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Abstract: This study investigated the introduction of backward regression 

coupled with DenseNet features in a Capsule Neural Network (CapsNet) for 

plant leaf disease classification. Plant diseases are considered one of the main 

factors influencing food production and therefore fast crop disease detection 

and recognition are important in enhancing food security interventions. 

CapsNets have successfully been adopted for plant leaf disease classification 

however, backpropagation of signals to preceding layers is still a challenge 

due to low gradient flow. In addition, parameter and computational 

complexities exist due to complex features. Therefore, this study 

implemented a loop connectivity pattern to improve gradient flow in the 

convolution layer and backward regression for feature selection. We 

observed a 99.7% F1 score with backward regression and 87% F1 score 

without backward regression accuracy on testing our framework based on the 

standard Plant Village (PV) dataset comprising ten tomato classes with 9080 

images. Additionally, CapsNet with backward regression showed relatively 

higher and stable accuracy when sensitivity analysis was performed by 

varying testing and training dataset percentages. In comparison Support 

Vector Machines (SVM), Artificial Neural Networks (ANN), AlexNet, 

ResNet, VGGNet, Inception V3, and VGG 16 deep learning approaches 

scored 84.5, 88.6, 99.3, 97.87, 99.14, and 98.2%, respectively. These 

findings indicate that the introduction of backward regression of features in 

the CapsNet model may be a decent and, in most cases superior and less 

expensive alternative for phrase categorization models based on CNNs and 

RNNs. Therefore, the accuracy of plant disease detection may be enhanced 

even further with the aid of the fusion of several classifiers and the integration 

of a backward regressed capsule neural network. 

 

Keywords: DenseNet, Plant Leaf, Convolution Neural Network, Capsule 

Neural Network, Model Training, Deep Learning 

 

Introduction 

The basic goal of smart farming is to develop 

innovative solutions for the future sustainability of 

mankind (Patil and Kumar, 2020). However, plant disease 

is detrimental to this goal as it destroys crops or 

diminishes their overall quality. In addition, the use of 

pesticides to control the spread of plant diseases renders 

the soil contaminated, which after some time becomes 

unsuitable for sowing and planting (Jadhav et al., 2021). 

Therefore, in addition to other challenges, plant diseases 

contribute significantly to food insecurity, malnutrition, 

and poverty in Africa, where most people depend on 

agriculture (Hasan et al., 2020; Li et al., 2020). 

Different plant species are affected by different plant 

diseases caused by factors related to climate change, soil and 

plant nutrients, pests, and organic soil content, among others 

(Barbedo, 2020). So far, different techniques have been used 

to recognize plant diseases (Barbedo, 2020). With the 

increasing use of smartphones and internet services, mobile 

phones can easily be used to detect plant diseases. 

Smartphones have high-resolution cameras and they can also 

be used to perform computational tasks (Jadhav et al., 2020). 
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Manual plant disease recognition methods (Jogekar and 

Tiwari, 2021) are widespread but limited, ineffective, 

costly, and time-consuming hence automatic and efficient 

recognition methods may be an alternative. Convolutional 

Neural Networks (CNNs) including other deep models such 

as ResNet (He et al., 2016), GoogleNet, VGG (Kim and 

Rhee, 2018) and AlexNet (Wang et al., 2019) have been 

applied in other jurisdictions in an attempt to solve these 

problems (Fuentes et al., 2018; Kwabena et al., 2020b; 

Zhang et al., 2019; Kwabena et al., 2020a). They have 

achieved impressive results in this domain but tend to be 

’data-hungry’, invariant and vulnerable to problems that 

can easily lead to mis-classifications (Al-Furas et al., 

2019). The state-of-the-art CNN uses pooling that not 

only leads to the loss of important features but also 

increases the number of parameters and complexities in 

models (Al-Furas et al., 2019). A survey by Patrick et al. 

(2022) establishes that Capsule Neural Networks 

(CapsNets) perform better than traditional CNNs due to 

the aforementioned limitations. This is large because 

CapsNets can connect spatial data and convolution layers 

hence efficient for image classification. 

