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Abstract: Trust is a broad term applicable in various contexts. Trust between 

electronic entities is complex to quantify, particularly in intricate networks. 

Traditional trust algorithms rely on historical trust values, requiring storage 

and access to past transaction details. Contextual variations further 

complicate trust calculation. Challenges in calculating trust include 

heightened computational complexities, managing information storage, and 

securing access to extensive datasets crucial for evaluation. This study will 

explore the implementation of a Radial Basis Function Neural Network 

(RBFNNet) to evaluate trust. This neural network effectively approximates 

functions, addressing complex computational challenges. Its efficacy 

depends on ample training data for modeling trust values. Synthetic data 

generation becomes crucial to surmount the scarcity of trust datasets. This 

study introduces a new definition of trust between electronic entities, a seven-

step Pure Synthetic Trust Data Set Generation (PSTDG) framework for 

generating artificial trust datasets, a new definition for validating generated 

trust data, and a method with three steps to authenticate the model for 

generating data. A process consisting of four steps was developed to design 

an RBFNNet model for determining trust values between electronic entities. 

Two experiments were conducted to determine trust values using the 

RBFNNet. A trust dataset was generated using the PSTDG-PeerTrust model, 

which incorporates the fundamental principles of trust assessment outlined 

in the PeerTrust model. The validation process was completed, and a new 

RBFNNet model PeerTrustRBFNNet was developed, utilizing optimal 

hyperparameters. During the second phase of experimentation, the Amazon 

Relational Database Service was used to exhibit the efficiency of the 

proposed approach in tackling real-world problems. The study determined 

that the PSTDG framework-generated models create valid synthetic trust 

datasets, and an RBFNNet effectively computes trust in digital environments. 
Moreover, novel definitions of trust and synthetic trust dataset validation 

were developed, contributing to the advancement of trust assessment 

methodologies in various contexts. 

 

Keywords: Data Generation, Electronic Trust, Synthetic Trust Data, 

Synthetic Trust Data Generation, Synthetic Trust Data Validation 

 

Introduction  

In the rapidly evolving digital landscape, the 

concept of trust is paramount, especially when it comes 

to interactions between electronic entities such as 

software systems, applications, and online services. 

Trust is a multifaceted concept that is fundamental to 

various domains, including service delivery, 

credibility, information security, and reliability 

(Alawneh and Abbadi, 2022; Singal and Kohli, 2016; 

Olmedilla et al., 2006; Grandison and Sloman, 2003; 

Gambetta, 2000). Many researchers provide various 

definitions for the concept of trust (Zacaria, 2023). 

However, each definition is relevant only within its 

specific context and assumes the measurability of trust. 

For instance, online banking services are trusted to secure 

financial information and downloaded apps are trusted to 

perform as advertised without compromising data. 
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Interactions become more dependable when grounded in 

trust (Yong-Sheng and Ying, 2010). Quantifying trust 

between electronic entities presents significant 

challenges, particularly within complex networks. 

Traditional trust algorithms rely heavily on historical data, 

requiring extensive data storage and access (Tahta et al., 

2015; Li and Ling, 2002; Aberer and Despotovic, 2001). 

This complexity is further compounded by contextual 

variations, highlighting the need for innovative methods 

to quantify trust. Trust is not symmetric, as it depends on 

the ability to act within a specific context (Sagar et al., 

2024; Alawneh and Abbadi, 2022; Grandison and 

Sloman, 2003). This implies that the level of trust Entity 

𝑉 places in Entity 𝑊 is different from the trust Entity 

𝑊 has in Entity 𝑉. Trust in an entity varies by context. 

For example, trust in an entity in the context of service 

delivery may not match trust in the context of 

credibility. Most existing trust assessments focus on 

information security. No standard list of contexts under 

the field of information technology and computer 

science could be found. 

Trust is essential in numerous real-world scenarios. 

Consider using smart contracts in block chain technology, 

where trust between decentralized applications ensures 

that transactions are executed as programmed without 

third-party interference. In online marketplaces like 

Amazon or eBay, trust determines whether buyers feel 

confident purchasing from sellers, relying on reviews and 

ratings as indicators. Another example is in autonomous 

vehicles, where trust between software components 

ensures that data from sensors is accurately processed to 

make safe driving decisions. Trust in medical software 

systems is crucial for accurate diagnosis and treatment in 

healthcare, ensuring patient data is handled securely and 

accurately. Within corporate environments, trust between 

different software applications allows seamless data 

integration and workflow automation, enabling efficient 

business processes. Across all these scenarios, having a 

reliable method to calculate and maintain trust can 

significantly impact the trustworthiness of the systems. 

As the digital world continues to grow and evolve, the 

need for precise and adaptable trust evaluation 

mechanisms becomes more critical, underscoring the 

importance of advanced computational models. 

Developing innovative methods to quantify and manage 

trust in these diverse contexts is essential for a more 

interconnected and trustworthy digital future. Despite 

trust's criticality in technology-driven systems, achieving 

a universally accepted definition applicable across all 

computational contexts remains elusive, reflecting a 

significant research gap. This study aims to address this 

gap by proposing a refined definition of trust tailored 

specifically to electronic environments. Beyond 

definitional challenges, quantifying trust presents 

practical impediments. Existing assessments primarily 

focus on information security contexts, necessitating 

diverse trust evaluation approaches adopting varied 

architectures for computing and managing trust values. 

However, increasing contextual complexity and 

network intricacies amplify the challenges of trust 

value calculations. 

Certain entities lack direct knowledge or experience 

from past transactions with other entities in a 

decentralized system. Algorithms designed to compute 

trust rely on these entities' historical trust values to 

calculate new ones. To accurately assess the 

trustworthiness of each entity relative to others, it is 

crucial to store and access detailed historical interaction 

data and trust scores within the network. Additionally, 

there is a significant research gap related to the increasing 

complexity of trust calculations, which is compounded by 

the intricate nature of electronic entity networks. 

Addressing this challenge, this study leverages the unique 

capabilities of the RBFNNet approach to quantify trust. 

The study outlines a four-step method for developing 

RBFNNet-based trust calculation models, highlighting 

their proficiency in approximating complex functions to 

mitigate inherent computational challenges. However, 

their efficacy depends on sufficient training data, posing 

a challenge due to the scarcity of trust datasets. To address 

this challenge, the study introduces the PSTDG 

framework, a comprehensive seven-step process designed 

to generate validated trust datasets across diverse 

contexts. This framework not only establishes a 

foundation for training robust RBFNNet models but also 

addresses the gap between data scarcity and model efficacy. 

