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Abstract: The use of masks has become crucial in combating the 

Coronavirus pandemic. Unfortunately, the regulation of wearing a mask is 

not being upheld by many citizens which is contributing to the spread of the 

disease. To aid the efforts of regulations and to maintain safety in public 

areas, both large like parks or small like public transport, Artificial Intelligent 

systems can play a vital role. In this article, we explore the use of transfer 

learning across 5 models (Mobile Net V2, InceptionV3, Resnet50V2, 

VGG16 and DenseNet121) and measure their effectiveness in mask 

detection. Due to the lack of a large, diverse and annotated dataset, we 

explore the use of transfer learning using supervised methods and present the 

results of the experiments upon the Keras open-sourced models. We find an 

average of 99% accuracy for all 5 models. However, when we use K-Fold 

Cross Validation to account for bias, we find significant differences in results 

with the highest accuracy being achieved by VGG16 at 98.6%. With the mixture 

of the standard method of training and testing alongside K-Fold Cross Validation, 

we present our findings for the use of transfer learning for mask detection. 

 

Keywords: Transfer Learning, Mask-Detection, Computer Vision, Object 

Classification, Covid-19 

 

Introduction 

In 2020 the arrival of the Coronavirus disease caused 

by the SARS-CoV-2 virus bought out a wave of 

quarantine and regulations meant to be observed by the 

public. If someone had to go out in public, wearing a mask 

was prescribed by doctors and scientists alike (Feng et al., 

2020). The use of masks to prevent transmission of this 

dangerous virus has proven widely successful (Cheng et al., 

2020b). In many countries, the use of masks was enforced 

by the government. Unfortunately, many people ignored 

the regulations of safety and science and opted to not wear 

masks which contributed greatly to the spreading of the 

disease. To curb the rising number of infections the French 

government initiated the use of AI to identify passengers not 

wearing a mask (Paris Tests Face-Mask, 20221). 

The use of Machine Learning and Deep Learning can 

serve in many ways in the fight against COVID-19 

(Agarwal et al., 2020). The purpose of this article is to 

explore the effectiveness of transfer learning in many 

different models and to provide an optimal model for 

mask-detection. Transfer learning has proven to be one of 

the most efficient ways of training models (Pan and Yang, 

2009). It has proven its effectiveness even when working 

with limited data. This is of significance because there is a 

limitation of labeled or annotated data of masked 

individuals. There never has been much of a need for a 

dataset comprised of people wearing masks. The scarcity 

of such data has impeded the emergence of models 

capable of detecting masks with high accuracy. Transfer 

learning helps mitigate some of these problems. With the 

use of pre-trained object detection models, that are already 

capable of boundary and shape detection, a few final layers 

can be added that are trained specifically for detecting masks. 

This article explores the use of transfer learning in five 

different models and evaluates their effectiveness in real-

world scenarios. It still remains difficult since the masks 

obscure many features of the face like noses and lips and 

render much of the face a blob. Therefore, we explore the use 

of transfer learning in VGG 16, Mobile Net V2, Inception 

V3, Res Net 50V2 and in Dense Net models. 

The contribution of this article is to evaluate the 

effectiveness of the models highlighted in their ability to 

detect masks. With images of masked individuals that 

could be used to train a model being scarce, this article 

aims to inform the best model and architecture to use for 

this purpose. On the other hand, often models built on 

limited data suffer from overfitting or bias. In this 

article, a technique is also highlighted that checks for 

overfitting or bias. Through the use of K-Fold Cross 

Validation we further present data that compares with 

the standard method of training and provide further 

evidence for the evaluation of these models. The 
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methods highlighted in this study can also serve in the 

detection of any object for which one has limited data. 

In this article we explore some of the other recent 

works done for mask detection, discuss the models, the 

data and methodology used and the results that we 

obtained for each individual model. 

Related Works 

Transfer learning was bound to be an effective 

approach for mask detection especially considering the 

limitations of data. In this section, we look at other 

published works that have showcased the use of transfer 

learning for mask detection. 