CapsNets have been widely used as plant disease 

classifiers. When integrated with VGG-16 (OxfordNet), 

CapsNets can reduce over-fitting and improve detection 

accuracy (Simonyan and Zisserman, 2014; Patrick et al., 

2022). CapsNet architectures require encoding image 

input and computation of the class probability using the 

SoftMax method. Hinton et al. (2018) showed that the use 

of small training datasets negatively impacts accuracy 

rates. Similarly, they have a limiting effect on the 

effectiveness of the training model. Contrary, Ferentinos 

(2018) notes that CapsNet architectures are effective 

when used on small image datasets. The classifications of 

plant leaves can as well be achieved through other 

methods such as the use of the Support Vector Machines 

(SVM) (Poojary and Shabari, 2018; Das et al., 2020), 

Euclidean classifier (KNN), and the Artificial Neural 

Network (ANN). Even though CapsNets do well on small 

data sizes, they have difficulty recognizing images in 

complex backgrounds (Patrick et al., 2022). The current 

state-of-the-art CapsNet has a very weak gradient flow 

because it is difficult for signals to be back-propagated 

(Jogekar and Tiwari, 2021). CapsNets also lack a 

technique for efficient parameter selection which leads to 

computational inefficiency due to limited feature 

diversification. The deeper a CapsNet becomes, the more 

complex it gets (Patrick et al., 2022). 

In an attempt to strengthen CapsNet, this study presents 

the following contribution: (1) We introduce loop 

connectivity to CapsNet in place of single normal 

convolutions to make it easier for signal backpropagation 

and to improve gradient flow. This minimizes errors during 

classification. (2) We introduce backward regression as a 

feature selection approach to capture significant parameters 

for further processing. This process was done to reduce the 

computational complexities and promote parameter 

efficiency in the model. 

Related Work 

Several studies have been conducted on plant disease 

detection. Sullca et al. (2019) used computer vision and 

machine learning to identify illnesses in blueberry leaves. In 

Kumar and Vani (2019) CNN was used to identify tomato 

leaf diseases. The CNN framework had two components. 

The first component consisted of a model for feature 

extraction made up of four convolution layers with the 

activation function ReLU and max pooling, while the second 

part was made up of two dense layers and a flattening layer. 

The activation for the second section was Softmax. However, 

only a small number of diseases were considered in the study 

because the data-gathering technique was laborious and 

time-consuming. CNN has also been used in a transfer 

learning framework to detect different types of tomato 

diseases and pests Llorca et al. (2018). The study 

concluded that an increase in the number of tomato 

disease classes reduced over-fitting problems. Another 

CNN-based study by Ferentinos (2018) examined plant 

disease classifications using Plant Village dataset and 

determined that transfer learning techniques were more 

accurate than the ”from scratch” learning techniques. The 

results proved that CNN models could be adopted for 

different plant species and the architectures are more 

effective when used in large plant datasets. 

According to Lowe et al. (2017), CNN architecture 

requires a substantial training time for the neurons, but the 

method is widely recognized due to its high classification 

accuracy. Ferentinos (2018) proposed a deep learning 

method that uses a large training image dataset collected 

from different geographical locations and cultivation 

conditions to increase accuracy potential. This showed that 

the training model is highly dependent on the volume and 

quality of the input data for better outputs. Pöpperli et al. 

(2019) further argue that CapsNet models perform better 

than CNN when an absolute value is used as the input data. 

Other plant disease detection models in the literature 

have shown promising results. However, most of them are 

deep, complicated, invariant, not resilient, 

underperforming, and lacking in adaptability. They’re 

also colorless, textureless, spatially inert, and deformable. 

Due to these flaws, CapsNets were developed with the 

ability to encode spatial information, texture, color, and 

deformation. Capsules are ideally suited for crop disease 

detection because texture and orientation play important 

roles in recognizing leaf sections that do not correspond 

to the rest of the leaf. As a result, we propose an enhanced 

backward regressed capsule neural network for plant 

disease diagnosis, which is particularly beneficial for 

inputs with uncertain probability distributions. Thus the 

main contributions of this study are to strengthen gradient 
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flow through the use of loop connectivity, promote 

computational and parameter efficiency through feature 

diversification, maintain low complexity by using a 

combination of complex and simple features, and lastly 

use backward regression for selection of significant 

feature maps in the model after the first convolution which 

reduced characters in the model. 