A pivotal aspect of the PSTDG framework is the 

rigorous validation of synthetic trust datasets. This 

validation process introduces a novel definition for 

assessing synthetic trust datasets, employing a three-step 

validation approach. By ensuring the validity of synthetic 

trust data, this framework enhances the development of 

precise trust calculation models critical for advancing 

trust evaluation in complex decentralized networks. The 

practical application of the PSTDG framework is 

demonstrated through the development and validation of 

two PSTDG models, specifically PSTDG-PeerTrust and 

PSTDG-ARDS. In this study, the models named 

PeerTrustRBFNNet and ARDSTrustRBFNNet are trust 

calculation models developed using an RBFNNet. The 

study successfully implements an alternative approach to 

trust computation utilizing the RBFNNet. 

Trust between Electronic Entities 

In today's digital age, trust gains added relevance, 
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particularly with the internet's pervasive influence on 

various aspects of human existence. As millions engage 

in daily online transactions, data mismanagement poses 

significant risks, prompting the crucial question of how 

trust is established in the virtual space, especially between 

electronic entities. In this section, trust between electronic 

entities will be defined. The approach employed involves 

two steps. Firstly, a comprehensive review of the 

literature explores various definitions of trust. Secondly, 

commonalities and differences are identified, leading to 

the recognition of three dimensions of trust and a novel, 

comprehensive definition (Zacaria, 2023). 

Definition of Trust 

Mui et al. (2002) proposed a computational model of 

trust and reputation based on their study. They defined 

reciprocity as a mutual interchange of actions and 

described reputation as an agent's belief shaped by 

previous behaviors. The research proposes that trust is 

subjective and based on previous interactions with an 

entity. Gambetta (2000) defined trust as a subjective 

evaluation of the anticipated performance of an agent. 

Hang et al. (2012) studied service selection based on 

trust in composite services, offering a method to assess 

trust in individual components. In addressing the 

challenge of similar services, they emphasized that 

customers evaluate required functionalities and Quality of 

Service (QoS). QoS, subjective and dependent on 

preferences, requires exchangeable information and 

dynamic monitoring. In service-oriented systems, trust 

is described as a probability-driven assessment of 

service quality.  

In 2000, an attempt was made by Witkowski and Pitt 

established a trust representation for software agents, 

characterizing it as the extent of reliance 𝑉 places on 𝑊 

within the framework of selecting agents in a context 

involving multiple autonomous agents. This involves the 

selection of agents within a trading community 

comprising multiple agents (Witkowski and Pitt, 2000). 

Au et al. (2001) introduced a trust paradigm for cross-

organizational interactions on extranets, which are 

extensions of intranets that allow external user access. The 

authors identify extranet types, trust management 

requirements, and infrastructure approaches. Their 

proposed framework distributes trust on extranets across 

organizations, detailing protocols for establishing trust 

within the network of trust and includes an automated 

system for trust derivation and composition. 

Wang and Vassileva (2003) introduced a trust 

framework utilizing Bayesian networks, describing an 

approach to construct reputation within Peer-to-Peer 

(P2P) networks through endorsements. They outlined 

definitions and attributes of trust and reputation, 

highlighting that trust is formed through firsthand 

interactions between two entities. 

After surveying various definitions, Grandison and 

Sloman (2003) established a definition for trust, 

specifically in the context of internet applications. They 

discussed trust relationship properties, different types of 

trust, and trust management. Emphasizing the context-

specific nature of trust, they noted that a trustor-trustee 

relationship is not absolute, relying on the ability to 

perform specific tasks within certain circumstances. Trust 

exhibits non-symmetry and non-transitivity, involving 

various classes, such as infrastructure trust, trustee 

certification, entrustment, trust in resource access, and 

trust in service provision. Trust is earned through secure 

and reliable dealings. For internet applications, they 

created SULTAN, a Simple Universal Logic-oriented 

Trust Analysis Notation. SULTAN offers capabilities for 

specifying, analyzing, and managing trust connections. 

The parameters of trust connections are established by a 

sequence of steps, each assigned a trust level, along with 

conditions that need assessment for the trust relationship 

to be applicable. 

The interpretation of trust varies, depending on the 

context, with a focus on policy-based and reputation-

based trust as the primary methods for managing trust, 

especially in the lifecycle of virtual organizations and 

the control of resource access in grid computing 

(Olmedilla et al., 2006).  

Mohsenzadeh and Motameni (2015) introduced 

TMFM, a fuzzy mathematics-based trust model for the 

cloud computing environment. They emphasized the 

complexity of trust relationships, noting their subjectivity, 

non-symmetry, partial transitivity, dynamic nature, 

context-dependency, uncertainty, and evaluation 

challenges. The model calculates fuzzy direct trust 

relations among cloud entities based on direct 

experiences, defining the subjective probability of trust as 

an entity's ability to accomplish a task within a designated 

time frame and context, guided by recommendations from 

trustworthy entities. 

Das and Debnath (2020) elucidate that trust within 

computer networks is the expectation of one node towards 

another, establishing a relational foundation based on 

predefined criteria and contextual factors. This mutual 

trust mechanism bolsters the confidence of nodes prior to 

engaging in communication exchanges. 

A survey focusing on trust evaluation based on 

machine learning was conducted by Wang et al. (2021). 

This survey shed light on trust evaluation as a process 
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aimed at quantifying trust using various influential 

attributes. However, this evaluation process encountered 

significant challenges, including the scarcity of essential 

evaluation data, the need for extensive big data 

processing, the demand for simplified expressions of trust 

relationships, and the expectation of automation. These 

obstacles underscore the complexity and pressing need for 

advancement in trust evaluation methodologies. 

Lu et al. (2023) defined trust in the context of open 

microservices systems as the belief held by a truster in a 

trustee, wherein the trustee is expected to provide or 

accomplish the services it claims it will provide and 

satisfy the truster’s expectations within a specific context 

for a designated period of time. 

Trust Dimensions 

The definitions of trust discussed above will be 

analyzed in this section to identify the dimensions of trust, 

considering both similarities and differences. Researchers 

often tie trust to specific contexts, such as reputation, 

service selection, or internet applications. Context, a key 

factor in trust assessment, varies across different trust 

definitions. Notably, trust is considered context-

dependent by various authors Lu et al. (2023); Zacaria 

(2023), and its versatility allows effective application in 

diverse settings, such as security, service delivery, 

reliability, and credibility. 

Trust can be quantified as a probability, as highlighted 

in definitions provided by Das and Debnath (2020); 

Mohsenzadeh and Motameni (2015); Hang et al. (2012); 

Gambetta (2000). Various trust models employ different 

algorithms for quantification, especially in the security 

context (Mohsenzadeh and Motameni, 2015; Wang et al., 

2008; Wang and Chi, 2006; Au et al., 2001). The 

quantification process considers parameters, such as 

historical encounters, set standards, and direct experiences, 

reflecting the multifaceted nature of trust assessment.  