Cheng et al. (2020a) has shown that mask detection 

via transfer learning is viable through the use of YoloV3 

Tiny. The You Only Look Once (YOLO) (Redmon et al., 

2016) works a bit differently than the standard FRCNN 

(Ren et al., 2015). YOLO is a convolutional neural 

network that applies its algorithm in a single neural 

network to the full image and then divides the image into 

regions and predicts bounding boxes and probabilities for 

each region. Cheng et al. (2020a) trained the latest 

iteration of the YOLO architecture on the RMFD dataset 

(RMF) and have shown their precision to be around 80%. 

However, as we will discuss further the RMFD dataset is 

not very diverse in terms of the faces represented. 

Furthermore, the methodology of Cheng et al. (2020a) is 

limited to standard training and testing. With a limited 

dataset, the sort that is used, it may lead to overfitting. Their 

testing and training were also restricted to surgical or single-

colored masks due to the limitation of the RMFD dataset. 

Loey et al. (2021) uses a ResNet architecture for 

detection. However, they take it a step further by 

removing the last layer of the model and replacing it with 

three traditional machine learning classifiers: Support 

Vector Machine (SVM), decision tree and ensemble. 

Using a combination of RMFD (RMF), Simulated 

Masked Face Dataset (SMFD) (SMF) and the Labeled 

Faces in the wild (Learned-Miller et al., 2016), they 

showcased a variety of metrics. The metrics consisted of 

accuracy upon the individual datasets as well as a mixture 

of RMFD and SMFD. They showed that the highest 

accuracy was obtained using SVM in the last layer of their 

ResNet architecture which is 98%. 

Chowdary et al. (2020) also uses transfer learning via 

the InceptionV3 using the RMFD dataset (RMF) and the 

Simulated Masked Face Dataset (SMFD) (SMF) for 

training. They showcased an incredible accuracy of 100% 

but that was because their testing was performed upon 

the SMFD dataset only. However, no steps are taken to 

account for bias in their proposed system. The SFMD 

also consists of faces with masks cropped on them, 

reducing its ability to replicate images for the real 

world. The characteristic of the images ensures that the 

faces and the masks are visible and in the center. 

Therefore, the testing accuracy should not be 

considered a true metric for its evaluation. 

Datasets are often similar when it comes to mask 

detection because of their scarcity. Above, we saw the use 

of the RMFD dataset which is limited by its diversity. We 

also saw the use of the SMFD dataset, however, it is not 

truly suited for testing because of its pristine condition. 

Furthermore, both Cheng et al. (2020a) and Chowdary et al. 

(2020) present their accuracy with nothing to account for 

overfitting in their experimentation. We also saw the use 

of a hybrid detection system by Loey et al. (2021) which 

gives a comprehensive set of metrics for their different 

usage of different classifiers. 

Models 

In this section, we briefly explore the different models 

used in our experiment. The following sections cover the 

basics of VGG16, MobileNetV2, InceptionV3, DenseNet 

and Res Net V2. 

VGG16 

VGG16 (Simonyan and Zisserman, 2014) is a 

convolutional neural network that has stacks of 3x3 

convolution layers with a stride of 1 followed by a 2x2 

max pooling with a stride of 2. After 13 such convolution 

layers, there are 3 dense layers. They are 3 Fully 

Connected (FC) layers followed by a softmax for output. 

All hidden layers use ReLU as the activation function. 

There are a total of 16 layers in this network, as can be 

seen in Fig. 1, hence its name is VGG16. It was trained on 

ILSVRC-2012 dataset (a subset of imagenet (Deng et al., 

2009) dataset) for image classification. 

InceptionV3 

Inception-v3 (Szegedy et al., 2016) is a 48 layers 

deep convolutional neural network. This model 

improves the inception architecture introduced here 

(Szegedy et al., 2015). 

This network uses multiple-sized filters on the same 

level. Input is passed to different sized filters and max 

pooled. An extra 1x1 convolution is done before passing 

on to filters and after max pooling to reduce the number 

of input channels. All outputs are concatenated and sent 

to the next layer. The model was made wider instead of 

deeper to remove the representational bottleneck. 

