

 © 2022 Goh Kwang Yi, Salmi Binti Baharom and Jamilah Din. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 4.0 license.

 Journal of Computer Science

Original Research Paper

Improving the Exploration Strategy of an Automated Android

GUI Testing Tool based on the Q-Learning Algorithm by

Selecting Potential Actions

Goh Kwang Yi, Salmi Binti Baharom and Jamilah Din

Department of Software Engineering and Information System, Universiti Putra Malaysia, Malaysia

Article history

Received: 29-07-2021

Revised: 02-11-2021

Accepted: 15-01-2022

Corresponding Author:

Salmi Binti Baharom

Faculty of Computer Science

and Information Technology,

Universiti Putra Malaysia

43400, Serdang, Selangor

Darul Ehsan, Malaysia

Email: salmi@upm.edu.my

Abstract: Researchers have proposed automated testing tools to minimise

the effort and resources spent on testing GUIs. A relatively simple strategy

employed by the proposed tools thus far is the observe-select-execute

approach, where all of a GUI’s actions on its current state are observed, one

action is selected and the selected action is executed on the software. The

strategy’s key function is to select an action that may achieve new and

desirable GUI states. Due to difficulties in comparing actions, most existing

test generators ignore this step and randomly select an action. However, a

randomly selected action has limitations. It does not test most parts of a GUI

within a reasonable amount of time and there is a high probability that the

same actions are re-selected. This reduces code coverage, thereby resulting

in undetected failures. To overcome this limitation, the Q-Learning algorithm

was proposed by several researchers to minimise randomness. The idea was

to change the probability distribution over the sequence space. Instead of

making purely random selections, the least frequently executed action is

selected so that the GUI can be further explored. Q-Learning showed better

results than the random exploration strategy but it also presented a

weakness. Q-Learning’s reward function assigns the highest value to the

least frequently executed action without taking into consideration its

potential ability in detecting failures. Furthermore, the proposed

techniques based on the Q-Learning algorithm do not consider context-

based actions. Thus, these techniques are unable to detect failures that

occur due to the improper use of context data, which is becoming an

increasingly common issue in mobile applications nowadays. We propose

a tool, namely the Crash Droid, that allows the automation of testing

context-aware Android applications. We utilise the Q-Learning algorithm

to compare actions, including context-based actions, to effectively detect

crashes and achieve a higher code coverage.

Keywords: Automated Mobile GUI Testing, Q-Learning, Context-Aware

Introduction

Smartphones have become a crucial part of our

lifestyles. Mobile applications have transformed the way

we perform daily activities, whether it’s ordering food,

booking a flight, paying bills or and chatting with friends.

Considering the fact that 3.2 billion smartphones were

sold, 8.3 billion mobile subscriptions were registered,

more than 3.14 million applications were developed and

204 billion applications were downloaded worldwide in

2019 (Statista.com, 2021d; 2021b; 2021c; 2021a), the

significance of testing should not be neglected for quality

assurance purposes. The quality of mobile applications is

a key factor in determining user satisfaction. Poor

usability would frustrate users and prompt them to

uninstall an application. Frozen screens, crashes,

unresponsiveness and high battery consumption can

contribute to this frustration (Inukollu et al., 2014).

Testing mobile applications is an expensive, time

consuming and challenging task. One of the reasons is that

mobile applications require frequent updates to improve

user experience, fix bugs and compete for users’ attention.

Frequently releasing updates shortens its development

time, thereby making it harder to ensure the quality of

mobile applications due to insufficient testing. Thus,

researchers have suggested automation as a solution to

Goh Kwang Yi et al. / Journal of Computer Science 2022, 18 (2): 90.102

DOI: 10.3844/jcssp.2022.90.102

91

accelerate its development, in particular its testing

process. Another reason is that context-aware applications

are becoming increasingly common in mobile

applications. Context-aware applications are difficult to test

because changes in context data can affect software

behaviour at any point during execution. Furthermore,

context data is generally inaccurate, inconsistent and

continuous, making the applications even more challenging

to test than those without context data (Yue et al., 2016).

Mobile applications are highly dependent on their

Graphical User Interfaces (GUIs) due to their event-

driven nature and gesture-based interaction. For this

reason, GUI testing often replaces system testing. Testing

GUIs involves creating sequences of GUI events that

exercise GUI widgets (i.e., test cases), executing those

events (i.e., test execution) and monitoring resulting

changes to the software state (i.e., test oracle) (Memon et al.,

2003; Nguyen et al., 2014) Even though the creation of

test cases is associated with GUI widgets, research has

shown that GUI testing is effective at finding both GUI

and non-GUI faults (Robinson and Brooks, 2009). This is

because the test cases do not only execute GUI codes but

may also execute non-GUI codes. GUI testing can be used

to identify security flaws, crashes and exceptions that

occur while using mobile applications. All these require

the simulation of user actions on the software and

therefore automatic GUI testing needs to mimic human

interaction with the GUI widgets.

A relatively simple strategy used in automated GUI

testing tools is the observe-select-execute approach. The

strategy starts by launching the Application Under Test

(AUT) and then proceeds by observing the GUI actions

on the AUT’s current state, selecting an action from those

observed actions and executing the selected action. The

strategy’s key function is to select an action that may

achieve new and desirable GUI states. Due to difficulties

in comparing actions, most existing tools ignore this step

and randomly select an action. However, for large GUIs

with numerous and deeply nested actions, a random

algorithm is unable to sufficiently test most of its parts

within a reasonable amount of time. Furthermore, it does

not explore the AUT systematically. Since the actions are

chosen at random, there is a high chance that previously

selected actions are selected again, resulting in lower code

coverage and unrevealed failures.