Materials and Methods 

Data 

Despite the limited number of leaf disease categories 

and plant disease images, most studies have used the Plant 

Village (PV) dataset (Brahimi et al., 2017; Mohanty et al., 

2016; Barbedo, 2018). The PV dataset is categorized into 

different classes of plant diseases. Studies have shown 

that one specific plant may be recorded in different plant 

disease classes within the PV dataset. At the same time, 

similar plant diseases having the same common name may 

equally be recorded in a different class of plant diseases. 

These variations are evident in the works of authors who 

used CNN architectures for crop disease classifications 

(Mohanty et al., 2016; Lowe et al., 2017; Too et al., 2019; 

Dou et al., 2019). Therefore, we adopted images from the 

PV database in our study. A total of 9080 tomato images 

were subdivided into ten disease classes namely: Mosaic 

virus, bacterial spot, early blight, late blight, leaf mold, 

healthy septoria spot, target spot, yellow leaf curl, and spider 

mite as collected by Hasan et al. (2019). 

Overview of Capsule Neural Networks (CapsNets) 

Capsules are groups of firmly and deeply fixed 

neurons while Capsule Neural Networks (CapsNets) are 

collections of capsules. The current state-of-the-art 

comprises a single convolution layer, a primary capsule 

layer, and a digit layer (Sabour et al., 2017). The input 

layer encompasses the pre-processing procedures where 

an image’s size is modified to 28 × 28. The hidden layer 

comprises a convolutional layer with a kernel of 

magnitude 9 × 9 with a stride of one for feature extraction, 

followed by a ReLU function that helps in feature 

activation. The next layer is the primary capsule layer 

which has a kernel size of 9 × 9 with a stride of two and 

deals with feature map tensors. We introduced 

backward regression after the primary CapsNets layer 

to select only the significant features. The selection of 

features through regression is aimed at reducing 

complexities in the model. The output from the primary 

capsule layer is also activated by a ReLU function 

(Sabour et al., 2017). It contains a decoder network 

with three dense layers and a routing by agreement 

algorithm proposed by Hinton et al. (2018). Brahimi et al. 

(2017) used the algorithm to detect movements in movies. 

Let the value of the lower capsule used to store 

image data be j, then the output of that lower capsule is 

ˆuj| I, and its prediction of the higher-level capsule I am 

computed as: 

 

| |
ˆ

j i ij j iu w u=  (1) 

 

where, wij is a weighting matrix learned through back-

propagation while uj| I denotes the vector that I use for 

the prediction of the jth capsule. The role of each 

capsule is to predict the output of the higher-level 

capsules. The coupling coefficients increase if the 

prediction conforms to the output of the higher-level capsule 

(Patrick et al., 2022). Equation (2) (Sabour et al., 2017) 

shows the SoftMax function that is used to calculate the 

coupling coefficients: 
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The variables in Eq. (2) encompass the coupling 

coefficient cij, the log probabilities bij which is set to 

zero at the start of routing by agreement and bik is a 

normalization term that ensures that all output values 

are within the range of 0 and 1, i.e., a valid probability 

distribution. The log probabilities are significant in 

determining whether the lower-level capsule I can be 

coupled with the higher-level capsule j. Using Eq. (2), 

the input vector to the higher capsules will be 

calculated as: 

 

|
ˆ ; 0ij j i j jc u u b where b=  +   (3) 

 

where, vj is the output of capsule j. Since the probability 

of existence is represented by the length of the output 

vector, short vectors need to be reduced to an almost zero 

value while long vectors are increased to a near one value. 

To achieve this we used Eq. (4): 

 

( )2

1

j j

j

j j

s s
u

s s
=

+
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where, vj is the vector output of capsule j and sj is its 

total input while bij is updated during routing by 

agreement between vj and uj|i. This follows the rule that 

says, ’if two vectors agree, the inner product will be 

large. The agreement aij performing updates between 

log probabilities bij and coupling coefficients cij is 

calculated as: 
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|
ˆ .ij j j Ia u u=   (5) 

 

To describe the whole routing procedure for computation 

of high-level vector, Eq. (2) and (6) are used. 