Trust establishment involves retrieving information 

from various origins (Wang et al., 2021; Hang et al., 2012; 

Wang and Vassileva, 2003; Mui et al., 2002; Au et al., 

2001; Gambetta, 2000; Witkowski and Pitt, 2000; 

Denning, 1993). The subjective nature of trust emphasizes 

the need for information that can be obtained from 

customers, network peers, given standards, and other 

sources. In a P2P network, transaction feedback is a key 

information source, utilizing parameters, such as peer 

trust, satisfaction, transaction frequency, and size. 

Websites assess user behavior, using parameters, such as 

time spent and page visits to enhance information 

confidence. Entities with given standards combine 

information from those standards with customer 

satisfaction feedback for trust calculation. Increasing 

parameters in trust calculation further fortify confidence 

by capturing a broader spectrum of relevant factors, 

ensuring a robust and adaptable assessment.  

As discussed above, trust encompasses three 

dimensions: The context, calculation or quantification, 

and information sources for the calculation. The required 

information depends on the algorithm and context. 

New Definition of Trust 

Building on trust definitions and subsequent insights, 

it is evident that trust is often contextualized in its 

application. However, its generic nature allows broad 

applicability. The probabilistic calculation of trust is 

underscored, emphasizing the need for diverse 

information sources. Recognizing the need for a versatile 

definition, three vital dimensions are identified. Informed 

by these dimensions, trust is defined as follows, 

acknowledging its multi-dimensional essence shaping trust 

dynamics: “Trust is a quantified belief or a probability of 

belief of an entity, which can be calculated by accessing or 

using information from different sources which are based on 

some set of standards or guidelines, to have some desired 

property within a specified context” (Zacaria, 2023). 

Trust Calculation Using Neural Networks 

Determining trust values is a complex and time-

consuming task due to various factors, encompassing 

network complexity, information access, data 

management, data storage, and context complexity. Feed-

forward neural networks include multi-layer perceptrons and 

RBFNNets. An RBFNNet offers a simpler and faster 

alternative to multi-layer perceptron networks (Shakya et al., 

2011). With a straightforward training process and 

improved resilience to input disturbances, an RBFNNet 

effectively handles patterns not included in the training 

dataset, making them widely applied across various 

domains. The RBFNNet is highly regarded for its ability 

to learn more quickly compared to other feed-forward 

networks. This feature positions it as a well-suited model 

to tackle approximation challenges (Ruslan et al., 2013; 

Chien-Cheng et al., 1999). RBFNNets are known for their 

simplicity in topology structure and explicit learning 

process. They are effective function approximators, 

especially when it comes to solving non-linear problems 

(Lin and Wu, 2011). Broomhead and Lowe (1988) 

showed how an RBFNNet can transform non-separable 

linear problems into separable ones. RBFNNets find 

extensive application in various domains, encompassing 

tasks such as the identification of systems with non-linear 

characteristics and forecasting within the context of temporal 

analysis (Moody and Darken, 1989; Broomhead and Lowe, 

1988). Consequently, it is selected as the trust calculation 

technique proposed in this study. 
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The primary objective of this research is to create 

another approach for trust computation, employing an 

RBFNNet that can help resolve some of the issues 

mentioned earlier. To achieve this goal, the study will 

focus on two primary objectives: 

 

1. Generating training data 

2. Building an RBFNNet trust model 

 

After the completion of the initial objective, the issue 

of not having an extensive dataset to use as training data 

will be resolved. Therefore, the second objective is 

building an RBFNNet trust model. In the next section, the 

challenges in collecting trust data will be discussed. 

Challenges in Collecting Trust Data 

In dynamically shifting scenarios, building trust values 

for electronic entities through training an RBFNNet 

demands sizable datasets. To leverage diverse data 

sources, conventional algorithms encompass prior 

experiences, human behavior, recommendations, 

feedback, and adherence to W3C methodologies for trust 

calculation (Al-Shargabi, 2016; Singal and Kohli, 2016; 

Tahta et al., 2015; Xiong and Liu, 2004; W3C, 2002). An 

architectural framework is imperative for submitting and 

retrieving feedback, trust value computation, and trust 

value management. However, various systems may adopt 

distinct data storage and retrieval methods from past 

transactions, which may introduce complexities in this 

process (Xiong and Liu, 2003). 

The utilization of trust-related training data poses 

several challenges. The confidentiality of the data makes 

it difficult to acquire from customers and suppliers. 

Acquiring data for conventional algorithms and 

suggestions can be arduous, and the absence of previous 

interaction experience hinders trust assessment when 

interacting with a software component or program for the 

initial interaction. Inaccurate feedback is a potential 

concern, influencing trust values. Accessing stored data 

may impact the speed and calculation time of the trusted 

network. Consequently, collecting data for trust 

calculation can be costly and time-consuming, with 

privacy concerns limiting trust data disclosure.  

To overcome data scarcity, traditional algorithms 

simulate real-world data (Xiong and Liu, 2003-2004; 

Thacker et al., 2004; Wang and Vassileva, 2003; Aberer and 

Despotovic, 2001). However, this study aims to generate 

synthetic data to supplement the real-world dataset and 

address data scarcity. 

Synthetic Data Generation and Validation 

One way to address the limited availability of real-

world training data is by programmatically creating 

artificial data (Anderson et al., 2014). It has been 

extensively studied and effectively utilized in various 

fields, including forecasting the cash availability at 

ATMs (Ranja et al., 2023), visually identifying leaks in 

industrial systems (Gitzel et al., 2021), traffic generation 

(Bhaumik et al., 2015), renewable energy technology 

performance modeling (Pillai et al., 2014), building 

deterioration modeling (Scheidegger and Maurer, 2012), 

fraud detection (Barse et al., 2003), and more. Realism 

is a significant aspect to consider when it comes to the 

caliber of a synthetic dataset (Tsvetovat and Carley, 

2016). Datasets of this kind should accurately represent 

real-world data and meet certain standards to ensure 

their accuracy. 

Synthetic Trust Data Validation and the Definition 

of Validation 

Ensuring the precision of the synthetic trust data 

generation model is crucial, as inaccuracies can 

compromise the reliability of the RBFNNet model for 

predicting trust. Validation entails examining the model's 

results, particularly the trust dataset it produces. 

Rykiel (1996) defined validation as determining 

whether an ecological model meets performance 

requirements for its intended use. According to Carley 

(1996), validation in computational modeling pertains to 

the procedures and methods used to ensure that the 

generated or simulated data aligns with genuine data. The 

author characterizes authentic data as information 

obtained via experimentation, fieldwork, archival 

research, or survey analyses. Sargent (2020) outlines 

validation as the procedural aspect of ascertaining the 

accuracy of a model's outcomes within its intended scope. 