To overcome the limitations of the random algorithm,

several researchers (Bauersfeld and Vos, 2012;

Buzdalov and Buzdalova, 2013; Carino and Andrews,

2016; Koroglu and Sen, 2018; Mariani et al., 2012) have

proposed Q-Learning to improve the probability

distribution over the sequence space by exploiting a

learning engine. Instead of randomly selecting an action,

the least frequently executed action is selected so that the

GUI can be more thoroughly explored to maximise

coverage and locate crashes. The prospect of discovery in

such an approach is considered more “interesting” to a

tester. However, these techniques select an action based

solely on its frequency of execution without taking into

consideration its potential ability in detecting and

revealing failures. For example, let’s compare the actions

of tapping a button to submit data to a database and

tapping a button to reset data within the interface. If both

these tapping actions have never been executed, the

probability of each action to be selected would be equal if

the selection is based solely on the frequency of

execution. However, the former button executes a

complex code where it might involve data transmission

over the network and multiple servers. Hence, from a

tester’s point of view, the action has a greater potential for

bringing more interesting results than the latter.

Unfortunately, the action’s ability to detect crashes is not

considered. Furthermore, these techniques do not consider

context-aware applications, therefore they may not detect

defects that occur due to the improper use of context data.

This is an ongoing research that aim to propose a testing

tool that is able to automatically test Android applications.

The Android platform is selected as it is the most popular

mobile operating system in the world. As of July 2017, the

number of available applications available on Google Play

Store is 2.95 billion (Statista.com, 2019). Its popularity

among developers is owing to the accessible development

environment that is based on the familiar Java programming

language as well as the availability of open-source libraries

implementing diverse functionalities that accelerate the

development process.

We name our proposed tool Crash Droid. It is based

on the observe-select-execute strategy and utilises that Q-

Learning algorithm to compare actions. However, we

enhanced Q-Learning’s function by adding the ability to

compare context-based actions as well, so as to improve

its competency at exploring a GUI in order to effectively

detect crashes and achieve a higher code coverage. In this

study, the conceptual design of our proposed tool, Crash

Droid that addresses the issue of improving the

exploration strategy of the Q-Learning algorithm by

selecting actions, including context-based actions, based

on their potential abilities in uncovering failures.

The Conceptual Design of the Tool

We propose a tool named Crash Droid that interacts with

and explores an AUT using the observe-select-execute

strategy, where all the possible GUI actions on the AUT’s

current state are observed, one action is selected based on its

crash detection potential and the selected action is executed

on the AUT. The tool employs the Q-Learning algorithm

with the purpose of further exploring the GUI to maximise

coverage and locate crashes. Figure 1 shows an overview of

Crash Droid that consists of two phases, which are (1) the

pre-testing phase and (2) the testing phase. The details of

these phases are discussed below.

Goh Kwang Yi et al. / Journal of Computer Science 2022, 18 (2): 90.102

DOI: 10.3844/jcssp.2022.90.102

92

The Pre-Testing Phase

Pre-testing addresses the issue that every action was

previously treated to have the same potential. In this

study, actions are differentiated by its weight, calculated

before testing takes place. The weights are used as the

basis in determining the initial action value, which could

potentially speed up the crash of an AUT. The weight is

calculated based on two categories of metrics: (1) Non-

context-aware and (2) context-aware. These metrics are

extracted from the action’s underlying code. The non-

context-aware metric is related to the complexity of the

code and the number of called functions, also known as

the Response For Call (RFC). The complexity of the code

is calculated using the cyclomatic complexity formula

proposed by McCabe. The context-aware metric is related

to the network and GPS used by the code. They can be

calculated using their related functions, such as:

for GPS:

• getMaxSatellites ()

• getSatellites ()

• requestLocationUpdates ()

for network:

• httpClient.execute (httpPost)

• httpResponse.getEntity ()

The process of calculating the weight is discussed below.

Weight Calculation Process

Consider the actions and their corresponding values

for the metrics Response for Call (RFC), Complexity of

Code (CC), number of network-related functions (Net)

and number of GPS-related functions (GPS). Table 1

shows the metric values of actions in a sample application.

The Response for Call (RFC) Weight of an Action

The RFC weight of an action Ai is expressed as the

number of functions called by its code relative to the

highest number of functions called by an action in the

AUT. The RFC weight, WrfcAi, is computed by dividing

the number of functions called by the code in Ai by the

highest number of functions called by an action in the

AUT. So, if action Ai calls Nrfc functions and the highest

number of functions called by an action in the AUT is

Mrfc, then WrfcAi is calculated as:

𝑊𝑟𝑓𝑐𝐴𝑖 = 𝑁𝑟𝑓𝑐 ÷𝑀𝑟𝑓𝑐 (1)

where:

Nrfc - number of functions called by the action Ai

Mrfc - highest number of functions called by an action

in the AUT

The weight Wrfc a0 of action a0 in Table 1 is 0.8750 as

shown in Table 2.

The Cyclomatic Complexity (CC) Weight of an

Action

The cyclomatic complexity metric determines the

complexity of a code, The cyclomatic complexity

weight of an action Ai is expressed as the complexity of

its code relative to the highest complexity among all

actions in the application. The weight, WccAi, is

computed by dividing the complexity of action A i by

the highest complexity of an action in the AUT.

𝑊𝑟𝑓𝑐𝐴𝑖 = 𝑁𝑐𝑐 ÷𝑀𝑐𝑐 (2)

where:

Ncc is the complexity of action Ai

Mcc is the highest complexity of an action in the AUT

The weight Wcca0 of action a0 in Table 1 is 0.3750 as

shown in Table 2.

