

 © 2023 Angelo Raffaele Meo. This open-access article is distributed under a Creative Commons Attribution (CC-BY) 4.0

license.

 Journal of Computer Science

Original Research Paper

On a Proof of Inequality of PvsNP

Angelo Raffaele Meo

Department of Computer Science, Politecnico di Totino, Italy

Article history

Received: 23-06-2022

Revised: 03-09-2022

Accepted: 26-09-2022

Email: angelo.meo@polito.it

Abstract: This study is a new version of a previous paper. Its purpose is to

simplify some sections of the old version and, above all, to present the proofs

of some theorems which had been omitted for the sake of brevity. The

analysis discussed in this study and its previous version is based on a well-

known NP-complete problem which is called the "satisfiability problem" or

"SAT". From SAT a new NP-complete problem, called "core function",

derives; this problem is described by a Boolean function of the number of the

clauses of SAT. In this study, a new proof is presented according to which

the number of gates of the minimal implementation of core function increases

with n exponentially. Since the synthesis of the core function is an NP-complete

problem, this result can be considered as the proof of the theorem which

states that the class P of all the decision problems which can be solved in

polynomial time does not coincide with the class NP of the problems for

which an answer can be verified in polynomial time.

Keywords: P-NP Question, Complexity, Boolean Functions, Satisfiability,

Polynomial or Exponential Increase, Core Function

Introduction

A paper devoted to the proof of the theorem according

to which P and NP do not coincide was presented to the

Journal of Computer Science on September 2020 and

published (Meo, 2021). According to the Journal of

Computer Science at the end of August 2022 more than

2200 readers had viewed that paper and more than 600

readers had downloaded it.
Some readers have asked some questions concerning

a few theorems whose proofs had been omitted in that
paper for the sake of brevity. To prove these theorems is
the main purpose of this new version of that paper.

The proof of inequality on the question PvsNP which
had been presented in the previous paper and which will
be completed in this study is based on the following steps:

1. A new Boolean function called "core function" is

derived from the well-known SAT function. The core

function is equivalent to SAT according to the known

definition of NP-completeness

2. The main properties of the core function are

presented and discussed

3. It is shown that the number of gates necessary to

implement core function increases exponentially with

the size of the problem

At present, no reader of my papers has found any

mistake in the three steps of that proof. Future work

might concern some mistakes which will be

discovered. For example, if it will be proved that core

function is not NP-complete, another function will be

presented and discussed.

The second line of future research might concern the

direct synthesis of SAT function or some other function

equivalent to SAT.

Definitions

A brief description of the definitions and properties well-

known among the scientists of modern computational

complexity theory is presented in this section.

P denotes the class of all the decision problems which

can be solved in polynomial time.

NP denotes the class of all the decision problems f

satisfying the property that the function check (f)

analyzing a witness of the decision problem is polynomial

time decidable.

“P = NP?”, or, in other terms, “Is P a proper subset of

NP?”, is one of the most important open questions in

modern computational complexity theory.

A decision problem C in NP is NP-complete if it is in

NP and if every other problem L in NP is reducible to it,

in the sense that there is a polynomial time algorithm that

transforms instances of L into instances of C producing

the same output values.

The importance of NP-completeness derives from the

fact that, if we find a polynomial time algorithm for just

Angelo Raffaele Meo / Journal of Computer Science 2023, 19 (1): 87.98

DOI: 10.3844/jcssp.2023.87.98

88

one NP-complete problem, then we can construct

polynomial time algorithms for all the problems in NP

and, conversely, if any single NP-complete problem does

not have a polynomial time algorithm than no NP-complete

problem has a polynomial time solution.

The analysis discussed in this study will be based on

the following well-known NP-complete problem which is

called the "satisfiability problem or SAT".

Given a Boolean expression containing only the names

of variables (some of which may be complemented), the

operators AND, OR, and NOT and parentheses, is there

an assignment of TRUE or FALSE values to the variables

which makes the entire expression TRUE.?

It is well known that the problem remains NP-complete

also when all the expressions are written in “conjunctive

normal form” with 3 variables per clause (problem

3SAT). In this case, the analyzed expressions will be of

the type:

11 12 13

21 22 23

1 2 3

...........................

t t t

F x OR x OR x and

x OR x OR x and

x OR x OR x

 (1)

where:

t = The number of clauses or triplets

each xij = A variable in complemented or

uncomplemented form

Each variable may appear multiple times in that

expression.
Usually, the deterministic Turin machine is assumed

as the computational model. In this study, the analysis will
be developed concerning a family {Cn} of Boolean
circuits, where Cn has n binary inputs and it produces the
same binary output as the corresponding Turing machine.

The equivalence between a deterministic Turing
machine M processing some input x belonging to {0,1}n
and an n-input Boolean circuit Cn is well known. It is also
known that the number of gates, or AND, OR, NOT
operators, appearing in circuit Cn, is polynomial in the
running time of the corresponding Turing machine.

The synthesis of the state of the art of question
PvsNP can be found in (Fortnow, 2009; Cook, 1997;
Mulmuley and Sohoni, 2001).

Materials and Methods

The Core Function

The Boolean circuit implementing the function described

by Eq. (1) will be called Ct or Cn. Indeed, the number t of

triplets appearing in Eq. (1) plays the role of symbol n used

in the standard complexity theory. In the following analysis,

we shall use the symbol t when it is necessary to remember

the number of triplets and n in the other cases.

To simplify the analysis, circuit Cn will be

decomposed into two processing layers called the

"compatibility layer" and "core layer".

Compatibility Layer

A variable j of triplet i will be defined as “compatible”

with variable k of triplet h when and only when, either:

 The sign sij of the former variable is equal to the sign

shk of the latter variable, or

 The name <nij1 nij2 … nijm> of the former variable

is different from the name <nhk1 nhk2 …nhkm> of the

latter variable

From that definition it follows that two “not

compatible” variables have different signs and the same

name; therefore, their AND is identically FALSE.

The compatibility layer is composed of 3∙t∙(3∙t-3)/2

identical cells, one for each pair of variables belonging to

different triplets.

The inputs of a cell will be the sign sij and the binary

code <nij1 nij2 …nijm> of variable j of triplet i and the sign

shk and the binary code <nhk1 nhk2 …nhkm> of variable k of

triplet h. The output of the same cell c(i, j; h, k) will be

TRUE when, and only when, the two variables are

compatible between themselves.

Therefore, the function implemented by a cell may be

written as follows (by using the symbols ∗, + and! for

representing AND, OR, and NOT operators, respectively):

1 1 1 1

2 2 2 2

, ; , ! !

 ! !

 ! !