Thacker et al. (2004) delineate a procedure for amassing 

supporting proof to showcase the accuracy of a model 

within its designated application. Kleijnen (1998) 

characterizes validation as a systematic procedure to 

verify if a simulation model faithfully mirrors the actual 

system. Describing validation as a method to evaluate the 

accuracy of a calculation approach within its designated 

real-world application emphasizes the importance of 

ensuring reliability in practical scenarios (Jones et al., 

2004). Basile and Ferrara (2023) underscore that 

validating systems involves ensuring compliance with 

requirements through rigorous testing, particularly for 

critical applications, which can be resource-intensive. 

According to Law (2019), validation is elucidated as a 

procedure for establishing whether a model accurately 

portrays the real world in alignment with the study's 

planned aim or goals. 

New Definition of Validation 

Validation, as a methodical process, exhibits 

varying interpretations shaped by the distinct needs of 

users or researchers. This crucial step involves 

verifying the model's precision in faithfully mirroring 

real-world conditions, as highlighted by researchers 
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such as Basile and Ferrara (2023); Thorve et al. (2022); 

Law (2019); Jones et al. (2004); Kleijnen (1998); 

Carley (1996). The overarching goal of validation is to 

furnish compelling evidence attesting to the model's 

accuracy, ensuring it aligns sufficiently with its intended 

use, as emphasized by Thacker et al. (2004). 

Within the domain of generated trust data, the 

definition of validation is formulated as follows, drawn 

from the previous discussion: “Validation is a process or 

method to provide evidence that can be used to determine 

whether the synthetic trust data generation model is 

generating a valid trust dataset under its specific scenarios 

for its intended use” (Zacaria, 2023). 

Sensitivity and What-if Analyses 

Validating synthetic data against real-world data is 

crucial for accuracy. Depending upon the availability of 

real data, various validation methods are used, such as 

statistical validations, graphical plots, Schruben-Turing 

tests, and Sensitivity and What-if Analyses (SWA) (Law, 

2019; Kleijnen, 1998). Effective validation of most of 

these techniques necessitates the availability of real-

world data. This research verifies a PSTDG model, 

elaborated in the upcoming section, by applying the 

novel validation definition presented in the previous 

section. Owing to the limited availability of trust data 

from real-world sources, conventional validation 

methods become impractical. In place of these, 

qualitative expert knowledge is used to determine how 

input variables affect the synthetic trust data generation 

model's output behavior. The validation process 

involves checking whether the model aligns with this 

expert knowledge (Kleijnen, 1998). When real-world 

data is unavailable, resorting to an SWA proves 

valuable for the validation process. 

SWA investigates input-output relationships in a 

model (Nguyen et al., 2018; Chan et al., 2010; Kleijnen, 

1997). The sensitivity analysis examines the impact of 

extreme values, while the what-if analysis explores the 

effects of alterations to parameters or variables. Multiple 

runs are conducted to account for changing factors 

across different scenarios by varying specific input 

factors while keeping others constant. This study uses 

SWA to validate the trust dataset generated by the 

simulation model. There are various ways to validate 

data, such as mathematical, statistical, and graphical 

methods (Christopher Frey and Patil, 2002). Graphical 

methods visually represent trust data changes with 

different inputs. The ultimate aim is to create a reliable 

trust calculation method using an RBFNNet without 

comparing it to other methods. Graphical methods 

provide sufficient validation for the dataset. 

Scatter plots are widely recognized for their simplicity 

and efficacy in aiding comprehension of the association 

between factors (Chan et al., 2010; Kleijnen, 1997). This 

study will use a scatter plot to display model output on the 

𝑧-axis and one or two different input variables on the 𝑥- 

and 𝑦-axes, respectively. 

SWA of the trust dataset will be done through the 

following steps: 

 

1. Compile what-if scenarios based on expert 

knowledge of trust calculations 

2. Generate the trust dataset and create scatter plots for 

each scenario 

3. Analyze the scatter plots to evaluate the consistency 

between the visual representation of trust data 

changes and expert knowledge 

 

If the generated graphs align with the expert's 

expectations, the data generation model is considered 

valid or suitable for its designated purpose. Hence, this 

procedure functions as a means of validation according 

to the new definition provided in the section above. 

PSTDG Framework 

The PSTDG framework given in Fig. (1) will be 

employed to produce a Pure Synthetic Trust Dataset 

(PSTDS) for assessing trust in this research. It is a 

structured approach that involves three stages: PSTDG 

model development, validation, and PSTDS 

generation. The first step of the framework is to 

determine why it is better to use a PSTDS instead of a 

real-life trust dataset. Thereafter, the second step 

involves collecting all relevant knowledge, which 

includes expert insights on trust calculation. Rules or 

guidelines function as constraints in the PSTDG model 

(Zacaria, 2023). 

To create the trust data generation model, it is 

important to compile these constraints in a step called 

"Compile". In this step, the emphasis is on identifying 

how the expert knowledge uncovered in the second step 

has the potential to be utilized in computing the trust 

value. Following the compilation of constraints, it is 

necessary to decide on calculating the trust values and 

implementing the constraints based on specific needs or 

situations. In the PSTDG framework, the "Develop" 

stage involves creating a model for generating trust data. 

The development of an appropriate algorithm or 

program for the PSTDS generation must be done. The 

validation step aims to determine if the PSTDG model 

produces a valid trust dataset. The section titled 

"Sensitivity and What-If Analyses" explains how to 

validate a PSTDG model.  
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Fig. 1: PSTDG framework 

 

The model or system for generating a PSTDS must be 

able to create data based on particular circumstances or 

defined parameter values. In the "Feed Input" step, the 

input parameter values required for generating a PSTDS 

need to be determined. The last stage in the PSTDG 

framework is the generation of a PSTDS. 

The chosen constraints, rules, and input parameter 

values in Steps 3 and 6, respectively, will guide the 

creation of the synthetic trust dataset.  

Materials and Methods 

The construction of a model that utilizes an RBFNNet 

to discern trust levels within electronic entities, a detailed 

process comprising four sequential steps, is undertaken as 

depicted in Fig. (1). The interconnection between the 

developed PSTDG framework and this experimental 

design process is visually depicted in the same figure. The 

four consecutive stages within this experimental design 

procedure unfold in the following manner: Firstly, the 

development of a PSTDG model ensues, employing the 

initial four steps outlined in the PSTDG framework 

(Fig. 1). Subsequently, the PSTDG model undergoes 

validation, utilizing the recently introduced definition of 

validation explained in the preceding section. This 

validation process incorporates the fifth step in the 

PSTDG framework and will be extensively discussed in 

the forthcoming sections. Continuing, the approach to 

creating a PSTDS using the validated PSTDG model is 

clarified, encompassing the subsequent steps in the 

PSTDG framework. Finally, the development of the 

suggested RBFNNet model designed for trust calculation 

is detailed, outlining the utilization of the generated 

PSTDS in subsequent sections. 