Various properties of the entities of an image such as 

size, orientation, and position are encapsulated by the 

directions of vectors to allow the capsules to learn the 

relationships between features within an image. The loss 

function is used to equalize the values between zero and 

one. Each capsule in the last layer is associated with the 

loss function lk computed: 

 

( ) ( ) ( )
22

max 0, || || 1 max 0,k k k k kl T m v T v m+ −= − + − −  (6) 

 

where, Tk is equal to one if a digit of class k is present 

otherwise zero and m+ = 0.9 and m− = 0.1. The λ down-

weighting of the loss for absent digit classes stops the 

initial learning from shrinking the lengths of the activity 

vectors of all the digit capsules. 

Backward Regression 

To eliminate feature maps that did not contain any 

significant information for the classification, backward 

regression was used (Fig. 1). To begin with, the 

significance level p of the model was selected as 0.5, 

then fitting was done and all independent variables 

were included. The predictor with the highest p-value 

was then identified. If the P-value of a feature did not 

satisfy the set threshold it was rejected and removed 

from the dataset for failing to satisfy the 95% 

confidence level and the model fitted again. If the P-

value of the feature, which was the highest in the set, 

was less than the significance level, we just stopped 

comparing and forwarded the feature maps to the 

primary capsule for further processing. This was done 

repeatedly until all the significant features were 

identified. For example, consider our model m with a 

total of n predictors/features i.e., x = x1,x2,...,xn, the role 

of our backward regression is to estimate significant 

features to classify k classes as: 

 

( ) 0 1 1 1···k ny m b b x b x= + + + +
 (7) 

 

where, y(mk) are chosen significant features for model 

k, b0 is the y-intercept, b1 is the slope parameter, and ϵ 

is the error term. The backward regression process 

iterates over k models determining suitable features for 

each model. For instance given k = 10 which can form 

k models, i.e., m10, if each class is executed individually 

with say n = 10 then for each of the models if one 

useless prediction is removed we remain with 9. To 

begin with, the original tree before regression is shown 

by Eq. (8): 

 

( ) 0 1 1 2 2 3 3 4 4

5 5 6 6 7 7 8 8 9 9 10

ky m b b x b x b x b x

b x b x b x b x b x b x

= + + + + +

+ + + + + +
 (8) 

 

Now if any of the features are considered 

insignificant and removed we end up with the model 

configurations in Eq. (9): 
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The best model among the configurations in Eq. (9) 

was chosen based on R2. 

The Improved Capsule Neural Network Model 

We used three convolutions and one primary capsule to 

capture diversified features where the convolutions followed 

the loop connectivity pattern of DenseNets (Fig. 2). The loop 

connectivity pattern was used to strengthen gradient flow 

by making it easy to propagate signals to earlier layers 

more directly, contributing to the parameter and 

computational efficiency through feature concatenation. It 

helped maintain low complexity in the model through the 

use of both complex and simple features. 

The overall architecture contains three 

convolutional subnets which are arranged in a looping 

manner. Feature maps from each subnet are grouped 

like those in the work done by Jégou et al. (2017). To 

build primary capsules in the subnets, this study used 

convolutional layers with 3 × 3 kernels with a stride of 

1, 5 × 5 kernels with a stride of 2, and 9 × 9 kernels 

with a stride of 2 respectively. This study also used 

padding to ensure equity in size. Figure 2 depicts the 

proposed architecture that we adopted. After each 

subnet, backward regression was used to select 

significant features only. Backward regression reduces 

the number of parameters hence minimizing 

computational complexity. The features from the 

subnets were squashed to form the PrimaryCaps layer. 

Routing by agreement (Jogekar and Tiwari, 2021) was 

used. xcolor We did not encounter any limitations in 

the methods used for the work. 