The Network-Related Function Weight of an Action

The network-related function metric, which is a

context metric, determines the network used in a code.

The network-related function weight of an action Ai is

expressed as the number of network-related functions in

its code relative to the highest number of network-related

functions in the code of an action in the AUT. The weight

WnetAi is computed by dividing the number of network-

related functions in action Ai by the highest number of

network-related functions in an action in the AUT.

𝑊𝑛𝑒𝑡𝐴𝑖 = 𝑁𝑛𝑒𝑡 ÷𝑀𝑛𝑒𝑡 (3)

where:

Nnet = The number of network-related functions in

action Ai

 Mnet = The highest number of network-related functions

in an action in the AUT

The weight Wnet a0 of action a0 in Table 1 is 0 as shown

in Table 2.

The GPS-Related Function Weight of an Action

The GPS-related function metric determines the use of

GPS in a code. The GPS-related function weight of an

action Ai is expressed as the number of GPS-related

Goh Kwang Yi et al. / Journal of Computer Science 2022, 18 (2): 90.102

DOI: 10.3844/jcssp.2022.90.102

93

functions in its code relative to the highest number of

GPS-related functions in the code of an action in the AUT.

The weight WgpsAi is computed by dividing the number of

GPS-related functions in action Ai by the highest number

of GPS-related functions in an action in the AUT.

gps gps gpsW Ai N M= (4)

where:

Ngps = The number of GPS-related functions in action Ai

Mgps = The highest number of GPS-related functions in

an action in the AUT

The weight Wgps a0 of action a0 in Table 1 is 0 as shown

in Table 2.

The weights of each action in the sample application

given in Table 1 for the metrics RFC, Cyclomatic

Complexity, number of related Network-related

functions and number of GPS-related functions are

presented in Table 2.

For m metrics, the total weight AWij of an action Ai is

computed as follows:

1

m

j ij

ij

Wx A
AW

m

=
=

 (5)

where:

xj = The action metric

m = The total number of metrics

The maximum total weight of an action is 1,

meaning it is the action with the highest metric value

in the AUT. A weight of 0 means that the metric is not

applicable in this action.

The calculated weight values of actions in the sample

application for each of their corresponding metrics and the

total weight of each action are given in Table 2.

The Testing Phase

The automated testing of an AUT takes into

consideration both non-context-aware and context-aware

applications. Crash Droid employs the Q-Learning

algorithm to select the action with the highest crash-

detection potential. If the selected action is context-aware,

the environment requires some adjustment prior to its

execution in order to test the context-aware attribute. The

Q-Learning algorithm is a model-free reinforcement

learning technique. In Q-Learning, an agent goes through

numerous trials of interactions with a complex and

uncertain environment. The agent learns the optimal

action-selection procedure through those interactions to

find the best action that would produce the desired state.

The ultimate goal of the learning process in the long run

is to maximise the total reward from every successive

interaction with an AUT. In the context of our work,

Crash Droid plays the role of the agent that goes through

the trial-and-error interactions with an AUT (i.e., the

environment) with the intention of causing the AUT to

crash. The agent starts with limited knowledge about an

AUT. Then, through the exploration and exploitation of

the AUT, the agent learns and gains more knowledge.

A selected action is assigned a value that is determined

by the Q-value function, Q. The process of selecting

the best action is defined by the value of Q. Upon

executing the action, the agent is awarded with a

reward that is determined using the reward function R.

The definitions of the Q-value function Q and the

reward function R are described below.

Reward Function

The reward function calculates the reward value of an

action that transforms an AUT’s current state into a new

state. The reward function is defined to enable the agent

to compare the crash detection potentials of actions. A

higher reward value is awarded to actions with more

potential than those with less potential. We define the

reward function R for taking action in state s of an AUT

that leads to state s’ as follows:

',

' 0

(, , ') 1
s

init if xa

R s a s
a otherwise

xa

 =

=

 (6)

where:

init = The initial default reward

 x = The number of times action has been executed in

state s

 s = The number of actions in state s that were not in

state s

In this study, the initial default reward uses a value that

is different from those used in other existing studies.

Instead of a constant value, as used by many

researchers, we use the total weight value plus one. The

objective is to guide the selection of actions from as

early as the first interaction with the AUT to speed up

crash detection. The reward for subsequent activities is

awarded based on actions that were less-frequently

selected during the testing process.

The more frequently an action is executed, resulting in

a new state with fewer actions, the less appealing it would

be to the agent. The reward function in this study will

explore actions with greater potential and were less-

frequently explored in the past as they hold high reward

values. The frequency criterion ensures that an action is

not selected repeatedly when exploring an AUT.

Goh Kwang Yi et al. / Journal of Computer Science 2022, 18 (2): 90.102

DOI: 10.3844/jcssp.2022.90.102

94

Fig. 1: Overview of Crash Droid

Table 1: Actions and their corresponding metric values

Action RFC CC Net GPS

a0 7 3 0 0

a1 6 1 0 0

b0 7 4 0 0

b1 4 8 0 0

b2 8 1 0 0

c0 6 1 0 0

c1 4 2 0 0

Table 2: Actions and their corresponding metric weights

Actions RFC weight CC weight Net weight GPS weight Total weight

a0 0.8750 0.3750 0 0 0.3125

a1 0.7500 0.1250 0 0 0.2188

b0 0.8750 0.5000 0 0 0.3438

b1 0.5000 1.0000 0 0 0.3750

b2 1.0000 0.1250 0 0 0.2813

c0 0.7500 0.1250 0 0 0.2188

c1 0.5000 0.2500 0 0 0.1875

Table 3: Total weights and initial q-values of actions

Action RFC weight CC weight Net weight GPS weight Total weight Initial Q-value

a0 1 1 0.5 1 0.8750 1.8750

b0 0.6 0.5 1 0 0.5250 1.5250

b1 0.6 0.5 1 0 0.5250 1.5250

b2 0.2 0.5 0 0 0.1750 1.1750

Q-Value Function

The Q-value function, Q calculates the value of an

action , which is present in a particular state s of an AUT.