Two experiments were conducted in this study. In the 

first experiment, a trust model named PeerTrustRBFNNet 

is formulated, utilizing the trust model introduced by 

Xiong and Liu (2004) through the process structured in 

four steps. The objective of the second experiment was to 

illustrate the practicability of the proposed solution in 

real-world applications. To this end, the experiment 

utilized the Amazon Relational Database System (ARDS) 

(Amazon RDS Service Level Agreement, 2024; 2019). 

Experiment 1- PeerTrustRBFNNet 

PSTDG-PeerTrust Model Development 

Firstly, the development of a PSTDG model ensues, 

employing the initial four steps outlined in the PSTDG 

framework (Fig. 1): 

 

1) Identification of the Necessity for SDG 

 

To effectively train an RBFNNet trust model, it is 

imperative to have a significant trust dataset. This 

requirement was explicitly recognized in the section titled 

"Challenges in Collecting Trust Data," underscoring the 

essential need for generating a comprehensive trust dataset: 

 

2) Expert knowledge gathering 

 

During this phase, extensive knowledge, including 

qualitative expert insights into trust data, is gathered. As 

outlined by Xiong and Liu (2004), trust among peers in 

P2P electronic communities relies on five crucial 

elements: Satisfaction derived from peer feedback, the 

extent of feedback in transaction quantity, reliability of 

the source providing feedback, transaction context, and 

community context. These factors play a pivotal role in 

understanding and assessing the dynamics of trust within 

P2P electronic communities. 

The following were the identified expert knowledge 

pertaining to the calculation of a peer's trust value using 

Xiong and Liu PeerTrust theoretical trust calculation model: 

 

1. The trust value of a peer should increase, based on the 

satisfaction gained from interactions with other peers. 

This new trust value should vary directly with the 

level of satisfaction received 

2. The trustworthiness of the interacting peers ought to 

scale directly with the magnitude of the transaction 

3. The feedback provided by a trusted peer should carry 

more weight 

4. The trustworthiness value needs to be computed, 
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considering all the feedback received previously 

5. The trust value might vary, depending on the 

community context factor, where the community 

context factor includes rewarding peers for giving 

feedback and having digital certificates: 

 

3) Compile constraints 

 

As per the findings of Xiong and Liu (2004), trust 

among peers in P2P electronic communities can be 

calculated in various ways based on different contexts. 

Users are empowered with the freedom to opt for one of 

the three approaches listed below to calculate trust values. 

In Instance 1, the basic trust matrix can be utilized, 

considering only the weighted average of transaction 

satisfaction. Instance 2 incorporates the transaction 

context factor, accounting for factors such as transaction 

size, and Instance 3 includes both the transaction and 

community context factors. The latter, Instance 3, is 

chosen in this study for trust calculation in the PSTDG-

PeerTrust model development, as it comprehensively 

considers all five crucial aspects identified by Xiong and 

Liu (2004). This choice is informed by expert knowledge 

1 through 5, ensuring a holistic evaluation of a peer's trust 

value. The trust equation is given below: 

 

T(a)=α∙ ∑ S(a,i)I(a)
i=1 ∙Cr(p(a,i))∙TF(a,i)+ β∙

F(a)

I(a)
 (1) 

 

where, T(a) represents the trustworthiness score of peer a, 

I (a) is the overall count of transactions peer a conducted 

in the recent time frame, (and Sa, I)  is the quantity of 

satisfaction where the peer gains for the ith transaction. In 

addition, α  represents the weight assigned to the 

transaction context factor, while β signifies the weight 

assigned to the community context factor, p(a, i) is the 

other participating peer in peer a n's ith 

transaction, Cr(p(a, i)) represents the credibility of the 

interacted peer in the ith transaction, determined as a 

function of trust value and is given below, and the count 

of the feedback peer a gave to others is represented by 

F(a).Cr(p(a, i)) is defined as follows: 
 

Cr(p(a,i))=
T(p(a, i))

∑ T(p(a,j)
I(a)

j=1
)
 (2) 

 

The subsequent section will provide detailed information 

on the evolution of the PSTDG-PeerTrust model, 

representing the fourth step in the PSTDG framework: 
 

4) Develop PSTDG-PeerTrust model 
 

In this experiment, Instance 3 is implemented by 

assigning equal importance or weight to the transaction 

and community context factors, ensuring comprehensive 

consideration of all five critical factors identified in this 

section. The model is executed through two stored 

procedures using MS SQL code. The first procedure 

creates peers, assigns initial trust values, and determines 

interaction details, while the second procedure updates 

trust values based on feedback, credibility, transaction 

details, and context factors. The transaction context involves 

classifying transactions by size. The latter was classified into 

categories, such as small, medium, large, or extra-large. 

Validation of the PSTDG-PeerTrust Model 

The validation process for the PSTDG-PeerTrust 

model followed the definition outlined in the section titled 

“New Definition of Validation”. The validation took place 

during the fifth step of the PSTDG framework. 

The initial phase of the validation process was to 

compile what-if scenarios based on expert knowledge of 

trust calculation. A valid dataset must satisfy all identified 

expert knowledge, and all what-if scenarios were 

compiled using this knowledge. If the visual 

representations created from the data align with the 

expected outcomes based on expert knowledge, the model 

for generating the data can be regarded as valid for its 

designated application. Thus, trust data with scatter plots 

were created based on the what-if scenarios. The resulting 

graphs were analyzed to see if trends matched the expert 

knowledge (Zacaria, 2023). Below is an example of a what-

if analysis conducted on the PSTDG-PeerTrust model. 

According to expert knowledge 1, given above, the 

new trust value between two peers should depend on the 

level of satisfaction received after an interaction. In other 

words, the more satisfied a peer is with the interaction, the 

greater their updated trust value ought to be. The 

following steps were taken to validate the PSTDG-

PeerTrust model. 

Step 1: How is the level of trust attributed to Peer 1 

affected as the satisfaction level from other peers 

gradually rises, varying from a minimum of (0) to a 

maximum of (0.999) throughout a sequence of 

transactions (Zacaria, 2023)? Peer 1 engaged in a series of 

transactions with other peers. Following each transaction, 

the trustworthiness rating of Peer 1 was computed, 

considering a linear increase in the satisfaction level from 

the other peer while keeping all other parameters constant. 