! !

ij hk ij hk

ij hk ij hk

ij hk ij hk

ijm hkm ijm hkm

c i j h k s s s s

n n n n

n n n n

n n n n

 (2)

Variable c(i, j; h, k) will be called a “compatibility

variable” or simply a “compatibility”.

Core Layer

The Boolean function implemented by the core layer

will be called the “core function” of order t, where t is the

number of triplets. It will be denoted with the symbol

CF(t) or CF(n). The core layer processes only the 9∙t∙(t-1)/2

compatibility variables c(i, j; h, k) and produce the global

result of the computation. The core function can be

determined by proceeding as follows.

Consider one selection of variables appearing in Eq. (1),

one and only one for each triplet, for all the triplets:

1 21 , 2 , , ti i ti (3)

with, i1, i2, …., it ∈ {1, 2, 3} be the indexes <number of

triplets, number of variables in the triplet> of the selected

variables. They will be called "characteristic indexes". Let

Angelo Raffaele Meo / Journal of Computer Science 2023, 19 (1): 87.98

DOI: 10.3844/jcssp.2023.87.98

89

Πk be the product of all the compatibility variables relative

to the k-th of selections (3):

 1 2 1 3 1 1, ;2, 1, ;3, 1, ; ,k

t tc i i c i i c t i t i (4)

The core function can be defined as the sum:

k

k (5)

of the products (4) relative to all the selections (3).
For example, in the case of CF (3), the core function

can be defined as follows:

3 1,1;2,1 1,1;3,1 2,1;3,1

1,1;2,1 1,1;3,2 2,1;3,2

1,1;2,1 1,1;3,3 2,1;3,3

1,1;2,2 1,1;3,1 2,2;3,1

... 22 ...

(1,3;2,3) 1,3;3,3 2,3;3,3

CF c c c

c c c

c c c

c c c

other products

c c c

 (6)

It is easy to prove that there is an assignment of values

TRUE or FALSE to variables appearing in Eq. (1) which

make the value of (1) equal to TRUE when and only

when, the core function takes the value TRUE.

Notice that the processing work of a cell increases as

a polynomial function P(t) of the number of the variables

since the increment of the length of the code of the name

is logarithmic. Therefore, the total processing work of the

compatibility layer increases as 9∙t∙(t-1)∙ P(t) where

9∙t∙(t-1)/2 is the total number of the compatibility cells.

Besides, the problem solved by the core layer is clearly

in NP, because it is easy to verify a witness solution. It

follows that, since the compatibility layer polynomially

reduces an NP-complete problem (3SAT) to the problem

solved by the core layer, the core function describes a new

NP-complete problem.

 Some properties of core function have been discussed

in (Meo, 2008).

A Theorem of Boolean Monotonic Functions

Let f (x1, x2, ..., xh) be an isotonic Boolean function,

that is a Boolean function that can be implemented with

only AND and OR gates, applied to uncomplemented

literals x1, x2, …, xh. It was believed that the minimum cost

implementation of f (x1, x2,…,xh) always contains only OR

and AND gates, but A. Razborov proved that there are

isotonic functions whose minimum cost implementation

contains also NOT gates (Razborov, 1985).

However, there is an upper bound on the comparison of

the costs of the minimum cost implementations with and

without NOT gates. It is specified by the following theorem.

Theorem 4.1

Let Imin be one of the minimum cost implementations

of the isotonic Boolean function f (x1, x2,...,xh), the cost

being defined as the total number of AND, OR, or NOT

gates. Let Cmin be the cost of Imin.

There exists always an implementation J of f containing

only and or gates (in addition, if necessary, to the NOT

operators producing input variables! x1,! x2, ...,! xh) such that:

 2 mincost J C h

where, h is the number of variables.

The proof of this theorem can be found in Chapter 4 of

(Meo, 2021).

This theorem will be used to simplify the analysis of

core function circuits.

Properties of Core Function

It is easy to prove the following properties of the

core function.

Property 1

A function defined by Eq. (5) isotone.

Property 2

Any product defined by Eq. (4) is a prime implicant of

core function (that is, a Product of Compatibilities (“PoC”)

which implies core function and no other term of it).

Property 3

Since the different selections of each of the

variables defined by Eq. (3) are 3, the number of prime

implicants of the core function is equal to 3 t. Each of

these prime implicants is essential (that is, it does not

imply a sum of other prime implicants) and it is the

product of t∙(t-1)/2 compatibilities.

Products of Compatibilities

In the next sections, reference will be made to the
following definitions.

Definition of Spurious Compatibilities Pair

A pair of compatibility variables {c(h,k;l,m),
c(p,q;r,s)} is defined as a spurious pair if:

1

1

h p and k q

or h r and k s

or p and m q

or r and m s

For example, the pair {c(1,1;2,1), c(1,2;3,1)} is

spurious since the triplet 1 is associated with two different

indexes of variables (1 and 2).

Angelo Raffaele Meo / Journal of Computer Science 2023, 19 (1): 87.98

DOI: 10.3844/jcssp.2023.87.98

90

Definition of Spurious Products of Compatibilities

A spurious Product of Compatibilities (spurious PoC)

is a product of compatibility variables containing the

elements of one or more than one spurious pair.

For example, the PoC:

 1,1;2,1 1,2;3,1 2,1;3,1c c c

is a spurious PoC since it contains the elements of the

spurious pair:

 1,1;2,1 , 1,2;3,1c c

Definition of Impure Products of Compatibilities

A PoC containing one or more complemented

variables will be defined as an impure PoC. In particular,

a term T of CF (that is, a PoC implying CF) which

contains one or more complemented variables, will be

defined as an impure term of CF. A product of

compatibilities that is neither spurious nor impure will be

defined as a pure product of compatibilities.

Definition of Mark

Consider a pure product of compatibilities satisfying

the property that all the indexes of triplet {1,2,…,t} appear

at least once in some variable. The product of the variables

of such a subset will be defined as a "mark" or "pure

mark" of the prime implicant of which it contains a subset

of compatibilities.

For example, in the case of CF (4), the PoC:

 1, ;2, 1, ;3, 1, ;4,M c a b c a c c a d (7)

where the indexes of the triplet are elements of the set

{1,2,3,4} and a, b, c, d are elements of {1,2,3} is a mark

of the prime implicant:

1, ;2, 1, ;3, 1, ;4,

2, ;3, 2, ;4, 3, ;4,

P c a b c a c c a d

c b c c b d c c d

 (8)

since all the indexes of triplet appear at least once in Eq. (7).

Definition of Spurious Mark

A spurious PoC in which all the indexes of triplet

appear at least once will be called a “spurious mark”.