It uses the value of the immediate reward for executing

action and the optimal future reward associated with

action . This function is crucial because it allows the agent

to plan ahead when deciding what action to select in a

particular state. The Q-value function is defined as follows:

.(,) (, , ') .max ' (', *)Q s a R s a s a As Q s a= + (7)

Goh Kwang Yi et al. / Journal of Computer Science 2022, 18 (2): 90.102

DOI: 10.3844/jcssp.2022.90.102

95

where:

Q(s, a) = The value of action that is

present in state s

R(s, a, s) = The reward value for executing

action in state s

max*As Q(s, a*) = The maximum action value in the

state that results from executing

action ; and

 is the discount factor parameter The discount factor

determines the effect of future rewards in calculating the Q-

value function for an action and its value lies within the

range of [0-1]. A value of 0 instructs the agent to consider

only the current reward when selecting an action, whereas a

value approaching 1 indicates high importance being given

to an action that leads to high rewards in future states.

The Jaccard Distance

In general, when observing actions in the testing phase,

the action that carries the highest weight will be selected.

However, there is a possibility that several actions might

have the same weight value. In this study, the Jaccard

distance is employed to prevent the tool from randomly

selecting an action among those of the same weight. The

Jaccard Distance is used to compare similarities and

diversities between sample sets. We use the Jaccard Distance

to measure similarities between actions using the four

metrics. It is calculated using the following Eq. 8:

Jaccard Distance (Pa, Pb) =1
a b

a b

P P

P P
− (8)

where, Pa and Pb represent actions that consist of

different sets of metrics. The value of the Jaccard

Distance may vary between 0 and 1. A distance value

of zero means that both actions are the same. A distance

value of 1 indicates that there is no similarity between

the two actions.

Jaccard Distance Calculation Process

Consider testing an AUT that has five states as in

Fig. 6. The states are represented as circles. The transition

from one state to another upon the execution of an action

is shown by the arrows. Based on the figure, executing

action a0 transitions the state from a to b. The possible

actions in state b are b0, b1 and b2 and there are no

available actions in states d, e and f.

The total weight is calculated as described earlier in

the Weight Calculation Process subsection. The initial Q-

value is calculated by adding 1 to the total weight. The

possible actions to select in state b are b0, b1 and b2. From

the table, the highest Q-value among them is 1.5250.

However, the agent is unable to select an action because

there are two actions with that value, which are b0 and b1.

To avoid randomly selecting b0 or b1, the Jaccard

Distance is used to determine which of the two actions

has a better potential. In order to decide whether to

choose b0 or b1, we calculate the similarity score

between a0 and b0 as well as the similarity between a0

and b1 using the Jaccard Distance. Then we compare

the two similarity scores and select the action with the

highest score.

First, we calculate the similarity score between a0 and

b0. Figure 7 shows the codes and the corresponding

metrics for a0 and b0. Based on the given information, we

calculate the similarity score for each metric and obtain

the average score.

Similarity Score for RFC

A total of five and three functions are recorded for a0

and b0 respectively. Two of the functions are used in both

a0 and b0. Thus, the Jaccard Distance (a0, b0) for RFC =

1 - (2/6) = 0.67.

Similarity Score for CC

A total of three and one conditions are recorded for a0

and b0 respectively. They share no common conditions.

Thus, the Jaccard Distance (a0, b0) for CC = 1 - (0/4) = 1.

Similarity Score for Net

A total of one and two network-related functions are

recorded for a0 and b0 respectively. One of the functions

is used in both a0 and b0. Thus, the Jaccard Distance (a0,

b0) for Net = 1 - (1/2) = 0.5.

Similarity Score for GPS

A total of two GPS-related functions is recorded for a0

and no function is recorded for b0. Thus, the Jaccard

Distance (a0, b0) for GPS = 1 - (0 /2) = 1.

Average Similarity Score

Average Jaccard Distance (a0, b0) = (0.67 + 1 + 0.5 +

1) / 4 = 0.7925.

Next, we calculate the similarity score between a0 and

b1. Figure 8 shows the codes and the corresponding

metrics for a0 and b1.

The similarity scores are 0.67, 0.67, 0.5 and 1 for RFC,

CC, Net and GPS respectively. The average similarity

score between a0 and b1 is 0.71. The two average

similarity scores (i.e., 0.7925 and 0.71) indicate that a0 is

not similar to either b0 or b1. However, b0 has a higher

similarity score to a0 than b1, thereby indicating that b0 has

a higher potential for crash detection. Therefore, in this

case b0 is selected by the agent.

Example

Consider an Android application that has states A, B,

C, D, E, F, G and H as shown in Fig. 9. State A has two

Goh Kwang Yi et al. / Journal of Computer Science 2022, 18 (2): 90.102

DOI: 10.3844/jcssp.2022.90.102

96

possible actions (a0 and a1), state B has three (b0, b1 and

b2) and state C has two (c0 and c1). States D, E, F, G and

H are leaf nodes that represent the results of executing

the termination actions. The transitions from one state

to another upon execution of the actions are shown by

the arrows. Based on the figure, executing action a0

transitions the state from A to B. The possible actions

in state B are b0, b1 and b2, the possible actions in state

C are c0 and c1 and there are no possible actions in

states D, E, F, G and H.