Step 2: In this scenario, the following parameters were 

held constant: 

 

• The total transaction count was set at 1,000 

• The overall peer count included 1,001 individuals 

(Peer 1-1001), with Peer 1 engaging in interactions 

with all other peers 

• The value associated with the transaction context, 

specifically the transaction size, was designated as 1 

• All peers commenced with an initial trust value of 1 

• The weight factors, denoted as 𝛼 and 𝛽, were both 

set to 0.5 
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Fig. 2: Trust value when the satisfaction received is 

increasing linearly 

 

As part of the transaction context factor, a random 

value within the specified ranges was assigned to each 

transaction based on size. For extra-large transactions, a 

randomly assigned value between 0.75 and 1.0 was used. 

Large transactions were assigned values from 0.5-0.75, 

medium transactions from 0.25-0.5, and small 

transactions from 0-0.25. 

The plot in Fig. (2) illustrates the new trust value of Peer 1 

on the 𝑦 -axis plotted against the satisfaction derived from 

other peers on the 𝑥-axis over the course of 1000 transactions. 

Step 3: The graph in Fig. (2) demonstrates the 

fluctuation in the trust value of the interacting peer, 

moving from 0.5-0.749, in response to changes in the 

‘satisfaction received from the other peer’ factor ranging 

from 0-0.999 while maintaining constant values for all 

other parameters. 
The plot displays an almost linear correlation between 

the "satisfaction received from the other peer" parameter 

and the "new trust value of the interacting peer". The 

trustworthiness rating of the interacting peer escalates as 

the "satisfaction received from the other peer" parameter 

goes up. Figure (2) shows that the satisfaction received 

directly influences the new trust value. Thus, the data 

satisfies the identified expert knowledge given above. 

In the next section, PSTDS generation using the 
PSTDG-PeerTrust model will be discussed. 

PSTDS Generation Using PSTDG-PeerTrust Model 

Steps six and seven of the PSTDG framework 

involved generating a PSTDS. In total, the PSTDG-

PeerTrust model generated 10000 data points with 14 input 

variables. These variables include the interacting peer’s 

name, the identity of the another peer involved in the 

interaction, the size of the transaction, the transaction size 

value, an indication of whether the interacting peer 

received feedback from the other peer, the amount of 

satisfaction obtained from the other peer, an indication of 

whether the other peer received feedback from the 

interacting peer, the amount of satisfaction received from 

the interacting peer, the interacting peer’s existing trust 

value, the existing trust score of the other peer, the total 

number of feedback given by the interacting peer, the total 

number of feedback given by the other peer, and the 

updated trust values for both interacting and other peers 

after the transaction. 

Construction of PeerTrustRBFNNet Model 

The generated PSTDS was used as a time series by 

implementing sliding windows. This was utilized to build 

the proposed PeerTrustRBFNNet model. The process 

involved three stages: Preprocessing the data, determining 

the optimal RBFNNet model, and assessing the best 

model. Data preprocessing can enhance the accuracy of 

an Artificial Neural Network (ANN) model, reduce 

computational costs, and expedite the learning process 

(Koval, 2018; Kuźniar and Zając, 2017; Nawi et al., 2013). 

In addition, preprocessing the input variables can improve 

the matching of predicted output (Koval, 2018; Kuźniar and 

Zając, 2017). As an ANN can only process numerical data, 

some inputs were converted into one-hot encoded binary 

values. As per the requirement of the ANN, the data was 

normalized to the range of [0, 1] to ensure equal treatment of 

all values (Koval, 2018). After preprocessing, the PSTDS 

was randomly partitioned into training (70%), validation 

(20%), and test sets (10%). 

To construct an accurate RBFNNet model for 

determining trust scores among digital entities, 

appropriate model hyperparameters were chosen. The 

hyperparameter optimization system was developed using 

Python 3.9.5, TensorFlow 2.5 library, and Keras 2.5 

application program interface. Suitable model 

hyperparameters were selected by training candidate 

RBFNNet models with the Adam optimization algorithm 

and randomly sampled hyperparameters. The random 

search is an efficient method widely used for 

hyperparameter optimization (Li et al., 2021; Bergstra 

and Bengio, 2012). All experiments were conducted on an 

Intel Core i7-8550U CPU clocked at 1.80 GHz with 

8.00 GB of RAM (Zacaria, 2023). 

Prior to searching for the best hyperparameters, a search 

space for hyperparameters was established. In Table (1), the 

bounds of the hyperparameter search space for the 

PeerTrustRBFNNet are presented. To establish these 

boundaries, some preliminary experiments were conducted. 

The search for the best hyperparameters involved 

assessing 162 PeerTrustRBFNNet models during 24 h. The 

faster hyperparameter optimization in the first experiment, 

compared to the second experiment, was due to the 

discovery of an early successful PeerTrustRBFNNet 

model. The RBFNNet model was evaluated by measuring 

the Mean Square Error (MSE) value on the test sets. A 

value closer to zero indicates improved model 

performance, as emphasized by Elzwayie et al. (2017). 
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Table 1: Hyperparameter search bounds for 

PeerTrustRBFNNet model 

Hyperparameter Minimum value Maximum value 

β (bias of output 0.0 2.0 

layer) 

Hidden nodes 1 200 

Time series sliding  1 15 

window size 

Learning rate 10−6, 10−5, 10−4, 10−3, 10−2, or 10−1 

 

In the next section, the second experiment will be 

discussed. 

Experiment 2-ARDSTrustRBFNNet 

Experiment 1 detailed the development of the 

RBFNNet trust model, named PeerTrustRBFNNet, 

utilizing the trust model introduced by Xiong and Liu 

(2004). The central emphasis was on validating the trust 

data generation model, PSTDG-PeerTrust, taking into 

account possible errors in the program's design, data 

handling, and trust quantification. Experiment 2 

demonstrates the proposed solution by employing the 

Amazon Relational Database Service (ARDS) as an 

example, with a specific emphasis on the context of high 

availability and durability. This experiment also 

underscores the importance of acquiring expert knowledge 

and calculating trust values, addressing the challenge of 

lacking predefined algorithms or equations for the ARDS 

trust calculation. 