Jennifer Jepkoech et al. / Journal of Computer Science 2022, 18 (9): 821.831 

DOI: 10.3844/jcssp.2022.821.831 

 

825 

 
 

Fig. 1: Backward regression framework 

 

 
 

Fig. 2: Proposed architecture on routing by agreement 
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Results 

The capsule neural network is based on parameters 

like momentum, batch size, learning rate, dropout, and 

learning rate decay. Because neural networks deal with 

datasets of the same size (Ferentinos, 2018) this study 

tuned the dataset parameters by modifying the input 

images to 28 × 28. Plant leaf disease classification was 

done using an improved Capsule neural network model 

and the conventional CapsNet. Confusion matrix, F1 

scores, and graphical representations were used to find 

the accuracy of each model. 

F1-score was computed as: 

 

2
1

precision recall
F score

precision recall

 
− =

+
 (10) 

 

Table 1 summarizes the disease classification 

accuracy based on the F1 score, precision, support, and 

recall metrics. The precision for the Tomato mosaic 

virus class was relatively low compared to the other 

classes of tomato leaf diseases. However, most of the 

predictions from the model were noted to be false 

positives. The recall results for the Early blight tomato 

leaf disease class were relatively low compared to the 

other classes of tomato leaf diseases. Only 90% of the 

actual Early blight tomato leaf diseases were correctly 

classified. The model perfectly classified the recall for 

the Target Spot tomato leaf disease class. 

Figure 3 displays the accuracy and loss obtained from 

the backward regressed model while Fig. 4 shows the 

accuracy obtained from the conventional CapsNet model 

without backward regression. Generally, backward 

regressed CapsNet has a 99.9% F1-Score while the 

conventional CapsNet attained 87%. 

Table 2 shows the sensitivity analysis of our new 

approach vis a’ viz conventional CapsNet with no 

consideration for feature selection. CapsNet with 

regressed feature selection shows relatively higher 

accuracy than when featuring selection. 

We further compared the CapsNet models with 

different deep learning models namely: SVM, 

Artificial Neural Networks (ANN), AlexNet, ResNet, 

VGGNet, GoogleNet, and InceptionNet V3, and 

observed results as shown in Table 3. For this 

experiment, we used a PV dataset with a ratio of 

20:80% for testing and training respectively. Our 

model had the best testing and training accuracy 

followed by AlexNet, Inception V3, ResNet, ANN, 

Normal CapsNet and the last one was SVM. 

Research done by Kurup et al. (2019) used a capsule 

neural network model to diagnose plant diseases. They 

used a dataset size of 54,306 images and obtained an 

accuracy of 94 percent. Research done by Verma et al. 

(2020) used transfer learning to create capsule networks 

for the classification of potato illnesses and compared 

their performance to a few famous pre-trained CNN 

models, notably ResNet18, VGG16, and GoogLeNet. 

Colored images of healthy and sick leaves from the 

PlantVillage dataset were utilized to train the models. 

With 91.83% accuracy, CapsNet demonstrated 

comparable performance to state-of-the-art CNN models. 

Research done by Kwabena et al. (2020a) suggests the 

application of the Gabor and Capsule networks 

distinguish hazy, distorted, and previously unknown 

tomato and citrus illness images. The suggested model 

achieves a test accuracy of 98.13%. According to the 

researchers, the technique may be applied to other crops 

and might be a valuable tool for detecting invisible plant 

illnesses under poor weather and lighting circumstances. 

Mensah et al. (2021) used the squared Euclidean distance, 

sigmoid function, and a’simple-squash’ function instead 

of the dot product, SoftMax normalizer, and squashing 

function present in the dynamic routing method. 

Extensive trials on the three datasets revealed that the 

proposed model improves test accuracy consistently 

across the three datasets while also allowing for an 

increase in the number of routing iterations with no 

performance impact. On the tomato dataset, the 

suggested model beat a baseline CapsNet by 8.37 

percent, with an overall test accuracy of 98.80 percent, 

equivalent to state-of-the-art models on the same 

datasets. Samin et al. (2021) built a deep learning 

architecture model (CapPlant) that uses plant photos to 

detect whether it is healthy or infected. The prediction 

procedure does not need handmade features; rather, the 

architecture extracts representations from the incoming 

data series automatically. To extract and categorize 

features, many convolutional layers are used. The last 

convolutional layer in CapPlant is replaced with a 

cutting-edge capsule layer that incorporates 

orientational and relative spatial relationships between 

distinct components of a plant in an image to more 

precisely forecast illnesses. The suggested architecture 

is validated using the PlantVillage dataset, which 

includes over 50,000 images of healthy and diseased. 