Notice that a spurious mark may be the mark of more than

one prime implicant. For example, in the case of CF (3):

 1,1;2,1 1,1;3,1 1,1;2,2c c c

is a spurious mark of both the prime implicants:

 1,1;2,1 1,1;3,1 2,1;3,1c c c

and:

 1,1;2,2 1,1;3,1 2,2;3,1c c c

An impure PoC containing a (possibly spurious) mark

will be defined as a (possibly spurious) impure mark.

Definition of Extended Prime Implicant

A term T of core function, that is, an implicant of core

function (a product of literals implying core function),

contains all the uncomplemented literals of a prime

implicant. Therefore, it may be defined as an “extended

prime implicant” (only) to remember that it contains all

the compatibilities of a prime implicant.

It may be a spurious extended prime implicant or an

impure extended prime implicant or both a spurious and

impure extended prime implicant.

Notice that an extended prime implicant can be viewed

as a (possibly spurious or impure) mark.

Definition of Remainder

A PoC which is neither a (possibly spurious or impure)

mark nor an (extended) prime implicant will be called a

remainder". Also, a remainder may be pure (if for any

triplet index there is only one index of variable in that

triplet) or spurious or impure.

A pure remainder R may be implied by more than

one prime implicant. For example, in the case of CF (3),

R = c(2,1;3,1) is a remainder which is implied by the

following prime implicants:

1 1,1;2,1 1,1;3,1 2,1;3,1

2 1,2;2,1 1,2;3,1 2,1;3,1

3 1,3;2,1 1,3;3,1 2,1;3,1

P c c c

P c c c

P c c c

 (9)

On the definitions of mark and remainder, the

following property is based.

Property 4

Let P1 and P2 be two PoCs such that P1∗P2 is equal to

a prime implicant P of the core function. Either P1 or P2

is a mark of P.

The External Core Function

Let Ij be a prime implicant of CF(n). The external core

function relative to Ij, ECF(n, Ij), is defined as the sum of

all the minterms of CF(n) which imply Ij and no other

prime implicant Ik of CF(n) with k ≠ j. (Remember that a

minterm of a Boolean function F is a product of all the

variables of F, some complimented and some others

uncomplemented, implying F).

Of course:

 , !j j k j kECF n I I P I (10)

Angelo Raffaele Meo / Journal of Computer Science 2023, 19 (1): 87.98

DOI: 10.3844/jcssp.2023.87.98

91

where all the prime implicants of core function are involved

and! Ik denotes the complement of Ik (i.e., NOT Ik).

The global external core function of order n, or

ECF(n), will be defined as the sum of ECF(n, Ij)’s relative

to all the prime implicants Ij of CF(n):

 , jj
ECF n ECF n I (11)

The importance of external core function derives from

the following theorems.

The proofs of these theorems can be found in (Meo, 2022;

2008), except Theorem 7.5 which has been presented in

Appendix 1 of this study.

Theorem 7.1

Let T be a term (or extended prime implicant) of CF(n).

It may be the product of all the compatibilities of a prime

implicant Ij of CF(n) and other compatibilities, that is:

jT I X

where X is a possibly empty PoC. T can also be written as

T = T(Ij).

All the minterms of T(Ij) contained in ECF(n) are

minterms of ECF(n, Ij).

Theorem 7.2

Let T be a term of CF(n) implying two or more than

two prime implicants of CF(n):

 ,j kT T I I

The number of minterms of T(Ij, Ik) belonging to

ECF(n) is equal to 0.

Theorem 7.3

Let T = T(Ij) = Ij∗X be a term of CF(n) which is

spurious for a single not complemented compatibility X.

If NMT(F) denotes the number of minterms of Boolean

function F, the number of minterms of Ij∗X contained in

ECF(n, Ij) is:

 , 1 / 2 . ,j j jNMT I X ECF n I NMT ECE n I (12)

However, for large values of n, as shown by the data

of Appendix 1:

~

, 1 / 2 . ,j j jNMT I X ECF n I NMT ECE n I

By proceeding in the same way, it is possible to

generalize the preceding Theorem 7.3 as follows.

Theorem 7.4

Let:

1 2j mI X X X

be a spurious term characterized by m spurious not

complemented compatibilities.

The number of its minterms contained in ECF(n, Ij) is:

1 2 ,... ,

1 / 2 . ,

j m j

m

j

NMT I X X X ECF n I

NMT ECE n I

However, for large values of n, as shown by the data

of Appendix 1:

1 2 ,... ,

1 / 2 . ,

j m j

m

j

NMT I X X X ECF n I

NMT ECE n I

 (13)

Theorem 7.5

Let T = T(Ij) be an impure term of CF(n) characterized

by a single impure variable (!X):

 !jT I X

For large values of n, the number of minterms of

ECF(n, Ij) contained in T is:

 ! , 1 / 2 . ,j j jNMT I X ECF n I NMT ECE n I (14)

The proof of this theorem can be found in Appendix 1.

Theorem 7.6

Let T = T(Ij) be an impure term of CF(n) characterized by

m impure variables:

 1 2! ! !j mT I X X X

For large values of n, the number of minterms of

ECF(n,Ij) contained in T is:

 , 1 / 2 ,
m

j jNMT T ECF n I NMT ECF n I (15)

This theorem is an obvious extension of Theorem 7.5.

Notice that NMT (ECF (n, Ij)) = NMT (ECF (n, Ik)) for

any j and k. It will be called NMT1(n).

Results and Discussion

The Value of a Node

Let U be a node of the network implementing core

function and let F(U) be the Boolean function of

compatibilities c(i, j, h, k) implemented by U. Since the

Angelo Raffaele Meo / Journal of Computer Science 2023, 19 (1): 87.98

DOI: 10.3844/jcssp.2023.87.98

92

subnetwork having U as its input does not contain any

NOT gate, we can write:

 1 2 1 2 * *CF F U x F U x y y (16)

where, x1, x2, …, y1, y2, …, are products of variables of

core function, that is, products of compatibilities. Notice

also that every F(U)*xi and every yj must be an extended

prime implicant of the core function. As we shall see in

some examples, generally a single product of

compatibilities is sufficient to implement the core

function according to the following equation:

 1 2 *CF F U x y y (17)

where, x is single compatibility.

x1, x2, …, y1, y2, …, or x will be called “completion code”.
More than one solution of Eq. (16) and (17) can

produce the value of the core function. However, we are

looking for a solution characterized by the following

property: The total number of minterms of the external

core functions ECF(n, Ij) of the prime implicants

produced by F(U) * x1 + F(U) * x2 + … s or by F(U) * x

takes the maximum value. By definition, this maximum

value will be considered as the value val(U) of the node U

or the value val(F(U)) of the Boolean function

implemented by U, on the condition that no xi (or x) is a

mark, since, otherwise, the contribution of the subnetwork

having U as its input might be considered as more

important than the contribution of U.

