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Abstract: In material wear experiments, such as the Ball Mill Abrasion Test 

(BMAT), it is crucial to know the number of specimens to be used in each 

experiment to produce accurate and reliable results. In BMAT, however, a 

structured way of determining the necessary number of balls per type of 

material to be included in the experiments has not been considered to date. 

This article shows, using statistical tools and adhering to the standards that 

govern these experiments, that the optimal number of balls per type of 

material to be included in each experiment is 6. In addition, it is shown that 

if the initial differences between the balls are reduced, it is possible to obtain 

more accurate and reliable results. 
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Introduction 

It is crucial in experimental procedures to obtain 

accurate and reliable measurements of the parameter of 

interest. To reach this goal, scientists resort to the use of 

precise equipment and the collection of a high number of 

measurements (Antony, 2014). The first approach is 

obvious: The more precise the machine is, the more 

reliable and reproducible the results are. In regards to the 

number of measurements, on the other hand, it is clear that 

the more abundant and systematic they are, the more 

representative they become. 

In ideal circumstances, scientists aim to take as many 

measurements as possible to get increasingly closer to the 

actual value of the parameter being studied. When this is 

possible, a normal-like distribution is usually obtained (Ross, 

2017; Ibe, 2013). In reality, however, in some experimental 

procedures, it is either impossible or impractical to repeat 

experimental measurements numerous times and get a 

normal distribution. In this scenario, the t-student distribution 

has shown to be more appropriate (Brereton, 2015). 

Although it is a general source of discussion, this method is 

commonly applied when the sample size drops below 30, 

given that a normal-like distribution is obtained above this 

sample size (Ross, 2017; Kim, 2015). 

It is of particular interest to examine the possibility of 

optimizing the number of balls needed per alloy in Ball 

Mill Abrasion Tests (BMAT) to yield reliable results, 

given that only a single measurement can be obtained 

from each ball after every experiment. BMAT is used to 

measure the resistance of materials under wear conditions 

similar to those in an industrial ball mill (Gates et al., 

2018). The experiment consists of a rotating drum 

containing metallic balls of the materials to be tested and 

an abrasive medium. The interactions between balls and 

the abrasive material lead to the crushing of the abrasive 

and mass loss of the grinding media due to wear (Ali et al., 

2019). The optimization of these experimental setups can 

facilitate the obtention of experimental results, which are 

crucial to the industry given the significant losses 

comminution processes represent (Massola et al., 2016). 

In BMAT experiments, given the number of alloys 

generally tested, it could be both impractical and impossible 

to accommodate more than 30 balls per alloy in a single 

experiment, just to obtain more than 30 measurements and 

get a normal-like distribution. It could be impractical given 

that, for example, adding an extra ball per alloy extends the 

time taken to measure the weight loss of the entire alloy type. 

If, for instance, 10 different alloys are being tested and 30 

balls of each alloy are included (just to approximate closer 
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to the normal distribution) and considering that the time 

taken to measure each ball's weight loss is approximately 

10 sec; the weight loss measuring step would take a total 

of 5 h. If having such an abundant sample size for each 

alloy would be necessary, the interest in this methodology 

and its results would rapidly diminish. 

Additionally, it must be remembered that laboratory 

equipment is generally small compared to industry-level 

equipment. Therefore, in some circumstances, it may be 

essentially impossible to try to get a great amount of data 

at the same time by increasing the number of balls per 

alloy. In BMAT, for example, if the same number of balls 

abovementioned are considered, with an average mass of 

130 g, the total volume occupied by them would be 

approximately 5.7 L. If the volume occupied by the 

minerals to be ground, water, and the make-up charge are 

added, it would rapidly be noticed that a relatively big mill 

will be needed. Moreover, it is important to mention that 

handling such an amount of material in a laboratory, may 

be dangerous for the operator and will increase the time 

taken for unloading the mill and cleaning the samples. 

The aim of this study is, therefore, to determine the 

optimum alloy sample size for appropriate material 

performance estimation in BMAT. 

Even though the analysis of the optimum number of 

specimens per alloy is significantly important for wear 

tests and specifically for BMAT, it is not possible to find 

a systematic approach to this issue in the literature. 

One of the earliest works on wear tests similar to 

BMAT and with great impact on this field is that of 

Albertin and Sinatora (2001), who loaded 12 balls of each 

alloy to the laboratory mill used. Similarly, Chenje et al. 