When compared to existing plant disease classification 

models, the CapPlant model showed significant gains 

in prediction accuracy. The generated model’s testing 

findings obtained an overall test accuracy of 93.01 

percent, with an F1 score of 93.07 percent. We 

compared the work done using the state-of-the-art 

CapsNet and observed that our work displayed a higher 

percentage of accuracy. This means that CapsNet 

performs better when improved through regression and 

the use of dense connectivity loops. 
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Fig. 3: Training and testing performance of CapsNet based on backward regression feature selection: (a) Percentage accuracy and (b) 

percentage loss 

 

  
 
Fig. 4: Training and testing performance of CapsNet without backward regression feature selection: (a) Percentage accuracy and (b) 

percentage loss 

 
Table 1: F1-score, precision, support, and recall metrics for individual disease classes using backward regressed and 

conventional CapsNets. P1 corresponds to precision, R1 recall with backward regression, P2 pr ecision without 

backward regression, R2 recall without backward regression, F1(A) F1-score with backward regression, and F1(B) F1-

score without backward regression 

Class P1 R1 P2 R2 F-1 ( A) F1 (B) Support 

Target spot 0.96 1.00 0.86 0.90 0.98 0.88 25 

Tomato mosaic virus 0.94 0.97 0.84 0.87 0.96 0.85 143 

Yellow leaf curl virus 0.97 0.99 0.87 0.88 0.98 0.87 183 

Bacteria spot 0.97 0.96 0.88 0.86 0.96 0.87 208 

Early blight 0.95 0.90 0.84 0.84 0.92 0.82 101 

Healthy 0.96 0.96 0.86 0.85 0.96 0.86 191 

Late blight 0.97 0.94 0.86 0.83 0.95 0.84 99 

Leaf mold 0.97 0.95 0.86 0.85 0.96 0.86 184 

Septoria leaf spot 0.98 0.99 0.85 0.86 0.99 0.86 522 

Spider mites 0.99 0.99 0.86 0.86 0.99 0.87 160 

 
Table 2: Sensitivity analysis of CapsNet with and without feature selection based on backward regression 

Testing-Training (%) F1-score without regression F1-Score with regression 

10-90 0.96 0.99 

20-80 0.97 0.98 

30-70 0.97 0.98 

40-60 0.97 0.97 

50-50 0.95 0.96 

60-40 0.96 0.96 

70-30 0.95 0.95 

80-20 0.94 0.94 

90-10 0.92 0.94 
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Table 3: Comparison of CapsNet models and other deep learning models based on F1-score percentage accuracy measure 

Model % Testing accuracy %Training accuracy 

SVM 84.50 99.0 

ANN 88.60 100.0 

AlexNet 99.30 100.0 

ResNet 97.85 98.5 

Inception v3 99.14 100.0 

VGG 16 98.20 99.0 

CapsNet 87.80 100.0 

Backward Regressed CapsNet 99.90 100.0 

 

Discussion 

A backward regressed capsule neural network for 

plant leaf disease detection was proposed in this study. 

The PV datasets were split into an 80:20% ratio for 

training and testing for all the models. The margin and 

reconstruction losses make up the loss function that was 

used to train the model. The loss function’s default 

settings for m+, m- and were kept in this implementation. 

The Capsule models were trained using three rounds of 

routing. Random adjustments to parameter values and 

intermediate layers were made in all of the models to see 

how responsive each model is to the modifications. The 

CNN models performed poorer than the planned Capsule 

models as a result of these adjustments. The CapsNets 

models’ performance was unaffected by changes in 

momentum, batch size, learning rate, dropout, and learning 

rate decay. The number of routing iterations was the single 

most critical hyperparameter that substantially influenced the 

performance of the CapsNet models, with three yielding 

some performance values. The input images were downsized 

from 256 × 256 to 48 × 48, 68 × 68, and 224 × 224, and the 

models were trained, to show the CapsNets’ versatility and 

resilience. On the other hand, CapsNet models generated 

fairly constant results when the picture size was increased. 