Instead of using a constant value, our approach

calculates the initial Q-value by adding 1 to the total

weight. The calculation of the total weight is described in

the Weight Calculation Process subsection. The initial Q-

values for the actions in Fig. 9 are shown in Table 4.

We illustrate the testing phase of Crash Droid based

on the information given in Fig. 9 and Table 4. At the

start of episode 0, which is the beginning of the testing

phase, the agent is in state A. State A has two possible

actions, which are a0 and a1. Since a0 holds the higher

Q-value, the agent selects and executes a0. This causes

a transition from state A to state B. Since B is not a

terminal state, the reward for executing a0 is calculated

as defined in Eq. 6 and a new Q-value for a0 is

calculated as defined in Eq. 7. The agent then continues

in State B that has three actions, which are b0, b1 and

b2. Since b1 holds the highest Q-value, the tool selects

and executes b1. This causes a transition from state B

to state E. The reward and Q-value for b1 are set to 0

since state E is a terminal state. The agent repeats this

process for each episode until it executes a termination

action that closes the application. Table 5 shows the

reward and Q-value for each action after each episode.

Empirical Evaluation

We conducted an experiment to investigate the

significance of the difference in the potential abilities

of actions when testing Android applications by

comparing the percentages of code coverage achieved

by the approaches under comparison. The goal of the

experiment is to answer the question, “Is the Crash

Droid more effective than the approach under

comparison?”. We compared our approach with

another approach proposed by Adamo et al. (2018),

namely the Auto Droid. The approach under

comparison implements the Q-Learning algorithm for

automatically generating test cases in Android

applications. However, the approach ignores the

potential ability of each action, which is the essence of

our approach. Four subject applications were selected

in the experiment. The percentages of code coverage of

the subject applications for each approach were

collected and used to evaluate the effectiveness of the

approaches under comparison.

Subject Applications

The selection of subject applications is based on two

considerations, which are, “Are the selected subject

applications representative of the type of applications

for each tool?” and “Are they developed by an

independent source?” The first consideration is to

ensure that the subject applications are taken from a

domain that represents the intention of each tool. The

second consideration is to avoid bias by an interested

party. An independent source of applications is the

open-source community. Hence, in this experiment,

four subject applications from different categories were

selected from the literature based on the above

considerations.

The selected subject applications are Tomdroid,

Loaned, SimpleDo and Moneybalance. Tomdroid is a

note-taking application. Loaned is an inventory app to keep

track of personal items. SimpleDo is a to-do list application.

Moneybalance tracks expenses shared by groups of people.

Table 6 shows the characteristics of the subject applications

comprising the number of lines, methods, classes and

bytecode blocks in each application.

Experimental Setup

We implemented both approaches in the same tool,

Crash Droid, to minimise the effect of different tool

implementations on the results of the experiment.

Crash Droid takes instrumented APK files as input to

test subject applications and generates code coverage

reports. The code coverage reports are generated using

the JaCoCo plugin. The experiment runs Android 7.0 x

86 emulators on Windows 10 20H2 with 8 GB RAM.

Table 7 shows the configuration parameters used to

execute Crash Droid.

We used a similar experimental setup as described in

Adamo et al. (2018), where we ran each approach on each

subject application for two hours (i.e., 120 min). The

algorithms were run ten times on each subject application

to minimise the impact of randomness.

Table 4: Initial Q-values of actions

Action Initial Q-value

a0 1.3125

a1 1.2188

b0 1.3438

b1 1.375

b2 1.2813

c0 1.2188

c1 1.1875

Goh Kwang Yi et al. / Journal of Computer Science 2022, 18 (2): 90.102

DOI: 10.3844/jcssp.2022.90.102

97

Table 5: Examples of rewards and Q-values for six episodes

 Episode 1 Episode 2 Episode 3 Episode 4 Episode 5 Episode 6

 ----------------------- ---------------------- ---------------------- ---------------------- ----------------------- ----------------------

Action Reward Q-value Reward Q-value Reward Q-value Reward Q-value Reward Q-value Reward Q-value

a0 3 3.687 1.5 2.1719 1 1.6407 0.75 0.75 0.75 0.75 0.75 0.75

a1 - 1.2188 - 1.2188 1.2188 1.2188 2 2.6094 1 1.5938

b0 - 1.3438 0 0 0 0 0 0 0 0 0 0

b1 0 0 0 0 0 0 0 0 0 0 0 0

b2 - 1.2813 - 1.2813 0 0 0 0 0 0 0 0

c0 - 1.2188 - 1.2188 1.2188 1.2188 0 0 0

c1 - 1.1875 - 1.1875 1.1875 1.1875 1.1875 0 0

Table 6: Characteristics of Subject Application

Application name # Lines # Methods # Classes # Blocks

Loaned v1.0.2 2837 258 70 9781

Moneybalance v1.0 1460 163 37 4959

Tomdroid v0.7.2 5736 496 131 22169

SimpleDo v1.2.0 1259 88 31 5355

Table 7: Test generation parameters

Parameter Crash Droid Auto Droid

Running time 120 min 120 min

Initial Q-value 1 + total weight 500

Fig. 6: An AUT represented in terms of states and actions

Fig. 7: Source codes for a0 and b0

Goh Kwang Yi et al. / Journal of Computer Science 2022, 18 (2): 90.102

DOI: 10.3844/jcssp.2022.90.102

98

Fig. 8: Source code for a0 and b1

Fig. 9: Example application in terms of states and actions

Result and Discussion

Figure 10 shows a box plot of the code coverage

achieved by each approach for all the subject applications

on all runs. Crash Droid has a higher median code

coverage compared to Auto Droid for every subject

application. Crash Droid also consistently achieved a

higher code coverage than Auto Droid for every subject

application. The Mann-Whitney U test was performed to

statistically demonstrate the significant difference

between the distribution of the code coverage percentages

achieved by Crash Droid and Auto Droid. The Mann-

Whitney U test was chosen as it is a non-parametric

statistical hypothesis test that can be used for any

population distribution with two samples that are not related

or that are independent. Furthermore, it is well-known that

non-parametric tests are most appropriate when sample sizes

are small (i.e., <100). To apply the Mann-Whitney U test, the

null hypothesis is formulated as follows:

H0: There is no significant difference between Crash

Droid and Auto Droid in terms of code coverage

HA: The code coverage of Crash Droid is greater than

the code coverage of Auto Droid

The level of significance for the hypothesis tests was

set to = 0.05 for a 2-tailed test. The Mann = Whitney U

test result indicates that the differences in code coverage

A

B

C

D

E

F

G

H

a0

a1

b0

b1

b2

c0

c1

Goh Kwang Yi et al. / Journal of Computer Science 2022, 18 (2): 90.102

DOI: 10.3844/jcssp.2022.90.102

99

of both techniques were statistically significant (U =

1223.5, p = 0.0000000273) at the p<0.05 significance

level. Also, Crash Droid has a higher median code

coverage compared to Auto Droid as shown in Fig. 11.

Thus, the result suggests rejecting H0 in favour of HA.

Based on the statistical test done, it can be concluded that

at the 0.05 significance level, Crash Droid is more

effective than the approach under comparison.

Threats to Validity

This section discusses the threats that can compromise

the validity of an experimental study. They are the threats

to the internal, external and conclusion validities.

Threats to internal validity are implementation effects

that can bias the results. Faults in Crash Droid might cause

such effects. To reduce these threats, Crash Droid was

tested and manually inspected using the application that

we developed for our case study.

Threats to external validity primarily involve the

degree to which the subject applications are representative

of true practice. Mitigation of these threats has been

previously discussed in the Subject Applications section.

Finally, the threats to conclusion validity relate to the

validity of the statistical tests. To reduce these threats, the

measurements must be correct and statistical tests must be

used correctly. In order to ensure that the measurements were

correct due to the impact of randomness in both approaches,

the experiment for each subject program was performed ten

times. In the case of statistical tests, we have satisfied the

statistical test assumptions of the Mann-Whitney U test.

Fig. 10: Code coverage across all applications and all runs

Fig. 11: Medians of the two approaches

Goh Kwang Yi et al. / Journal of Computer Science 2022, 18 (2): 90.102

DOI: 10.3844/jcssp.2022.90.102

100

Related Work

Research has shown that most GUI testing studies by

the research community rely on the presence of a model

such as the event flow graph and the finite state machine

to automatically generate test cases (Banerjee et al.,

2013). A model is crucial when aiming for test

automation. However, practitioners prefer Script-based

Language and the Capture and Replay Paradigm. The

techniques preferred by practitioners offer limited test

automation because they require manual intervention to

create the test script. This difference in preference

between practitioners and researchers creates a gap. The

research community aims for automation, where a model

is essential. However, creating a model for GUI software

is time consuming and resource intensive, thereby

discouraging practitioners (Memon et al., 2003).

Various degrees of automation are proposed by GUI

testing researchers. There are techniques that are able to

automate the test execution process but require human

intervention to generate the test (Amalfitano et al., 2017).

Two popular techniques in this category of automation are

the Script-based and the Capture and Replay techniques.

Alternatively, techniques with a higher degree of

automation automates both the test generation and test

execution. For the latter, test generation can be conducted

offline or online. Using offline test generation, test cases

must be generated before they are run. Meanwhile, with

the online test generation, test cases are generated on-the-

fly during the test execution. In other words, test cases are

executed as they are generated. This online technique

follows the strategy of observe-select-execute, where the

possible GUI actions on an AUT’s current state are

observed. Using the selection strategy under

consideration, one action is selected and the selected

action is executed on the AUT. The advantages of this

strategy are that no extraction of the GUI model is

required and GUI changes in the software have no effect

on the testing. Random testing has been employed in GUI

testing research for many years. Fuzz testing is used to test

the robustness of Windows NT applications (Forrester

and Miller, 2000). Robustness is achieved if during the

test, the software does not crash or hang. Fuzz testing is

also applied in the UI/Application Exerciser Monkey tool.

It is a command-line tool that includes the Software

Development Kit (SDK) for Android (“UI/Application

Exerciser Monkey,” 2022). It generates pseudorandom

streams of user events such as clicks, touches, gestures

and a number of system-level events. (Wetzlmaier et al.,

2016) developed a framework for random or monkey GUI

testing that offers reusable components and a pre-defined,

generic workflow with extension points for developing

custom-built test monkeys. It supports customising SUT-

specific test monkeys that randomly explore GUIs.

The random approach, however, does not explore an

AUT systematically. As the actions are chosen at random,

there is a high chance that actions are selected repeatedly,

resulting in a lower code coverage. Also, for large GUI

applications with numerous and deeply nested actions, a

random algorithm is unable to test most parts of the GUI

within a reasonable amount of time. To gain access to

deeply nested actions and to select less-frequently

executed or unexecuted actions, the probability

distribution of actions over the sequence space needs to

be changed. This can be achieved by using a

reinforcement learning approach, in particular the Q-

Learning algorithm. Q-Learning is applicable to dynamic

GUI testing, as the model of the GUI is unknown until it

is explored. Furthermore, the actions are generally

deterministic and can be represented as a Markovian

decision process.