(2004) exposed 3 balls each of five different alloys to the 

tested simultaneously, to determine their microstructure-

property-wear performance relationships. Gates et al. 

(2008), who in more detail explored the possibility of 

using BMAT as a proper wear performance test, used an 

average of 11 balls per alloy. Jankovic et al. (2016) used 

two ball mills of different sizes, for the larger mill 21 balls 

of each of the four grades of media were charged to the 

mill, while for the smaller mill 16 balls of three different 

grades were used. Most recent works have been done by 

Ali et al. (2019), who used various sets of balls, each of 

which contained an average of 11 balls. 

Other authors who have worked on wear tests 

similar to BMAT, on the other hand, have not stated the 

exact amount of specimens implemented in the tests but 

mentioned throughout their analysis the importance of 

taking a statistically significant number of test balls for 

each experiment. 

As observed, the sample size considered for this type 

of wear test fluctuates greatly, being as low as 3 balls in 

some cases and as high as 21 for others. The absence of 

evidence showing a justified choice of sample size for 

each material type considered in these wears experiments 

sets the basis to consider a structured approach to determine 

the sample size needed for BMAT. The question to be 

answered is, therefore, whether it is possible to find a 

minimum sample size for which accurate measurements of 

alloy performance are still obtained. 

In general, statistical terms, many authors have 

worked on the determination of appropriate sample size 

for experimental procedures, which include: Miot (2011) 

who states that one should determine the significance 

level of the estimate and the maximum tolerable sample 

error to determine the sample size. Moreover, if the 

population standard deviation is unknown and no 

literature presents similar data, a pre-test should be 

conducted to know the behavior of the subgroup. 

Similarly, Bujang and Baharum (2016) claim that sample 

size guidelines should be guided by the determination of a 

sizeable effect size that researchers can accept or 

tolerate. Additionally, it is stated that sample size 

determination very much depends on the particular study 

objectives. Both authors highlight the importance of 

considering the particularities of the experiment to be 

performed. Favorably, numerous BMAT experimental 

results are available, which give a great insight into the 

behavior of the data yielded by this wear test. 

Verma and Verma (2020) analyze both extremes of the 

sample size spectrum. For instance, using a sample smaller 

than the optimum increases the probability of rejecting the 

correct claim and can fail to detect a small effect. This, 

however, does not imply that large samples provide better 

results than usually believed. One of the main issues with a 

large sample size is the need for more financial and human 

resources than possibly required. The method proposed by 

the authors to determine the sample size consists of deciding 

the level of accepted error and finding an estimate of the 

population standard deviation. Van de Schoot and Miocevic 

(2020) on the other hand, propose that a small sample size 

solution could lie in the addition of classical experimental 

design elements such as Randomization, blocking, and 

replication. Awe et al. (2022), as the previously presented 

authors, have done, claim that sample size determination 

depends strongly on the aims, nature, and scope of the study 

and the expected results. Moreover, it is limited by the 

availability of resources such as time, manpower, money, 

etc. A crucial statement made by the authors is that using the 

same sample size as those of similar studies is not 

recommended, as it is possible to run the risk of 

repeating errors that were made in determining such 

sample size. It is for this reason that this study aims to 

explore the particularities of the BMAT experiment to 

determine, with great statistical significance, the 

appropriate sample size, given that no authors have 

previously considered such an important topic. 

Finally, Lakens (2022) claims that one of the methods 

for determining the sample size consists in planning for 

results precision. In more detail, the sample size based on 
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precision requires the collection of data to achieve the desired 

width of the confidence interval around the parameter 

estimate. This decision should be taken considering previous 

experimental results and the nature of the test itself. This 

approach will be considered in this study, taking into account 

the particular characteristics of BMAT results. 

Preliminaries 

In the scenario of normal distribution behavior, 

scientists can make use of the mean and sample 

standard deviation to estimate the real data 

characteristics. As a general convention, the 95% limits 

are used to generate a range of values inside which the 

author is confident to conclude that the real data mean 

is found (Ahsanullah et al., 2014). 