Convolution with a large filter size is factorized into two 

convolutions with smaller filter sizes. A convolution of 

size n x n is factorized to a 1x n and n x 

Convolution 

 These factorizations decrease the number of parameters. 

Auxiliary Classifier and Label Smoothing Regularization 



Zahin Akram et al. / Journal of Computer Science 2022, 18 (2): 78.89 

DOI: 10.3844/jcssp.2022.78.89 

 

80 

(LSR) is used to prevent overfitting. All the above techniques 

are consolidated into the final architecture. A module of 

InceptionV3 can be seen in Fig. 2. 

 

 
 
Fig. 1: VGG16 architecture 

 
 
Fig. 2: InceptionV3 module 

 

MobileNetV2 

MobileNetV 2 (Sandler et al., 2018) is a convolutional 

neural network that is optimized for mobile devices. The 

architecture of MobileNetV2 contains the initial fully 

convolution layer with 32 filters, followed by 19 residual 

bottleneck layers. Each residual bottleneck layer takes a 

low dimensional compressed representation as input. The 

input is expanded into higher dimension using 1x1 

convolution. Features then go through a lightweight depth 

wise convolution. Afterward, another 1x1 convolution 

layer shrinks the features back to a lower dimension. This 

layer is linear to stop non-linearities from destroying too 

much information. There is a skip connection here with 

the original input. ReLU6 is used instead of ReLU as the 

activation function of this network. MobileNetV2 

convolution block can be seen in Fig. 3. Batch 

normalization is used at the end of every convolution. the 

model size varies between 1.7 M and 6.9 M parameters. 

MobileNetV2 is very small in size and takes a small time 

to train while still giving good performance. 

DenseNet 

A DenseNet (Huang et al., 2017) is a convolutional 

neural network where every layer is connected to every 

other network, as can be seen in Fig. 4. In normal CNN 

models the deeper the network is, the worse the vanishing 

gradient problem becomes. Dense Net addresses this 

problem by feature reuse. This model has dense blocks 

and a transition layer. Every layer of a dense block 

receives the outputs of all previous layers as input and its 

output is used as input for all subsequent layers. This 

concatenation is possible because the feature map remains 

the same in a dense block. The feature map is reduced in 

transient layers. A transition layer takes dense block 

output and performs batch normalization, 1x1 

convolution and, 2x2 average pooling. Since each layer’s 

output is concatenated with all previous layers’ output, the 

input can get quite large. So, a bottleneck layer is 

introduced to reduce input size. CIFAR, SVHN and 

ImageNet are the datasets of this model. 
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ResNet50V2 

ResNetV2 (He et al., 2016a) is an improvement of the 

original ResNet architecture (He et al., 2016b). ResNet 

models consist of residual units than can be seen in Fig. 5. 

In each residual unit, there is a shortcut connection from 

the input to the output of the unit that acts like an identity 

function. So, the main path can focus on learning the 

residual mapping. ResNetv2 applies batch normalization 

and activation function before convolution. ResNet 

architecture can be used to build 1000 layers deep neural 

networks well optimized. 

Dataset 

The dataset consists a total of 4554 images. Of these, 

training dataset consisted of 2606 images of people wearing 

masks and 1948 images of people with no masks. Images of 

varying sizes were used throughout the training. 

The average height and width was 300 pixels. 

However, the shape of the images ranged from 

140x102 to 4608x3456 (height and width respectively). 

Some of the images contained multiple individuals with 

or without masks. The training dataset was split to an 

80:20 ratio for training and validation respectively. The 

dataset was comprised of the Real-World Masked Face 

Dataset (RMFD) (RMF) and the Simulated Masked 

Face Dataset (SMFD) (SMF). We used approximately 

1900 images from the RMFD dataset and about 700 

images from the SMFD dataset, examples of both can 

be seen in Fig. 6. We found that this consisted of the 

optimum balance between training data and accuracy. 