Bauersfeld and Vos (2012; Esparcia-Alcázar et al.,

2016) investigated the use of the Q-Learning algorithm in

TESTAR (TEST Automation at the user inteRface level).

TESTAR is an open-source tool that performs automated

testing via the GUI itself, using the operating system’s

Accessibility API to recognise GUI controls and their

properties and enable programmatic interaction with

them. The main idea of the study was to change the

probability distribution over the sequence space. Instead

of a purely random selection, Q-learning selects the least

frequently executed action with the purpose of exploring

the GUI. The result from the investigation showed that

employing the Q-learning algorithm did not significantly

crash the AUT quicker but the exploration on average

executes about 2.5 times as many different actions than

the technique under comparison.

 Mariani et al. (2012) proposed an automatic black-

box testing tool named the Auto Black Test that

automatically generates GUI test sequences. It runs on the

IBM Rational Functional Tester. The tool works by

exploring a GUI and assigning values to edges based on a

reward function and a Q function. The reward function

measures the amount of change that takes place in a GUI’s

state. The more the changes, the higher the reward.

Adamo et al. (2018) described an approach that

implements the Q-Learning algorithm for automatically

generating test cases in Android applications. The

approach generates test cases by selecting an event with

the highest Q-value among a set of available events in

that particular state. Using this approach, the reward

function assigns its highest reward when an event is

executed for the first time.

The DroidBotx (Yasin et al., 2021) is another tool that

was developed for generating GUI test cases based on the

Q-Learning algorithm. When generating test cases, the

tool selects actions from the new states with the aim of

maximising the instruction, method and activity coverage

by minimising any redundant execution of events. Again,

the Q-function calculates the expected future rewards for

actions based on the set of states it visited.

Goh Kwang Yi et al. / Journal of Computer Science 2022, 18 (2): 90.102

DOI: 10.3844/jcssp.2022.90.102

101

We extend and adapt the work of Bauersfeld and Vos

(2012; Esparcia-Alcázar et al., 2016) to automate Android

mobile GUI testing that includes the generation and the

execution of test cases. Based on the literature, the Q-

Learning algorithm was used in GUI testing and it showed

better results at improving the random exploration strategy.

The core purpose of using Q-Learning is to intelligently

guide the action selection with the purpose of guiding the

exploration of the GUI to minimise the selection of

previously-selected actions and increase code coverage.

However, a common limitation of previous techniques is that

the highest value is assigned to the action that is executed for

the first time. Besides, the selection of actions during test

execution is only based on the least frequently executed

action without taking into consideration its potential with

respect to testing. Without this consideration, previous

techniques assign a constant value to the initial action.

Hence, in the initial state of the test execution, the selection

of the first action is done randomly. In our study, we are

proposing an approach that takes into consideration the

potential of every action.

Conclusion and Future Work

We have presented the conceptual design and the result

of initial experimental study of Crash Droid. Crash Droid is

an automated Android GUI testing tool based on the Q-

Learning algorithm. This study describes the ongoing

research that aims to improve the exploration strategy of the

Q-Learning algorithm by providing a mechanism to compare

the ability of every action in detecting crashes. Our initial

investigation shows that the ability to differentiate the

potential of every action helps to achieve higher code

coverage than the one that ignore it. In future, we will

investigate the capability of our approach in detecting

crashes. Also, we will investigate the use of other metrics for

calculating the weight of every action, in particular the

metrics under the context-aware metric.

Acknowledgment

The authors would like to acknowledge the Ministry of

Higher Education Malaysia (MOHE) for the financial

support under the Fundamental Research Grant Scheme

(FRGS); Project code: FRGS/1/2019/ICT01/UPM/02/6.

Also, many thanks to Dr. Tanja Vos and Dr. Johanna Ahmad

for their constructive comments and suggestions, particularly

in preparing the manuscript.

Author’s Contributions

Goh Kwang Yi: Implemented the tool, performed the

experimental study.

Salmi Binti Baharom and Jamilah Din:
Contributed to the preparation of the manuscript.

Participated in the experimental study and performed

data analysis based on the collected data.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of the

other authors have read and approved the manuscript and

no ethical issues involved.

References

Adamo, D., Khan, M. K., Koppula, S., & Bryce, R.

(2018). Reinforcement learning for android GUI

testing. In A-TEST 2018 - Proceedings of the 9th

ACM SIGSOFT International Workshop on

Automating TEST Case Design, Selection and

Evaluation, Co-located with FSE 2018 (pp. 2–8).

doi.org/10.1145/3278186.3278187

Amalfitano, D., Amatucci, N., Memon, A. M.,

Tramontana, P., & Rita, A. (2017). The Journal of

Systems and Software A general framework for

comparing automatic testing techniques of Android

mobile apps. The Journal of Systems & Software,

125, 322–343. doi.org/10.1016/j.jss.2016.12.017

Banerjee, I., Nguyen, B., Garousi, V., & Memon, A.

(2013). Graphical User Interface (GUI) testing:

Systematic mapping and repository. Information and

Software Technology, 55(10), 1679–1694.

 doi.org/10.1016/j.infsof.2013.03.004

Bauersfeld, S., & Vos, T. (2012). A Reinforcement

Learning Approach to Automated GUI Robustness

Testing. In 4th Symposium on Search Based-

Software Engineering (SSBSE2012), 7–12.

 http://selab.fbk.eu/ssbse2012/documents/SSBSE_20

12_Fast_Abstracts.pdf#page=17

Buzdalov, M., & Buzdalova, A. (2013). Adaptive

selection of helper-objectives for test case generation.