The distribution to be used in this study is the t-student 

distribution, which better estimates the errors at small 

sample sizes (Ahsanullah et al., 2014). The expression to 

be used to calculate the 95% confidence interval is: 

 

( )1 , 1t

t student

n
I X

n




−

− −
=   (1) 

 

where, t(1-α, n-1) corresponds to the t value from the student 

distribution at which the 95% confidence interval is 

obtained. Given this expression, it is possible to analyze 

the behavior of this interval as a multiple of the standard 

deviation when increasing n. Figure 1 shows the behavior 

of the 95% confidence interval as a multiple of standard 

deviation vs. several measurements. It is observed that the 

95% intervals given as multiples of the sample standard 

deviation rapidly drop as the number of measurements 

increases. In experimental procedures where the sample size 

has to be estimated, as the ASTM E122-17 states, it is 

necessary to first state the precision desired. This 

standard covers the methods to determine the sample 

size required to estimate, with specified precision, a 

measure of the quality of a lot of material, or produced 

by a process. The authors of this study, based on the 

analysis of the data behavior from previous BMAT results, 

consider that if the 95% confidence interval is smaller than 

X ± σ, then the measurement is considered to be relevant and 

precise. This consideration, in the context of the ASTM 

E122-17 standard, is translated to a maximum acceptable 

difference between the true average and the sample average 

to be equal to one advance estimate of σ. 

It is noticeable that at around 6 measurements the 

confidence interval can be given as a multiple of one 

sample standard deviation and beyond this point the 

interval decreases at a much lower rate, taking 11 extra 

measurements to reduce the confidence interval to half 

of that obtained at 6. 

This study will examine whether this phenomenon will 

apply to BMAT tests. If it is possible to reduce the sample 

size of each alloy to 6, for example, then it would be 

possible to reduce, by a decent amount, the time taken to 

measure the weight losses of the grinding media after a 

wear experiment, considering that 10 or more balls are 

generally included for each material type. 

Data Collection 

Existing results from Ball Mill Abrasion Tests are 

used. The BMAT experiments were run on a 601 mm 

diameter laboratory mill, at a rotational speed equivalent 

to 25% of the critical speed (the speed at which 

centrifuging occurs). The abrasive used was a mixture of 

pure quartz (10 mm) and A.F.S. sand, the grinding media 

were metallic balls of approximately 32 mm in diameter. 

To obtain the desired mill fill, a makeup charge was used, 

which consisted of 40 mm diameter martensitic steel 

balls. The tests were run wet, i.e., water was added to 

reduce the risks associated with inhaling dust produced by 

the grinding process. For each alloy considered in this 

study, more than 10 balls were included. The mass loss 

experimented by each ball (from each alloy group) was 

registered, which is the information being processed and 

analyzed in this study. The results used are in units of 

2

mg

dm h
, corresponding to the amount of mass loss per 

surface area per duration of the test. The quantities 

presented in this study (unless stated otherwise) 

correspond to these units. The characteristics of each alloy 

used in this study are shown in Table 1. 

 

Table 1: Chemical composition of materials studied 

Material name C Cr Mo Cu Mn Si Ni 

MAT 1 3.13 10.62 0.01 0.10 0.50 0.36 0.12 

MAT 2 0.76 0.27 0.02 0.29 0.70 0.15 0.10 

MAT 3 2.69 29.97 0.03 0.07 0.71 0.45 0.20 

 

 
 
Fig. 1: 95% confidence intervals as multiples of standard 

deviation vs number of measurements 
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Materials and Methods 

The aim of the methodology to be detailed hereunder 

is to determine the optimal number of measurements 

required for an alloy in a single BMAT experiment to 

achieve the precision stated previously. To achieve this, a 

set of measurements of N number of balls is provided 

from existing experimental results. The optimization 

method provides a combination of a smaller quantity of 

measurements n with the same reliability as that obtained 

when using all the measurements. In formal terms: Let N 

be the total number of specimens in a single alloy, then 

the number of unique combinations of n measurements is 

given by the following equation: 

 

( )

!

! !