PSTDG-ARDS Model Development 

The initial four elements of the PSTDG framework, 

presented in the section titled "PSTDG Framework" and 

demonstrated in Experiment 1, will be utilized in 

developing the data generation model referred to as 

PSTDG-ARDS: 

 

1) Identification of the Necessity for SDG 

2) The necessity is explained in the section titled 

"Challenges in Collecting Trust Data" 

3) Expert knowledge gathering 

 

In this comprehensive process, all information, 

including qualitative expert insights on trust data, is 

gathered. According to the new definition of trust, trust 

calculation entails utilizing information from sources 

aligned with standards or guidelines, leading to the 

attainment of desired attributes for trust values. These 

properties depend on the data used or the applied 

standards or guidelines. Determining expert knowledge 

involves identifying input sources, entity features, critical 

factors for trust evaluation, and applicable standards. In 

the case of Experiment 1, an algorithm for this purpose 

was available, but the absence of one for the ARDS prompts 

an examination of its Service Level Agreement (SLA), 

published features, and standards to gather expert knowledge 

in the contexts of high availability and durability. The ARDS 

has specific features and standards, including “Automated 

Backups”, “Database Snapshots”, “Multi-AZ 

Deployments”, and “Quick Disaster Recovery” within the 

context of high availability and durability (Amazon RDS 

features, 2024). The ARDS specifies an SLA in terms of 

Monthly Uptime Percentage (MUP), serving as a standard 

for trust evaluation. In the calculation of trust value within 

the realm of high availability and durability, it is essential 

to consider both the SLA and MUP or the percentage 

availability of all features offered by the ARDS within this 

specific category. 

Following an evaluation of the ARDS's SLA, MUP, or 

percentage availability, along with the examination of its 

features within the scope of high availability and 

durability and conventional trust calculation algorithms, a 

set of discernible parameters emerges. These parameters 

are used to compute trust within the ARDS’s high 

availability and durability context. This encompasses 

aspects such as the number of features provided in this 

specific context and the percentage availability or success 

of key features. 

The parameters also include the total number of 

transactions conducted, the outcome of credit return 

success or failure in transactions, the cumulative count of 

credit returns that have failed to date, and trust values 

derived from prior transactions or performance. 

The ARDS ensures an MUP of 99.95% (Amazon RDS 

Service Level Agreement, 2024; 2019). Standards for the 

ARDS are anchored in MUP, guiding credit back policies: 

A full refund is guaranteed for MUP values below 95, 

25% if MUP is <99% and >= 95, and 10% if percentage 

availability is <99.95% and >= 99%. The trust value 

decreases with a decline in MUP or percentage 

availability. The trust value is reduced in case of a credit 

return failure, with the reduction amount increasing with 

each failure. A decrease in trust value is also associated 

with a decline in percentage availability. 

A decrease in the ARDS's MUP, coupled with a failure 

to fulfill the offered credit return, results in a reduction in 

trust value. The distilled information from the above 

observations is as follows and might be regarded as expert 

knowledge for calculating ARDS trust values in the 

context of high availability and durability (Zacaria, 2023): 

 

1. The ARDS's trust should be contingent on the MUP's 

success. It should exhibit a direct correlation with the 

MUP, and a reduction in trust value is necessary as 

the percentage availability diminishes 

2. The trust value ought to be computed based on the 

entirety of the MUP, the percentage availability, or 

the percentage success of all features obtained from 

peers or customers 

3. The trustworthiness assessment of the ARDS 
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concerning high availability and durability hinges on 

the outcome of credit return success or failure. The 

extent of the trust value decrement should escalate 

with each instance of credit return failure 
 

The knowledge from the above-given expert 

knowledge will be utilized in formulating the constraints. 

Compile constraints. 

The ARDS's trust value can be calculated differently, 

depending on the context, and it was noted that no 

published model specifically addresses the ARDS’s trust 

values. Drawing from expert knowledge, equations need 

to be developed for trust calculations, offering users 

flexibility in choosing the calculation method based on 

their needs or circumstances.  

Two implementation approaches for generating a 

PSTDS are outlined. In Instance 1, termed the Basic Trust 

Matrix, the computation of the trust value involves 

averaging the satisfaction of each customer in the MUP 

received, specifically identified as the availability context 

factor. The ARDS trust score is determined by a formula 

known as the Basic Trust Matrix (Zacaria, 2023): 
 

T(ARDS) = ∑ S(P, i)I(p)
i=1  (3) 

 

where, S(P, i)  represents customer satisfaction on the 

MUP, ranging from 0 to 1, and I(P) represents the total 

count of feedback from peers (customers) within a recent 

time frame (Zacaria, 2023).  

The S(P, i) can either be a single value or a weighted 

average approach for each of the features offered by the 

ARDS in the specific context. The weighted average 

satisfaction is computed as below: 
 

S(P,i)=γ1∙S(p1,i)+γ2∙S(p2,i)+γ3∙S(p3,i)+γ4∙S(p4,i) (4) 
 

where, 𝛾1,…γ
4
 represent the weight factors corresponding 

to the availability of features, such as "Automated 

Backups", "Database Snapshots", "Multi-AZ 

Deployments", and "Quick Disaster Recovery", as outlined 

at the beginning of this section and S(p
1
, i),…, S(p

4
,i) 

denote customer satisfaction scores (or peer/customer 

feedback) between 0 and 1 for each feature, as outlined 

above. In this instance, the first two pieces of expert 

knowledge identified in this experiment are used.  

In Instance 2, the trust value of the ARDS is adjusted 

by incorporating both the availability context factor and 

the credit return success context factor. The modified 

equation is given below: 
 

T(ARDS)=α∙ ∑ S(P,i)I(p)
i=1 - β∙CRF(ARDS) (5) 

 

where, CRF(ARDS) is the credit return success context 

factor, deducted from the trust value. In addition, α and β 

are the weight factors for availability and the durability 

factor, respectively. These weights can be adjusted to 

control the reputation level reduction in case of a credit 

return failure from the ARDS. The CRF(ARDS) value is 

determined by the ratio of credit failures to the required 

credit returns during a specified period: 
 

CRF(ARDS)=
I(cf)

I(crr)
 (6) 

 

where, I(cf) represents the total credit failures and I(crr) 

is the total required credit returns within the specified 

period. By integrating the MUP satisfaction as a weighted 

average and credit return success as the ratio of failures to 

required returns during a given period, the ARDS trust 

value is derived as below: 
 
T(ARDS)  

= α∙ ∑ γ1∙S(p1,i)+γ2∙S(p2,i)+γ3∙S(p3,i)+γ4∙S(p4,i)I(p)
i=1  (7) 

- β
I(cf)

I(crr)
 

 

The formulas and parameters provided offer a 

customizable approach to calculating the trust value of the 

ARDS, emphasizing its high availability and durability in 

different scenarios. The user's choices in weight factors 

and feature contributions directly influence the resulting 

trust values. In the second approach, the trust score of the 

ARDS is determined by using all three expert knowledge 

which will be used to develop the PSTDG-ARDS model. 

Develop PSTDG-ARDS model. 