The values of x1, x2, …, or x which appear in the best

solution of Eq. (16) and (17) will be called “optimal

completion code”.

It is easy to prove that the value of a pure remainder

and the value of a Boolean function which can be

described as a sum of remainders are always equal to 0.

On the contrary, the value of a pure mark can be

considered equal to NMT1(n) while the value of an impure

mark can be considered equal to NMT1(n)·2-m, where m is

the number of spurious or complemented compatibilities.

Besides, the value of a Boolean function which is equal to

a sum of marks is always less than or equal to the sum of

the values of the considered marks.

For example, as we shall discuss in the following sum

of remainders of CF (4):

1,1;2,1 * 1,1;3,1 * 2,1;3,1 1,2;2,1

* 1,2;3,1 * 2,1;3,1 1,3;2,1 * 1,3;3,1 * 2,1;3,1

c c c c

c c c c c

has a value equal to 0, while the following sum of marks:

1,1;2,1 * 1,1;3,1 * 1,1;4,1 1,2;2,1

* 1,2;3,1 * 1,2;4,1 1,3;2,1 * 1,3;3,1 * 1,3;4,1

c c c c

c c c c c

has a value equal to 3 · NMT1(4).

The Value of an OR Gate

An OR gate characterized by n inputs can be

implemented as a sum of two inputs OR gates. Therefore,

we can restrict our attention to two inputs OR gates.

The value of an OR gate having node A and node B as

its inputs and node U as its output can be defined as:

 OR – val A B val U val A val B

On the statements discussed it is easy to prove the

following simple rules for evaluating the values of

functions F(U), F(A), and F(B), under the hypothesis that

these three functions are written as the sums of their prime

implicants:

1. The value of a remainder is equal to 0

2. The value of a sum of remainders is equal to 0

3. The value of a pure mark is equal to NMT1(n). The

value of an impure mark M is NMT1(n)·(1/2m) where,

m is the number of spurious or impure compatibilities

contained in M

4. The value of a sum of marks is always equal to or less

than the sum of the values of the prime implicants of

core function which imply those marks

5. Notice that, theoretically, a mark might derive from

the Boolean sum of two or more than two remainders.

For example, the mark of CF (4) m = c(1,1;4,1) *

c(2,1;4,1) * c(3,1;4,1) might derive from the sum of

the two remainders r1 = c(1,1;4,1) * c(2,1;4,1) *

!c(1,1;3,2) and r2 = c(3,1;4,1) * c(1,1;3,2). Let

remainders r1 and r2 be two of the inputs of the OR

gate producing mark m and let U be the output of this

OR gate. Since the circuit-producing CF does not

contain NOT circuits, the value of the circuit-

producing CF can be written as follows:

1 2 1 2

1 1 2 1 1 2 2 2 1 2

* *

* * * *

CF U x U x y y

r x r x r x r x y y

Since r1 and i2 are remainders, every xi must be a mark.

Besides, either there is a yk equal to the prime implicant

I(m) deriving from mark m or one of the products ri * xj is

equal to I(m) and, therefore, the mark of I(m) is produced

outside the considered OR operation. It follows that the

production of a mark as the sum of two remainders cannot

be used to generate new prime implicants.

From these rules, it is easy to prove that val(U) is never

larger than val(A) + val(B) and, therefore, the value of an

OR gate can always be considered equal to 0.

The Value of an AND GATE the Most Powerful

and Gate

As in the case of OR gates, an n inputs AND gate

can be implemented as the product of two inputs AND

Angelo Raffaele Meo / Journal of Computer Science 2023, 19 (1): 87.98

DOI: 10.3844/jcssp.2023.87.98

93

gates. Therefore, we can restrict our attention to two

inputs AND gates.

The value of an AND gate having A and B as its inputs

and U as its output can be defined as:

() () – (() ())val A AND B val U val A val B

Since we are interested in identifying the most powerful

AND gate, we shall assume that both F(A) and F(B) are sums

of remainders so that both val(A) and (B) are equal to 0.

Therefore, the value of the considered gate will be always

equal to the value of output U.

The most powerful AND gate can be identified by

proceeding as follows:

1. Let A = (a1 + a2 + a3 + …) and B = (b1 + b2 + b3 + …),

where all the ai and bj are remainders. A product ai *

bj can produce more than one mark, but a product ai *

bj * x cannot produce more than one prime implicant

because the product of two prime implicants has a

value equal to 0. To produce a pure prime implicant,

the product ai * bj must produce a pure mark

2. If a1 is a remainder, at least one of the t indexes of

triplet does not appear in the list of triplet indexes of a1

because, otherwise, it a1would be a mark. Let it be i’

For the same reason, at least another triplet index

does not appear in the list of triplet indexes of b1. Let

it be j’

By example:

1

1

1 1 1

(1,1;2,1)* (1,1;3,1) * (2,1;3,1)

(1,1;4,1)* (2,1;4,1)

*

a c c c

b c c

m a b

 (18)

Triplet index 4 is missing in a1; triplet index 3 is

missing in b1. So that a1*b1*x is a prime implicant of

CF (4), x must be equal to c(3,1;4,1)

3. Eq. (18) is the example of two remainders whose

product is a mark without spurious or impure

variables. The value of that mark is NMT1(4)

According to Theorems 7.3, 7.4, 7.5, 7.6, a mark

containing a spurious or impure compatibility has a

value equal to (1/2)·NMT1(n) while a mark

containing m spurious or ·impure compatibilities has

a value equal to (1/2m)·NMT1(n)

4. Assume that a2*b1 is equal to a new mark as:

2 (1,2;2,1)* (1,2;3,1)* (2,1;4,1)m c c c (19)

We can start by assuming a2= c(1,2;2,1) * c(1,2;3,1)

* c(2,1;3,1)

Since the optimal completion code x must be equal to

c(3,1;4,1) and a2 cannot contain all the three

compatibilities involving <1,2>, the value of b1 must

be corrected by adding c(1,2;4,1) to b1:

b1’ = b1* c(1,2;4,1)

Therefore:

1 1

2 1

* 1 / 2 · 1 4

* 1 / 2 · 1 4

val a b NMT

val a b NMT

No increment of the total value has been obtained by

introducing a new mark

5. To implement the new mark m2 without reducing the

value of m1 it is necessary to introduce a new

remainder b2 = c(1,2;4,1) * c(2,1;4,1) so that

m2 = a2 * b2

However, the products a1 * b2 and a2 * b1 are not

marks. Therefore, it is necessary to introduce a

correction like the following one:

1

1

2

1

1,1;2,1 * 1,1;3,1 * 2,1;3,1

1,1;4,1 * 2,1;4,1 * 1,2;4,1

1,2;2,1 * 1,2;3,1 * 2,1;3,1

1,2;4,1 * 2,1;4,1 * 1,1;4,1

a c c c

b c c c

a c c c

b c c c

which is characterized by a total value equal to (1/2 +

1/2) * NMT1(4)

It is easy to prove that the best solution is the

following:

1

1

2

2

1,1;2,1 * 1,1;3,1 * 2,1;3,1

1,1;4,1 * 2,1;4,1 * 1,1;2,1

1,2;2,1 * 1,2;3,1 * 2,1,3,1 *! 1,1;2,1 20

1,2;4,1 * 2,1;4,1 * 1,2;2,1 *! 1,1;2,1

a c c c

b c c c

a c c c c

b c c c c

where:

val (m1 = a1 * b1) = NMT1(4)

val (m2 = a2 * b2) = NMT1(4) · (1/2)

6. The two pairs of remainders appearing in (a1 + a2) *

(b1+ b2) can produce four different marks. Appendix

2 shows the best implementation. Its total value is

(1/2) * NMT1(4), but the value of the four marks

decreases very quickly with n. Therefore, there is no

point in continuing this line

7. By following the same line of reasoning which has

made it possible to prove that Eq. (20) is the best

solution for implementing two marks, it is easy to

prove that the best solution for implementing three

marks is the following one:

Angelo Raffaele Meo / Journal of Computer Science 2023, 19 (1): 87.98

DOI: 10.3844/jcssp.2023.87.98

94

1

1

2

2

3

3

1,1;2,1 * 1,1;3,1 * 2,1;3,1

1,1;4,1 * 2,1;4,1 * 1,1;2,1

1,2;2,1 * 1,2;3,1 * 2,1,3,1 *! 1,1;2,1

1,2;4,1 * 2,1;4,1 * 1,2;2,1 *! 1,1;2,1

 1,3;2,1 * 1,3;3,1 * 2,1;3,1 *! 1,1;2,1 *! 1,2;2,1

1,3;4,1 * 2

a c c c

b c c c

a c c c c

b c c c c

a c c c c c

b c c

 ,1;4,1 * 1,3;2,1 *! 1,1;2,1 *! 1,2;2,1c c c

 (21)

The value of this solution is:

 1 1/ 2 1/ 4 · 1 4NMT

8. Appendix 3 shows the best solution for implementing

the marks of all the nine prime implicants of CF (4)

compatible with the conditions that the variables <3,2>,

<3,3>, <4,2>, <4,3> do not appear in that product and

the completion code x takes the value c(3,1;4,1)

The value of the gate implementing those imarks is:

(1 (1 / 2) (1 / 4)) (1 (1 / 4) (1 /16)) 1(4)NMT (22)

which is slightly less than the:

2(1 (1/ 2) (1/ 4)) · 1(4)NMT (23)

Equation (22) and (23) can be generalized according to

the following equations which show the value of the best

gate implementing the marks of 3(n-2) prime implicants:

n-3(1 (1/ 2) (1/ 4)) (1 (1/ 4) (1/16)) ()NMT n (24)

which is slightly less than:

n.2(1 (1/ 2) (1/ 4)) · 1()NMT n (25)

To prove that the solution proposed in Appendix 3 is the

best consider three marks that are different for the value

of one and only one triplet index. For example, the three

marks m7 = a7 * b7, m8 = a8 * b8, and m9 = a9 * b9, which

have been defined in Appendix 3, are different only for

the values in triplet index 1

In order that a7 * b8 = 0 and a8 * b7 = 0, both a8 and b8

must contain compatibility !c(1,1;2,3). Therefore, the

value of mark m8 will be multiplied by 1 / 2o

In order that a7 * b9 = a9 * b7 = a8 * b9 = a9 * b8 = 0,

both a9 and b9 must contain !c(1,1;2,3) *!c(1,2;2,3)

No other solution makes it possible to reduce the

values of m8 and m9 by a smaller value

It is easy to verify on the data of Appendix 3 that all

the triplets {mi, mj, mk} satisfying that property has

received the same type of corrections and only those

corrections have been applied

Therefore, we can state that the solution proposed in this

study leads to the best solution and that the maximum

value of an AND gate of the type above specified is

slightly less than (1 + (1/2) + (1/4))n-2 · NMT1(n)

9. So far all the new marks contained only <3,1> and

<4,1> in the compatibilities involving variables of triplet

3 or 4. This condition can be removed to try to increase

the value of the considered AND gate

For example, as shown in Appendix 3, we can add

nine new remainders a10 …a18 to a1…a9 and b10 …b18

to b1…b9, where the new remainders are obtained by

replacing all the appearances of <4,1> with <4,2>.

Thus nine new marks and nine new prime implicants

will be generated but the value of the considered gate

will not be doubled. Indeed, the optimal completion

code x, which was c(3,1;4,1> becomes c(3,1;4,1) *

c(3,1;4,2) and the value of all the marks will be

multiplied by (1/2)

10. The lists (a1 + a2 +… +a9) and (b1 + b2 +…+b9u) can

be updated as follows:

1 10 19 28 37

46 55 64 73

1 10 19 28 37

46 55 64 73

a a a a a

a a a a

b b b b b

b b b b

where also the completion code should be updated:

3,1;4,1 * 3,1;4,2 * 3,1;4,3

* 3,2;4,1 * 3,2;4,2 * 3,2;4,3 *

3,3;4,1 * 3,3;4,2 * 3,3;4,3

x c c c

c c c

c c c

Thus, all 81 prime implicants of CF (4) will be generated,

but their total value will increase very slowly

It is very hard to identify the most powerful AND

gate in the implementation of CF(n). However, since

the number of elementary products (a1 + a2 +…) *(b1

+ b2 +…) is 9 and it has been proved that each of these

products has the value shown by Eq. (24) and (25), it

is obvious that the value of the most powerful AND

gate is smaller than:

2

 9 · 1 1 / 2 1 / 4 · 1
n

valmax n NMT n

 (26)

Conclusion

Since the number of minterms of ECF(n) contained in
CF(n) is equal to 3n. NMT1(n) and the value of a gate, that is
the number of new minterms produced by a gate, is less than:

2

9 · 1 1 / 2 1 / 4 · 1
n

valmax n NMT n

the number of gates necessary to implement CF(n) is
larger than 3n/(9·((1+1/2+1/4)(n-2))) and, therefore, it
increases exponentially with n.

Angelo Raffaele Meo / Journal of Computer Science 2023, 19 (1): 87.98

DOI: 10.3844/jcssp.2023.87.98

95

Since the synthesis of core function CF(n) is an NP-
complete problem, this result is equivalent to proving that
P and NP do not coincide.