N

n

N
C

N n n
=

−
 (2) 

 

where each combination can be represented i N

nB with 0≤ i 

≤ N

nC  and can be thought of as a set of n artificial 

measurements done for the given alloy. The set of all 

possible combinations can be expressed as: 
 

 : 0i N N

n n nP B i C=    (3) 

 
It is then possible to obtain the sets of the averages and 

standard deviations of each combination set j N

nB , as follows: 

 

 
( ) 

: 0

: 0

avg i N N

n n n

stdv i N N

n n n

P B i C

P s B i C

=  
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 (4) 

 

These are sets with cardinality equal to N

nC which, 

depending on the value of n, could be as high as 462 if            

N = 11 for instance. It is possible then to create histograms 

for these two variables avg

nP , stdv

nP  which would illustrate 

the recurrence of each mean and standard deviation 

calculated from all combinations of n measurements as 

will be seen later. The behavior of these two variables is 

crucial for the optimization method. 

For instance, stdv

nP  has a direct impact on the behavior 

of the confidence intervals at different n values. Given 

that the proposed method should yield an optimum 

combination of measurements j N

nB that is representative 

of the materials' behavior, the first restriction imposed on 

the method is the following: 
 

1.96 1.96avg j N avg

n n n
N N

n n

P B P
C C

 
−   +  (5) 

 

where, σ is the standard deviation of the variable avg

nP . 

Additionally, given that the confidence intervals are 

proportional to the standard deviation and that the goal is 

to minimize the width of this interval, it is also required 

for s ( )j N

ns B  to be minimal. By doing so, the method not 

only ensures that the optimal combination j N

nB is 

representative of the real behavior of the material but also 

reduces the width of the confidence interval, providing 

more significance and reliability to the results yielded. 

Results and Discussion 

Analysis of Material MAT1 

Evolution of Means and Standard 

Deviation Histograms 

From the wear experiment considered it was possible 

to obtain 11 results corresponding to the alloy weight loss. 

As mentioned before, the proposed methodology can 

extract this information and create graphs of the 

recurrence of means and standard deviation from all 

possible combinations of n elements. The figures to be 

presented in this section have the intention of illustrating 

the evolution of the histograms of means and standard 

deviations as n increases, taking as particular cases n = 

2,6,11, sufficient to understand the main changes 

produced by the increase in n. In the Appendix section, 

the reader can find the complete evolution of these 

histograms. Figure 2 shows the results from combining 2 

measurements from the 11 pre-existing ones. 

It is seen from Fig. 2 that the range of values of means is 

fairly widespread, starting at approximately 115 up to 

approximately 155. From this graph, it is not clear what the 

actual performance of the alloy is under this experimental 

condition, or at least it does not give the reader the confidence 

to state a single value that would represent the entire family 

of results. From the standard deviation histogram, it can be 

seen that the values range from around 0 to almost 25. 
 

 
 
Fig. 2: Histograms of means and standard deviations using 2 

samples (MAT 1) 
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From these results, it is clear that making only two 

measurements is simply inappropriate, as already 

suggested by some literature (Verma and Verma, 2020; 

Miot, 2011). There is of course a high chance to obtain 

results with very low standard deviation, although the 

same chances appear for high standard deviation. It is 

not appropriate then to make two measurements to 

predict the performance of an alloy in experimental 

conditions similar to these. Notice that Fig. 2 also 

shows the number of trials, corresponding to the total 

number of possible combinations of 2 elements from 

the list of pre-existing results, i.e., N

nC . 

If the number of measurements further increases to 6, 

Fig. 3 is obtained. When using 6 elements to form 

combinations, the histogram of mean values appears to 

resemble a normal-like distribution, provided the high 

number of trials, as predicted by the literature (Ross, 

2017). In this case, the range of mean values starts at 120 

and finalizes at approximately 145, with a clear 

concentration of data between 130 and 135, in contrast to 

the previous scenario where the mean values were spread 

across a large interval, making it particularly difficult to 

calculate the actual alloy performance. The results from 

combining 6 elements indicate that the actual mean value 

and therefore the actual alloy performance is likely to be 

inside the interval starting at 130 up to 135 (a smaller 

range than that provided by the previous case). 

In terms of the standard deviation histogram, it is 

evident the values are spread over a relatively wide range, 

though most of the values are concentrated in the interval 

from 14 to 16. This standard deviation still represents 

around 11% of the weight loss value, which may not be 

considered acceptable for these experiments. However, 

notice as well how it is possible to produce combinations 

of 6 values that produce a relatively low standard deviation 

(approximately 10). If these combinations correspond to 

those producing an average performance inside the most 

recurrent mean values, it would be ideal to only use these 

specimen balls for future experiments. This will not only let 

the experiment produce data with low deviation but also with 

high accuracy in measuring the absolute performance of the 

alloy. In this scenario, the most convenient (and surprisingly 

easy) way to produce a more accurate and precise 

experiment setup will mostly depend on correctly 

choosing the right specimen balls. In future sections, 

this possibility will be further analyzed. 