Increasing the picture size to 224 × 224, on the other hand, 

needed more computer resources and training time and hence 

was not feasible for this investigation. 

We recommend the adoption of DenseNet architecture 

(Jégou et al., 2017) to strengthen the gradient, maintain 

low feature complexity and provide computational and 

parameter efficiency. We recommend the use of dense 

connectivity and backward regression because we were 

able to reduce model complexity in terms of time and 

number of parameters hence a record accuracy of 99.9% 

was observed. Research done by Pleiss et al. (2017) 

demonstrated that the use of DenseNet connectivity 

provides more accurate results because it is easier to 

propagate error signals more directly to earlier layers. To 

enhance the CapsNet, this study also used backward 

regression to reduce the number of parameters and ease 

computation in the model. Unlike pooling, which discards 

any data, regression only selects data with vital 

information. This idea improved the accuracy of this 

model, enhanced computational efficiency, and reduced 

complexities related to computation as depicted in Table 3. 

Sensitivity analysis of the model to different portions of 

training data also illustrates the robustness of CapsNet with 

regression compared when no regression is used (Table 2. 

Our model retained a higher accuracy overall, though the 

value dropped when the ratio of traintest was at 90-10%, it 

was still higher than CapsNet with no regression. Generally, 

it's expected that a model's accuracy decreases with a 

decrease in training data but generally, our model showed a 

good stable trend. 

In this study, the PV dataset with 10 disease classes 

was used with the CapsNet model with backward 

regression. The PV provides a standard dataset that has 

been used to train and test several models with success 

(Ferentinos, 2018). Compared to Ferentinos (2018), we 

used a small plant database to develop the model. 

Ferentinos (2018) used five CNN architectures that 

included AlexNetOWTBn, VGG, GoogLeNet, AlexNet, 

and Overfeat. Each of the original images' architectures 

had a success rate of 99.44, 99.48, 97.27, 99.06, and 

98.96%, respectively. The success rate percentages of the 

pre-processed images were 99.07% (AlexNetOWTBn), 

98.87% (VGG), 97.06% (GoogLeNet), 98.64% (AlexNet) 

and 98.26% (Overfeat). Chaki and Parekh [56] support 

these results, who argued that the accuracy and success 

rate of plant leaf image detections should normally fall 

between 90 and 100%. This means that neural networks 

effectively use the leaf feature for plant disease 

classifications. Although this study used a relatively 

smaller dataset than Ferentinos (2018), the difference in 

accuracy was negligible hence there is no major effect if 

a large or small dataset is used. The use of a large dataset 

is essential regardless of any augmentation techniques and 

transfer learning systems used in the model (Llorca et al., 

2018). However, according to Barbedo (2020), creating a 

large database with all the plant species and their related 

plant diseases is impractical a matter echoed by Kamilaris 

and Prenafeta-Boldu (2018). Therefore, novel models 

should ideally use moderate to small training datasets with 

perceivable minimum misclassification and high 

accuracy. Therefore, future efforts could also focus on 

architecture optimization and models that can utilize real-

time smartphone models for plant disease classification in 

a bid to balance training data needs. 



Jennifer Jepkoech et al. / Journal of Computer Science 2022, 18 (9): 821.831 

DOI: 10.3844/jcssp.2022.821.831 

 

829 

Conclusion 

The adoption of DenseNet intuition based on loop 
connectivity patterns promoted strong gradient flow through 
easy error signal propagation, parameter, computational 
efficiency through channel-wise concatenation, and use of 
both complex and simple features that maintained low 
complexity. In addition, the dynamic routing eased 
predictability in the model after the primary capsule level. 
Further, backward regression in every subnet reduced the 
number of characters, a technique that selected the significant 
features and discarded those that were of no use to the model 
all while making a positive impact on detection accuracy. 
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