Acknowledgment

The Academy of Science of Turin who published a

preliminary version of this study.

Funding Information

The authors have not received any financial support or

funding to report.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of the

other authors have read and approved the manuscript and

no ethical issues involved.

References

Cook, S. (1997) “The P versus NP problem,” in J. Carlson,
A. Jaffe, & A. Wiles (eds.), The Millennium Prize
Problem, pp. 88–104, Providence: American
Mathematical Society.
https://www.cs.toronto.edu/~toni/Courses/Complexi
ty2015/handouts/cook-clay.pdf

Fortnow, L. (2009). The status of the P versus NP
problem. Communications of the ACM, 52(9), 78-86.
https://dl.acm.org/doi/fullHtml/10.1145/1562164.15
62186

Meo, A. R. (2021). “On the P versus NP question: A
new proof of inequality”, Journal of Computer
Science, 17/5, 511-524, 2021.

Meo, A. R. (2018). “On the P vs NP question: A proof of
inequality”, arXiv:1802.05484

Meo, A. R. (2008). Some theorems concerning the core

function. In Concurrency, Graphs, and Models (pp.

778-796). Springer, Berlin, Heidelberg.

https://link.springer.com/chapter/10.1007/978-3-

540-68679-8_48

Meo, A. R. (2022). On the P versus NP question.

Mulmuley, K. D., & Sohoni, M. (2001). Geometric

complexity theory I: An approach to the P vs. NP and

related problems. SIAM Journal on Computing,

31(2), 496-526.

 https://doi.org/10.1137/S009753970038715X

Razborov, A. A. (1985). Lower bounds for the monotone

complexity of some Boolean functions. In Soviet

Math. Dokl. (Vol. 31, pp. 354-357).

Appendix 1

In order to prove Eq. (14) consider the following

example relative to the external core function ECF (4,Ij)

where, Ij is the prime implicant defined by the mark

c(1,1;2,1) * c(3,1;4,1) and !X = !c(1,1;2,2).

ECF (4, I) =

c(1,1;2,1) * c(1,1;3,1) * c(1,1;4,1) * c(2,1;3,1) * c(2,1;4,1)

* c(3,1;4,1)*

(!c(1,1;2,1) + !c(1,1;3,1) + !i(1,1;4,2) + !c(2,1;3,1) +

!c(2,1;4,2) + !c(3,1;4,2))*

(!c(1,1;2,1) + !c(1,1;3,1) + !c(1,1;4,3) + !c(2,1;3,1)

+!c(2,1;4,3) + !c(3,1;4,3))*

(!c(1,1;2,1) +!c(1,1;3,2) + !c(1,1;4,1) + !c(2,1;3,2) + !c(

2,1;4,1) + !c(3,2;4,1))*

.

(!c(1,1;2,2) +!c(1,1;3,1) + !c(1,1;4,1) + !i(2,2;3,1) +

!c(2,2;4.1) + !c(3,1;4,1))*

(!c(1,1;2,2) + !c(1,1;3,1) + !c(1,1;4,2)+ !c(2,2;3,1) +

!c(2,2;4,2) + !c(3,1;4,2))*

.

(!c(1,1;2,3) + !c(1,1;3,1) + !c(1,1;4,1) + !c(2,3;3,1) +

!c(2,3;4,1) + !c(3,1;4,1)*

(!c(1,1;2,3) + !c(1,1;3,1) + !c(1,1;4,2) + !c(2,3;3,1) +

!c(2,3;4,2) + !c(3,1;4,2))*

 .

(!c(1,2;2,1) + !c(1,2;3,1) + !c(1,2;4,1) + !c(2,1;3,1) +

!c(2,1;4,1) + !c(3,1;4,1))*

(!c(1,2;2,1) + !c(1,2;3,1) + !c(1,2;4,2) + !c(2,1;3,1) +

!c(2,1;4,2) + !c(3,1;4,2))*

.

(!c(1,2;2,2) +!c(1,2;3,1) + !c(1,2;4,1) + !c(2,2;3,1) +

!c(2,2;4,1) + !c(3,1;4,1))*

.

(!c(1,2;2,3) + !c(1,2;3,1) + !c(1,2;4,1) + !c(2,3;3,1) +

!c(2,3;4,1) + !c(3,1;4,1))*

.

(!c(1,3;2,1) + !c(1,3;3,1) + !c(1,3;4,1) + !c(2,1;3,1) +

!c(2,1;4,1) + !c(3,1;4,1))*

.

(!c(1,3;2,2) + !c(1,3;3,1) + !c(1,3;4,1) + !c(2,2;3,1) +

!c(2,2;4,1) + !c(3,1;4,1))*

.

(!c(1,3;2,3) + !c(1,3;3,1) + !c(1,3;4,1) + !c(2,3;3,1) +

!c(2,3;4,1) + !c(3,1;4,1))*

.

This table is characterized by 73 rows and 6 columns

and produces 6·73 products of compatibility. A minority

of these products contain compatibility! c(1,1;2,2) while

the other terms-the majority-do not contain that

compatibility.

Angelo Raffaele Meo / Journal of Computer Science 2023, 19 (1): 87.98

DOI: 10.3844/jcssp.2023.87.98

96

The multiplication by !c(1,1;2,2) deletes half of the

minterms contained in the majority of terms and leaves

the other minterms unchanged.

Since the number of columns increases as n2 is

apparent that the ratio of the number of unchanged

minterms divided by the total number of minterms

decreases very quickly with the number n of variables.

Appendix 2

Consider the product (a1 + a2) * (b1 + b2) relative to

CF (4) where:

a1 = c(1,1;2,1)* c(1,1;3,1)* c(1,1;3,2)

a2 = c(1,1;2,2)* c(1,1;3,2)* c(1,1;3,1)

b1 = c(2,1;3,1)* c(2,1;4,1)* c(3,1;4,1)* c(2,2;3,1)*

c(2,2;4,1)

b2 = c(2,2;3,2)* c(2,2;4,1)* c(3,2;4,1)* c(2,1;3,2)*

c(2,1;4,1)

with x = c[1,1] * c[4,1]

The following four marks of CF (4) are generated:

m1 = a1 * b1 involving variables ([1,1], [2,1], [3,1], [4,1])

m2 = a1 * b2 involving variables ([1,1], [2,1], [3,2], [4,1])

m3 = a2 * b1 involving variables ([1,1], [2,2], [3,1], [4,1])

m4 = a2 * b2 involving variables ([1,1], [2,2], [3,2], [4,1])

It is easy to verify that:

 1 2 3 4 1/ 8 1 4val m val m val m val m NMT

Therefore, the total value of the considered product is

(1/2) ∙ NMT1(4)