At last, it is possible to consider the combination of 11 

elements, which is simply the average and standard 

deviation of the total amount of data points existing for 

the experiment, corresponding to 132.6 and 16.2 

respectively. Since the pre-existing experiment results are 

by nature fairly spread, it is no surprise to have a relatively 

high standard deviation (Brereton, 2015). In this case, 

having numerous specimens, without considering their 

initial differences, appears to be an inappropriate 

approach, contradicting the general belief that simply 

having more specimens in an experiment will 

automatically produce better and more accurate results as 

also suggested by Verma and Verma (2020). 

Averaged Standard Deviations 

As mentioned in the methodology, the third type of 

graph can be obtained from the data, which shows the 

average standard deviation for each possible combination. 

This is done by calculating the mean standard deviation 

for every n number of measurements and plotting this data 

against n itself as shown in Fig. 4. 

It can be observed that the average standard deviation 

increases as the number of measurements increases. As 

explained before, this is caused by the pre-existing 

differences in specimen balls. Therefore, it is expected to 

see the largest standard deviation in combinations where 

it is more likely to gather results further apart. For obvious 

reasons, this happens when the combinations are made 

with a larger number of elements and reach a maximum 

when the number of measurements equals the total 

number of data points collected, in this case when n = 11. 

95% Confidence Intervals 

The next step consists of analyzing whether this 

increase in standard deviation, apparently significant, 

can drastically change the 95% confidence intervals. It 

is important to recall that the theoretical analysis gave 

the number of measurements 6, needing 11 additional 

measurements to reduce the interval by a factor of two. 

However, the intervals were given as multiples of 

standard deviation, which we have seen an increase as 

the number of measurements increased. Figure 5 shows 

the 95% intervals (shifting the mean to zero) vs. the 

number of measurements. 

 

 

 

Fig. 3: Histograms of means and standard deviations using 6 

samples (MAT 1) 



Carlos Daniel Garcia Mendoza et al. / Journal of Computer Science 2022, 18 (9): 841.851 

DOI: 10.3844/jcssp.2022.841.851 

 

846 

 
 
Fig. 4: Averaged standard deviation vs measurements (MAT 1) 
 

 
 
Fig. 5: 95% Confidence interval vs measurements (MAT1) 
 

It is observed that the confidence interval rapidly 

decreases at the start, dropping from around 98 to 

approximately 20 in only 3 measurements. However, 

after around 6 measurements, the confidence interval 

decreases at a much lower rate. For example, increasing 

the measurements from 6 to 11 (almost twice the 

number of measurements) only drops the upper bound 

of the interval by approximately 5 points. Additionally, 

it is observed that the radius of the 95% confidence 

interval at 6 measurements is proportional to one 

standard deviation (the precision desired). Therefore, it 

is possible to state that a sample size of 6 balls is indeed 

an optimal amount. 

It is important to recall that Fig. 5 is produced with 

averaged standard deviations for each determination 

(from all possible combinations of n values), therefore 

it could be possible to further decrease the confidence 

interval to a narrower range (for n values lower than 

11) if, for example, the optimization process can find a 

combination of n values with a relatively low standard 

deviation, as explained in the methodology. 

Optimizing the 95% Confidence Interval 

at 6 Measurements 

The optimization method was able to choose those 

combinations which produced averages inside the 95% 

confidence interval of the variable avg

nP , which is 

considered a reasonable range for the actual average 

performance of the alloy. This range was chosen based on 

the intervals with most data accumulation in the histogram 

shown in Fig. 3. The proposed method is then able to find 

those combinations which produce the lowest standard 

deviations. By doing this, it is guaranteed that the 

combination found not only falls in between a desired 

average value but also with a low enough deviation which 

could potentially reduce the 95% confidence interval at 

this number of measurements. 

After running the optimization process, a 

combination of six values with an average of 

approximately 134 and a standard deviation of 

approximately 11.3 was found. This corresponds to the 

combination with the mean closest to the average of 11 

values and the lowest standard deviation. By choosing 

this combination, it is possible to reduce the width of 

the 95% confidence interval to approximately 7. If only 

this value is optimized, it is possible to see a clear 

reduction in the 95% confidence interval at 6 

measurements as shown in Fig. 6. 