2013 IEEE Congress on Evolutionary Computation,

CEC 2013, 2245–2250.

 doi.org/10.1109/CEC.2013.6557836

Carino, S., & Andrews, J. H. (2016). Dynamically testing

GUIs using ant colony optimization. Proceedings -

2015 30th IEEE/ACM International Conference on

Automated Software Engineering, ASE 2015, 138–148.

doi.org/10.1109/ASE.2015.70

Esparcia-Alcázar, A. I., Almenar, F., Martínez, M., Rueda,

U., & Vos, T. (2016). Q-learning strategies for action

selection in the TESTAR automated testing tool. 6th

International Conferenrence on Metaheuristics and

Nature Inspired Computing (META 2016), 130-137.

Forrester, J. E., & Miller, B. P. (2000). An empirical study

of the robustness of Windows NT applications using

random testing. Proceedings of the 4th USENIX

Windows System Symposium, (August), 59–68.

doi.org/10.1145/1145735.1145743

https://doi.org/10.1145/3278186.3278187
https://doi.org/10.1016/j.jss.2016.12.017
https://doi.org/10.1016/j.infsof.2013.03.004
http://selab.fbk.eu/ssbse2012/documents/SSBSE_2012_Fast_Abstracts.pdf#page=17
http://selab.fbk.eu/ssbse2012/documents/SSBSE_2012_Fast_Abstracts.pdf#page=17
https://doi.org/10.1109/CEC.2013.6557836
https://doi.org/10.1109/ASE.2015.70
https://doi.org/10.1145/1145735.1145743

Goh Kwang Yi et al. / Journal of Computer Science 2022, 18 (2): 90.102

DOI: 10.3844/jcssp.2022.90.102

102

Inukollu, V., Keshamoni, D., Kang, T., & Inukollu, M.

(2014). Factors Influncing Quality of Mobile Apps:

Role of Mobile App Development Life Cycle.

International Journal of Software Engineering &

Applications, 5. doi.org/10.5121/ijsea.2014.5502

Koroglu, Y., & Sen, A. (2018). QBE: QLearning-Based

Exploration of Android Applications. 2018 IEEE

11th International Conference on Software Testing,

Verification and Validation (ICST), 105–115.

doi.org/10.1109/ICST.2018.00020

Mariani, L., Pezzè, M., Riganelli, O., & Santoro, M.

(2012). Auto Black Test: Automatic black-box

testing of interactive applications. Proceedings -

IEEE 5th International Conference on Software

Testing, Verification and Validation, ICST 2012, 81–

90. doi.org/10.1109/ICST.2012.88

Memon, A. M., Banerjee, I., & Nagarajan, A. (2003). GUI

Ripping: Reverse Engineering of Graphical User

Interfaces for Testing. Wcre, 3, 260.

Nguyen, B. N., Robbins, B., Banerjee, I., & Memon, A.

(2014). GUITAR: An innovative tool for automated

testing of GUI-driven software. Automated Software

Engineering, 21(1), 65–105.

 doi.org/10.1007/s10515-013-0128-9

Robinson, B., & Brooks, P. (2009). An initial study of

customer-reported GUI defects. IEEE International

Conference on Software Testing, Verification and

Validation Workshops, ICSTW 2009, 267–274.

doi.org/10.1109/ICSTW.2009.22

Statista.com. (2019). Number of available applications in

the Google Play Store from December 2009 to

December 2020.

 https://www.statista.com/statistics/266210/number-

of-available-applications-in-the-google-play-store/

Statista.com. (2021a). Number of apps available in

leading app stores as of 4th quarter 2020.

https://www.statista.com/statistics/276623/number-

of-apps-available-in-leading-app-stores/

Statista.com. (2021b). Number of mobile (cellular)

subscriptions worldwide from 1993 to 2019(in

millions).

https://www.statista.com/statistics/262950/global-

mobile-subscriptions-since-1993/

Statista.com. (2021c). Number of mobile app downloads

worldwide from 2016 to 2020 (in billions).

https://www.statista.com/statistics/271644/worldwid

e-free-and-paid-mobile-app-store-downloads/

Statista.com. (2021d). Number of smartphone users

worldwide from 2016 to 2021 (in billions

https://www.statista.com/statistics/330695/number-

of-smartphone-users-worldwide/

UI/Application Exerciser Monkey. (2022.).

https://developer.android.com/studio/test/monkey.html

Wetzlmaier, T., Ramler, R., & Putschogl, W. (2016). A

Framework for Monkey GUI Testing. Proceedings -

2016 IEEE International Conference on Software

Testing, Verification and Validation, ICST 2016,

416–423. doi.org/10.1109/ICST.2016.51

Yasin, H. N., Hamid, S. H., & Raja Yusof, R. J. (2021).

DroidbotX: Test Case Generation Tool for Android

Applications Using Q-Learning. Symmetry.

doi.org/10.3390/sym13020310

Yue, S., Yue, S., & Smith, R. (2016). A Survey of Testing

Context-aware Software: Challenges and Resolution.

https://doi.org/10.5121/ijsea.2014.5502
https://doi.org/10.1109/ICST.2018.00020
https://doi.org/10.1109/ICST.2012.88
https://doi.org/10.1007/s10515-013-0128-9
https://doi.org/10.1109/ICSTW.2009.22
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/262950/global-mobile-subscriptions-since-1993/
https://www.statista.com/statistics/262950/global-mobile-subscriptions-since-1993/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://developer.android.com/studio/test/monkey.html
https://doi.org/10.1109/ICST.2016.51
https://doi.org/10.3390/sym13020310