Now consider the following product (a1 + a2) * (b1 +

b2) relative to CF (5), where:

a1 = c(1,1;2,1) * c(1,1;3,1) * c(1,1;5,1) * c(1,1;3,2)

a2 = c(1,1;2,2) * c(1,1;3,2) * c(1,1;5,1) * c(1,1;3,1)

b1 = c(2,1;3,1) * c(2,1;4,1) * c(2,1;5,1) * c(3,1;4,1)*

c(3,1;5,1) * c(4,1;5,1) * c(2,2;3,1) * c(2,2;4,1) *

c(2,2;5,1)

b2 = c(2,2;3,2) * c(2,2;4,1) * c(2,2;5,1)* c(3,2;4,1) *

c(3,2;5,1) * c(4,1;5,1) * c(2,1;3,2) * c(2,1;4,1) *

c(2,1;5,1)

It is easy to verify that:

m1 = a1 * b1

m2 = a1 * b2

m3 = a2 * b1

m4 = a2 * b2

are four marks implying four different prime implicants

of CF (5) and that:

 1 2 3 4 1/16 1 5val m val m val m val m NMT

In more general terms, the product (a1 + a2) * (b1 + b2)

can produce four marks implying four different prime

implicants of CF(n), but the value of these marks

decreases very quickly with n.

Appendix 3

 Consider the following example relative to CF (4):

 1 2 9 1 2 9 * *U A B a a a b b b (27)

where:

a1 = c(1,1;2,1) * c(1,1;3,1) * c(2,1;3,1)

b1 = c(1,1;4,1) *c(2,1;4,1) * c(1,1;2,1)

a2 = c(1,2;2,1) * c(1,2;3,1) * c(2,1,3,1) * !c(1,1;2,1)

b2 = c(1,2;4,1) * c(2,1;4,1) * c(1,2;2,1) * !c(1,1;2,1)

a3 = c(1,3;2,1) * c(1,3;3,1) * c(2,1;3,1) * !c(1,1;2,1) *

!c(1,2;2,1)

b3 = c(1,3;4,1) *c(2,1;4,1) * c(1,3;2,1) * !c(1,1;2,1) *

!c(1,2;2,1)

a4 = c(1,1;2,2) * c(1,1;3,1) * c(2,2;3,1) * !c(2,1;4,1)

b4 = c(1,1;4,1) * c(2,2;4,1) * c(1,1;2,2) * !c(2,1;3,1)

a5 = c(1,2;2,2) * c(1,2;3,1) * c(2,2;3,1) * !c(1,1;2,2) *

!c(2,1;4,1)

b5 = c(1,2;4,1) * c(2,2;4,1) * c(1,2;2,2) *!c(1,1;2,2) *

!c(2,1;3,1)

a6 = c(1,3;2,2) * c(1,3;3,1) * c(2,2;3,1) * !c(1,1;2,2) *

!c(1,2;2,2) * !c(2,1;4,1)

b6 = c(1,3;4,1) * c(2,2;4,1) * c(1,3;2,2) * !c(1,1;2,2) *

!c(1,2;2,2) * !c(2,1;3,1)

a7 = c(1,1;2,3) * c(1,1;3,1) * c(2,3;3,1) * !c(2,1;4,1)

*!c(2,2;4,1)

b7 = c(1,1;4,1) * c(2,3;4,1) * c(1,1;2,3) * !c(2,1;3,1)

*!c(2,2;3,1)

a8 = c(1,2;2,3) * c(1,2;3,1) *c(2,3;3,1) * !c(1,1;2,3) *

!c(2,1;4,1) *!c(2,2;4,1)

b8 = c(1,2;4,1) * c(2,3;4,1) * c(1,2;2,3) * !c(1,1;2,3) *

!c(2,1;3,1) *!c(2,2;3,1)

a9 = c(1,3;2,3) * c(1,3;3,1) * c(2,3;3,1) * !c(1,1;2,3)*

!c(1,2;2,3) * !c(2,1;4,1) *!c(2,2;4,1)

b9 = c(1,3;4,1) * c(2,3;4,1) * c(1,3;2,3) * !c(1,1;2,3) *

!c(1,2;2,3) * !c(2,1;3,1) *!c(2,2;3,1)

The product specified by A*B, multiplied by the

optimal completion code x = c(3,1;4,1), produces nine

marks and nine prime implicants, whose total value is:

 1 1/ 2 1/ 4 1 1/ 4 1/16

It is easy to verify by extending this example to CF(n)

that the value of an AND gate performing the product (a1 +

a2 +…) * (b1 + b2 +…) (with constant <3,1> and <4,1>) is:

Angelo Raffaele Meo / Journal of Computer Science 2023, 19 (1): 87.98

DOI: 10.3844/jcssp.2023.87.98

97

3

1 1 / 2 1 / 4 1 1 / 4 1 /16 1
n

val n NMT n

which is slightly less than the:

2

1 1/ 2 1 / 4 1
n

NMT n

 (28)

In order to prove that the solution proposed in this

study is characterized by the maximum value of the gate

performing the product A*B, analyze in detail the

preceding example.

First, consider the product (a1+a2+a3) * (b1+b2+b3).

The product of compatibilities a2 can be obtained from

a1 and b2 can be obtained from b1, by replacing variable

<1,1> with variable <1,2>. In order that a1 * b2 = 0 and a2

* b1 = 0 both a2 and b2 must contain! c(1,1;2.1) .

Similarly, a3 can be obtained from a1 and b3 can be

obtained from b1 by replacing variable <1,1> with

variable <1, 3>. In order that a1 * b3 = 0, a3* b1 = 0, a2 *

b3 = 0 and a3 * b2 = 0, both a3 and b3 must contain

!c(1,1;2,1) * !c(1,2;2,1).

Then consider the product (a4+a5+a6) * (b4+b5+b6). In

this case, triplet index a5 can be obtained from a4 and b5

can be obtained from b4 by replacing variable <1,1> with

variable <1,2>. In order that a4 * b5 = 0 and a5 * b4 = 0,

both a5 and b5 must contain !c(1,1;2,2). Similarly, in order

that a4 * b6 = 0, a6 * b4 = 0, a5 * b6 = 0 and a6 * b5 = 0,

both a6 and b6 must contain !c(1,1;2,2) * !c(1,2;2,2).

For similar reasons, both a8 and b8 must contain

!c(1,1;2,3) while a9 and b9 contain !c(1,1;2,3) *

!c(1,2;2,3).

As the second step of analysis considers the product

(a1+a4+a7) * (b1+b4+b7).