The construction of the PSTDG-ARDS model is done 

using Instance 2 for the generation of a PSTDS, as 

previously stated. Two MS SQL stored procedures are 

used to develop the model. The first procedure stores 

FeatureCount, PercentageUptime, and MonthNames, 

along with their corresponding values, in the SQL 

database. The second procedure incorporates nuanced 

weight factors for features, availability, and credit return 

success, orchestrating monthly feedback submissions 

from peers and iteratively calculating updated trust values 

for the ARDS. Expert Knowledge 1 and 2 play pivotal 

roles in influencing the availability context, while Expert 

Knowledge 3 dynamically affects the credit return success 

context. The trust values undergo continual updates after 

each carefully managed feedback submission. 

Validation of the PSTDG-ARDS 

The PSTDG-ARDS incorporates all the identified 

expert knowledge in the computation of the trust score for 

the ARDS. Validation followed the steps outlined in the 

section titled “Sensitivity and What-if analyses” and 

demonstrated in Experiment 1. The what-if scenarios, 

aligned with expert knowledge, explore the impact of 

varying satisfaction levels, feedback from different 

sources, and credit return failures on the trust value of the 

ARDS. The validation process confirmed the PSTDG-
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ARDS model's ability to generate a valid trust dataset for 

training the ARDSTrustRBFNNet model (Zacaria, 2023). 

PSTDS Generation Using PSTDG-ARDS 

The PSTDG-ARDS model produced 13727 data 

points with 13 inputs. The dataset produced by the 

PSTDG-ARDS model includes the count of transactions 

that have occurred thus far, the month's name, the name 

of the peer, the percentage of satisfaction received from 

peers or customers for each of the four features, and the 

overall satisfaction calculated, using four weight factors. 

Additionally, the model considers the qualification of the 

peer or customer for credit refunds from the ARDS, 

whether the ARDS has successfully returned the credit to 

eligible peers or customers, the overall count of credit 

return failures, the cumulative count of credit returns 

needed up to this point and the updated trust score for the 

ARDS following the transaction or submission of monthly 

feedback from each peer or customer (Zacaria, 2023). 

Construction of ARDSTrustRBFNNet Model 

Similar to the first experiment, the construction of the 

ARDSTrustRBFNNet model followed the same three 

steps which include the preparation of a dataset, selection 

of the best ARDSTrustRBFNNet model, and assessing the 

selected model. The search for the best hyperparameters 

involved assessing 4531 ARDSTrustRBFNNet models 

during 250 h. Experiment 2 utilized the identical search 

space bounds for hyperparameters as Experiment 1, 

which is given in Table (1). In the next section, the 

evaluation and results obtained from the two 

experiments will be discussed. 

Results and Discussion 

During the initial trial, the primary emphasis was 

placed on validating the PSTDG-PeerTrust model, which 

was used to generate a PSTDS for the PeerTrustRBFNNet 

model. Li and Ling's PeerTrust model offered the 

theoretical trust calculation equation, but the development 

process of the PSTDG-PeerTrust model did not 

necessarily have to produce a valid trust dataset. 

Therefore, SWA was used to validate the model based on 

the new definition. Developing a large trust dataset was 

the major challenge in training an RBFNNet, which was 

resolved by the PSTDG-PeerTrust model. Table (2) shows 

the hyperparameters of the best PeerTrustRBFNNet model 

found, which was trained for 100 epochs using the Adam 

optimization algorithm and had an MSE of 2.58∙10−4. 
 
Table 2: Hyperparameters of the best PeerTrustRBFNNet model 

Hyperparameter Value 

β 7.13∙10−2 

Hidden nodes 72 

Sliding window size 1 

Learning rate 10−3 

Table 3: Hyperparameters of the best ARDSTrustRBFNNet model 

Hyperparameter Value 

β 7.71∙10−1 

Hidden nodes 126 

Sliding window size 14 

Learning rate 10−4 

 

In the second trial, the PSTDG-ARDS model was 

formulated, serving as a dedicated model for generating a 

PSTDS employing the ARDS (Zacaria, 2023). This model 

was utilized to demonstrate the applicability of the 

proposed solution to real-world challenges. The main 

focus was on developing and validating a model for the 

ARDS, as there were no existing algorithms or equations 

to perform a trust calculation. Therefore, it became 

essential to demonstrate the acquisition of expert 

knowledge and the quantification of trust in the absence 

of any established methodology. The PSTDG-ARDS 

model was validated to ensure it satisfies expert 

knowledge. The validity of the PSTDS was established 

through the validation of the PSTDG-ARDS model. The 

model underwent verification as described in the section 

titled “Sensitivity and What-if analyses”. This model was 

developed to address the issue of insufficient data for 

training an RBFNNet model to compute trust scores for 

the ARDS. After constructing the PSTDS, the best 

RBFNNet model was determined. The hyperparameter 

values are listed in Table (3). This model was trained for 

128 epochs and resulted in an MSE value of 7.72 ∙ 10−6. 

The paper will conclude in the following section, 

offering concluding remarks. 

Conclusion 

Quantifying trust between electronic entities is one of 

the challenging issues in a digital environment, as trust is 

a generic concept. This study suggests a new method for 

trust calculation using an RBFNNet. It addresses issues 

such as heightened complexity in calculations, time, 

storage of data, and accessibility to extensive datasets for 

trust calculation. In the domain of computing and 

technology, a universally accepted definition for the term 

trust has not been established. Therefore, a new definition 

has been proposed that defines trust as having three 

dimensions: Context, calculation or dimension of 

quantification of trust, and sources of information utilized 

for the computation. The PSTDG framework can be used 

to create a legitimate and entirely synthetic trust dataset, 

solving the scarcity of trust data. A novel definition was 

crafted for authenticating synthetic trust datasets. The 

verification of the model for generating trust data was 

illustrated through a three-step process that included the 

validation of two models: PSTDG-PeerTrust and PSTDG-

ARDS. The proposed experimental design process 

consisting of four steps was successfully demonstrated 

through two experiments to build an RBFNNet model for 
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determining trust values between electronic entities. 

Calculating trust values no longer requires large data 

storage and access by an RBFNNet, thus reducing 

calculation time. Employing an RBFNNet to calculate 

trust would lead to a decrease in the complexity of the 

calculations. When using an RBFNNet, the complexity of 

the network will have no impact on the trust calculation 

complexity. Using an RBFNNet to calculate trust and an 

increased number of parameters to quantify trust will also 

avoid adding complexity to the trust calculation. Finally, 

this study demonstrates the successful development of a 

trust calculation method using an RBFNNet. 

This study introduced an RBFNNet for trust 

calculation, utilizing a dataset generated from a validated 

PSTDG model. However, performance and accuracy 

comparisons with other neural network models were not 

conducted. Future research could focus on comparative 

studies and exploring different neural network 

architectures to improve performance and predict future 

trust values. Additionally, the failure to accurately gather 

all the required expert knowledge can affect data 

generation, which is a limitation associated with the 

synthetic data generation process. 
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