Therefore, it is possible to further reduce the 95% 

confidence interval by simply optimizing the specimens 

chosen for the experiment. In this case, the 95% interval 

width was reduced to a value that is only two points 

away from the interval generated with 11 

measurements. Besides that, using optimized values, it 

was possible to reduce the standard deviation from 16.2 

(using 11 measurements) to 11.3 (using 6 

measurements). It is important to note as well that the 

standard deviation and 95% confidence interval at 11 

measurements cannot be further reduced since the only 

available data consisted of 11 values. With this 

premise, it is unreasonable to use all 11 available 

specimen balls considering that carefully choosing 6 of 

them would lead to a significant decrease in standard 

deviation with similar confidence intervals. 

Analysis of Material MAT 2 

Evolution of Means and Standard 

Deviation Histograms 

The same procedure seen above was applied for this 

material and the histograms of means and standard 

deviations from all possible combinations of n values 

were obtained, as shown in Fig. 7. 
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It is clear from Fig. 7, that the average data is widely 

spread over a large range of values, which confirms that 

using two samples is a scenario that has to be avoided if 

precise performance information is desired. Even though 

BMAT results can be reproducible with high precision, it 

is important to note that the significance of these results 

will be strongly linked to the number of samples used. For 

example, if certain combinations are used, it is possible to 

obtain a weight loss of approximately 157 while other 

combinations can produce a weight loss of 161. This 

difference may seem insignificant but when 

extrapolating these results to experiments with higher 

mass losses (e.g., higher rotational speeds), the gap 

between them gets larger. Additionally, for mining 

companies that lose significant amounts of resources 

during grinding media change, even the smallest 

benefit over the grinding media performance is desired. 

As with the previous material, it was possible to 

produce histograms considering all combinations of         

6 values from the pre-existing data, generating Fig. 8. 

The histogram of mean values shows a clear 

concentration of data around 158.0. In contrast with the 

previous case, using six values or measurements seems more 

reasonable, since it is more likely to fall between a range 

close to the actual alloy performance (and within the 

precision desired). In terms of the standard deviations, the 

data accumulates at relatively high values, however, as seen 

in MAT 1, there could be a combination of 6 values with a 

relatively good approximation of the mean performance with 

a low standard deviation. This would, in turn, make it 

possible for optimization to take place and reduce the 95% 

confidence interval at six measurements. Finally, the 

combination of the 11 samples produced a mean of 158.1 and 

a standard deviation of 1.8. 

Averaged Standard Deviations 

As with the first alloy, the average standard 

deviation increases as the number of measurements 

increases, reaching a maximum of 11, given that the 

total number of pre-existing results is 11. The range of 

values of average standard deviation is however not as 

wide as in the previous case. For this reason, it is 

expected to obtain a 95% confidence interval graph 

similar to that obtained previously. 

Optimizing the 95% Confidence Interval at 6 

Measurements 

Following the previously mentioned method for 

optimizing the confidence intervals at 6 measurements 

only, Fig. 9 is obtained. 

After applying the optimization process, the 95% 

confidence interval at 6 measurements could be reduced 

from 2.01 to 1.52. Further reducing the confidence 

interval not only warrants meeting the precision desired 

but also improves the quality of the population's 

behavior prediction (Verma and Verma, 2020). The 

optimized interval only differs by 0.5 units from the 

confidence interval obtained when using 11 

measurements. Additionally, when using the optimized 

combination, the standard deviation could be reduced 

from 1.81 (using 11 measurements) to 1.37; further 

encouraging the use of carefully picked specimens 

from a larger but probably more deviated sample. 

Analysis of Material MAT 3 

Evolution of Means and Standard 

Deviation Histograms 

The mean and standard deviation histograms from 

the last alloy considered in this analysis are shown 

below. Figure 10 shows the results from combining 2 

sample data from the list. 

As with the previous two alloys, the histogram of 

means when using 2 samples contains data spread over a 

wide range of values. This is also the case for the standard 

deviation histogram, confirming once again the risks 

associated with considering a low number of samples in 

BMAT. A more interesting result is obtained in Fig. 11. 