The product of compatibilities a4 can be obtained from

a1 and b4 can be obtained from b1, by replacing variable

<2,1> with variable <2,2>. In order that a1 * b4 = 0, b4

must contain! c(2,1;3,1); in order that a4 * b1 = 0, a4 must

contain !c(2,1;4,1). Therefore:

 4 4* 1 / 4 1 4val a b NMT

In order that a1 * b7 = 0 and a7 * b1 = 0, b7 must contain

!c(2,1;3,1) * !c(2,2;3,1) and a7 must contain !c(2,1;4,1)

*!c(2,2;4,1).

Therefore:

 7 7* 1 /16 1(4)val a b NMT

In the same way, all the complemented compatibilities

appearing in Eq. (27) can be easily justified.

From all the data appearing in Eq. (27), it follows that

the total value of the marks produced by the product

(a1+a2+…+a9) * (b1+b2+…+b9) is equal to:

 1 1/ 2 1/ 4 · (1 1/ 4 1/16 (29)

slightly less than:

2

1 1 / 2 1 / 4 (30)

which becomes Eq. (28) for n>4.

Consider again the product (a1+a2+a3) * (b1+b2+b3).

By replacing variable <1,1> with <1,2> in all the

compatibilities of a1 and b1 we obtain a2 and b2

respectively, while by replacing <1,1> of a1 and b1 with

<1,3> we obtain a3 and b3. It is apparent that the

multiplication of both a2 and b2 by !c(1,1;2,1) and the

multiplication of both a3 and b3 by !c(1,1;2,1) * !c(1,2;2,1)

are the best solutions from the viewpoint of the values of

the new marks produced by (a1+a2+a3) * (b1+b2+b3).

The same considerations hold exactly for the products

a2 * b2 and a3 * b3.

Now consider the product (a1+a4+a7) * (b1+b4+b7).
By replacing <2,1> with (2,2) in all the compatibilities

of a1 and b1 we obtain a4 and b4, in the first step, and by

replacing <2,1> with (2,3) in all the compatibilities of a1

and b1 we obtain a7 and b7, in a second step. It is apparent

that the multiplications of a4 by !c(2,1;4,1), b4 by

!c(2,1;3,1), a7 by !c(2,1;4,1) * !c(2,2;4,1), b7 by

!c(2,1;3,1) * 1c(2,2;3,1) are the best solutions for the

new marks.

The same conclusions hold also for the products:

 2 5 8 2 5 8 3 6 9 3 6 9* *a a a b b b and a a a b b b

Notice that only the complemented variables are

absolutely necessary in order that ai * bj = 0 for all i<>j that

appear in the list of values of ai and bj. This is equivalent

to proving that Eq. (29) is the total value of the “best”

product A*B producing all the marks and all the prime

implicants of core function with some exceptions. Indeed,

the prime implicants containing variables characterized

by triplet indexes equal to 3 or 4 but different from those

appearing in the completion code x (in our example:

<3,2>, <3,3>, <4,2>, <4,3>) do not appear in the list of

prime implicants which have been generated.

For example, we can extend the list (a1 +a2 + …+a9)

with (a10 + a11 + … + a18) and the list (b1 + b2 +… +b9)

with (b10 + b11 + … +b18)

where:

a10 = c(1,1;2,1) * c(1,1;3,1) * c(2,1;3,1)

b10 = c(1,1;4,2) *c(2,1;4,2) * c(1,1;2,1)

a11 = c(1,2;2,1) * c(1,2;3,1) * c(2,1,3,1) * !c(1,1;2,1)

b11 = c(1,2;4,2) * c(2,1;4,2) * c(1,2;2,1) * !c(1,1;2,1)

a12 = c(1,3;2,1) * c(1,3;3,1) * c(2,1;3,1) * !c(1,1;2,1) *

!c(1,2;2,1)

Angelo Raffaele Meo / Journal of Computer Science 2023, 19 (1): 87.98

DOI: 10.3844/jcssp.2023.87.98

98

b12 = c(1,3;4,2) *c(2,1;4,2) * c(1,3;2,1) * !c(1,1;2,1) *

!c(1,2;2,1)

a13 = c(1,1;2,2) * c(1,1;3,1) * c(2,2;3,1) * !c(2,1;4,2)

b13 = c(1,1;4,2) * c(2,2;4,2) * c(1,1;2,2) * !c(2,1;3,1)

a14 = c(1,2;2,2) * c(1,2;3,1) * c(2,2;3,1) * !c(1,1;2,2) *

!c(2,1;4,2)

b14 = c(1,2;4,2) * c(2,2;4,2) * c(1,2;2,2) *!c(1,1;2,2) *

!c(2,1;3,1)

a15 = c(1,3;2,2) * c(1,3;3,1) * c(2,2;3,1) * !c(1,1;2,2) *

!c(1,2;2,2) * !c(2,1;4,2)

b15 = c(1,3;4,2) * c(2,2;4,2) * c(1,3;2,2) * !c(1,1;2,2) *

!c(1,2;2,2) * !c(2,1;3,1)

a16 = c(1,1;2,3) * c(1,1;3,1) * c(2,3;3,1) * !c(2,1;4,2)

*!c(2,2;4,2)

b16 = c(1,1;4,2) * c(2,3;4,2) * c(1,1;2,3) * !c(2,1;3,1)

*!c(2,2;3,1)

a17 = c(1,2;2,3) * c(1,2;3,1) *c(2,3;3,1) * !c(1,1;2,3) *

!c(2,1;4,2) *!c(2,2;4,2)

b17 = c(1,2;4,2) * c(2,3;4,2) * c(1,2;2,3) * !c(1,1;2,3) *

!c(2,1;3,1) *!c(2,2;3,1)

a18 = c(1,3;2,3) * c(1,3;3,1) * c(2,3;3,1) * !c(1,1;2,3)*

!c(1,2;2,3) * !c(2,1;4,2) *!c(2,2;4,2)

b18 = c(1,3;4,2) * c(2,3;4,2) * c(1,3;2,3) * !c(1,1;2,3) *

!c(1,2;2,3) * !c(2,1;3,1) *!c(2,2;3,1)

This increment of the lists (a1 + a2 +…) and (b1 + b2

+…) can be updated as follows:

1 10 19 28 37

46 55 67 73

1 10 19 28 37

46 55 67 73

a a a a a

a a a a

b b b b b

b b b b

where also the completion code should be updated:

3,1;4,1 * 3,1;4,2 * 3,1;4,3 * 3,2;4,1

* 3,2;4,2 * 3,2;4,3 * 3,3;4,1 * 3,3;4,2 * 3,3;4,3

x c c c c

c c c c c

Thus, the 81 prime implicants of CF (4) will be

generated, but the values of many of them will be very

small because all the products a1 * bj must be equal to 0.

Besides, the multiplication of every mark by the

completion code x will dramatically reduce the value of

the corresponding prime implicants.

