current scenario, most of the work in autism detection 

is diverted to neuroimaging research. The study presented 

a comprehensive analysis of feature extraction strategies 

for dual modalities of autistic brains. Successful 

implementation of highly recommended methods for 

structural and functional images was performed. The 

result section discussed the features and classification 

accuracy for 23 images. Work with high-dimensional data 

is complicated and challenging due to the curse of 

dimensionality, overfitting, and poor generalization, but 

the presented work has achieved 88.67% accuracy. The 
contribution of the work is to present the best-performing 

feature extraction techniques for autism detection with 

less or high-dimensional data. The present work 

performed feature extraction for sMRI and rs-fMRI. The 

research aims to implement the functional features for the 

classification and discover the model to solve the current 

challenges. The future enhancement of the work suggested 

is including more data for analysis. The Deep Learning 

model is restricted to data limit and needs a large dataset; it 

can be another advancement to the current work. 
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