In contrast to the two previous alloys, MAT 3 does not 

show a clear accumulation of mean values when using 6 

samples. The histogram of mean values shows that the 

mean data is almost evenly spread over a large range of 

values, starting at around 100 up to approximately 125. 

One of the reasons for this to happen is the material 

characteristic. MAT 3, is a more resistant material in these 

conditions, observed as a lower mass loss compared to the 

previous two alloys. A natural consequence of this is 

that at experimental conditions such as the one 

considered now, which leads to relatively low mass 

losses (25% rotational speed), the more resistant 

materials show more data deviation. 

 

 

 

Fig. 6: Optimized 95% confidence interval at 6 measurements 

(MAT 1) 
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Fig. 7: Histograms of means and standard deviations using 2 

samples (MAT 2) 
 

 
 
Fig. 8: Histograms of means and standard deviations using 6 

samples (MAT 2) 
 

 
 
Fig. 9: Optimized 95% confidence interval at six measurements 

(MAT 2) 

 
 
Fig. 10: Histograms of means and standard deviations using 2 

samples (MAT 3) 

 

 
 
Fig. 11: Histograms of means and standard deviations using 6 

samples (MAT 3) 
 

The second reason for this to happen is the pre-existing 

differences inside this group before the experiments. The 

balls in this alloy group differ greatly in size and therefore 

initial mass and surface area and as previously mentioned, 

even after normalizing the weight losses, there is still a 

noticeable correlation between this parameter and ball 

mass and surface area (Gates et al., 2008). This result is a 

good way to show that it is necessary to set the basis for a 

standardized way to select the alloys and samples to be 

included in BMAT. As shown in previous cases, it is 

only necessary to carefully choose 6 samples for a 

given alloy to get accurate results. By doing this, it is 

possible to reduce the number of samples normally 

included in a wear test in BMAT and potentially 

accommodate more alloy types if needed. 

The results from combining 11 samples resulted in 

a mean of 112.1 and a standard deviation of 24.0, which 

represents a large percent of the alloy's weight loss. 

This again results from the initial differences present 

before the experiment. 
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Optimizing the 95% Confidence Interval 

at 6 Measurements 

Given that the mean values of mass loss at 6 

measurements are spread over a wide range of values, it 

is not appropriate to conduct an optimization step for this 

material. Doing so would mean arbitrarily choosing a 

certain combination of 6 samples with a low standard 

deviation, without knowing whether this chosen 

combination is representative of the entire alloy group. 

Conclusion 

The methodology used in this study has shown that the 

optimum alloy sample size for Ball Mill Abrasion Tests is 

six. It was demonstrated that in BMAT it is not 

meritorious to include an abundant number of samples per 

material type if significant differences in size are present 

within it. Pre-existing size differences lead to highly deviated 

results, even if these are normalized. By using six samples 

per alloy, with similar initial sizes, it is possible to obtain 

accurate results while keeping the sample size relatively 

small. These results show the importance of setting the basis 

for a standardized way of alloy and sample selection for 

BMAT, which could significantly optimize the obtention of 

data from experimental procedures, critical to the mining 

industry. One of the limitations of this study is that only 

experiments run at 25% of the mill speed were considered. 

These findings can be further strengthened by considering 

more material types and experimental conditions, as those 

generally used in BMAT. 
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Appendix 

This section shows the complete evolution of the 

histograms of means and standard deviations as the 

number of measurements is increased for MAT 1. 

 

 

 

Fig. 12: Histograms of means and standard deviations using 2 

measurements 

 
 
Fig. 13: Histograms of means and standard deviations using 3 

measurements 

 

 

 

Fig. 14: Histograms of means and standard deviations using 4 

measurements 

 

 

 

Fig. 15: Histograms of means and standard deviations using 5 

measurements 
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Fig. 16: Histograms of means and standard deviations using 6 

measurements 

 

 
 
Fig. 17: Histograms of means and standard deviations using 7 

measurements 

 

 
 

Fig. 18 (a): Histograms of means and standard deviations using 

8 measurements 

 

 

 

 

 
 

Fig. 18 (b): Histograms of means and standard deviations using 

8 measurements 

 

 
 
Fig. 19: Histograms of means and standard deviations using 9 

measurements 

 

 
 
Fig. 20: Histograms of means and standard deviations using 10 

measurements 