The combination of these datasets were to ensure the 

diversity of the people in the images as well as the 

variety of the masks shown. The RMFD dataset 

consisted of many different colors of masks but was 

limited to people with pale skins. The SMFD dataset 

was consisted of solely surgical types of masks but 

consisted of people with diverse ethnicity. 

To address the concern of bias or overfitting we also 

utilized the use of K-Fold cross validation alongside 

standard training and validation to ensure that our 

predictions produced the best results while restricting bias 

as much as possible. 

Our dataset contains many images like in Fig. 6, where 

the people are of many different races, gender and ethnicity. 

They are also wearing masks of different colors and shapes 

to further replicate the real-world environment. 

Furthermore, the combination of the dataset ensured 

different angles and closeups of the masked and 

nonmasked individuals. The dataset did not contain any 

labeling of region of interest and was merely labeled as 

”mask” or ”without mask”. 

 
 

Fig. 3: MobileNetV2 Convolution Block 

 

 
 

Fig. 4: DenseNet Architecture 
 

 
 
Fig. 5: ResNetV2 residual unit 
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Fig. 6: Example of masked image 

 

Methodology 

The article aims to find the best use of Transfer 

Learning across the models mentioned above. As such, 

the data utilized for training, validation and testing were 

kept the same across all 5 models. Other parameters like 

resources for training as well as the number of epochs for 

all the models were kept the same. Facial features were 

extracted using the FaceNet model (Schroff et al., 2015) that 

detects the eyes and processes the region around them. These 

features were then fed to the base model that was pre-trained. 

Further evaluation was also performed using the K-Fold 

cross validation to ensure that there was no issue of data bias 

or overfitting and obtain optimal results. 

We start off by loading the base Keras ”ImageNet” 

models. These pre-trained models are capable of detecting 

a wide variety of objects. The utilization of these models 

ensures the models are capable of processing different 

object boundaries that we now don’t have to train. We 

then freeze the base model. We add 2 new layers for the 

purpose of mask detection. Later, we configure the input 

shape of the final layers to the output shape of the base 

model. We then perform the training and validation. The 

base model provides the necessary details regarding the 

Region-Of-Interest (ROI) provided by the FaceNet model 

so that the ROI only consists of the necessary portion of 

the image. We then test upon our prediction. 

Finally, we also do all the above steps for the K-Fold 

cross-validation by diving the dataset into 5 sets. In this 

method, the dataset is divided into 5 parts. 4 of the parts are 

used for training via transfer learning and the one that is left 

is used for validation. The method of training is the same as 

the standard training. The number of iterations of training 

and other parameters are also kept constant. Once complete, 

the process is repeated with another set being used for 

validation. This ensures that at no point during the validation 

step does the model encounter any images that was used 

during training. This eliminates bias or overfitting. This is 

done 5 times so that each set is chosen once for validation. 

Out of the 5 iterations of training, we save the weights that 

produce the highest accuracy. This steps are repeated for all 

5 models. We then perform a final testing for the best weights 

per model to perform a thorough comparison. 

All the steps for both the methods are kept consistent 

across all 5 models to ensure proper evaluation. 

Results and Discussion 

In this section, we present the results that we obtained for 

each model using standard training and the K-Fold training. 

Among the 5 training sets for the K-Fold cross validation we 

will only be looking at the best version for each model. The 

dataset provided for the standard training and the data used 

for validation was the same across all the models. The same 

is true for the K-Fold cross validation. We will first present 

the results for the standard training/validation and then the 

results obtained by K-Fold cross validation. 

MobileNetV2 

MobileNetV2 performed exceptionally when it came 

to detection. It achieved 100% across both training and 

validation for the standard training. It also reached its 

optimum results soon into its training and maintained its 

results as can be seen in Fig. 7. 

For the K-Fold cross validation, the best version was 

achieved for the 4th iteration of 5-fold cross validation. 

MobileNetV2 again showed very good results when 

compared to the other models. It was the second most 

accurate during the testing for cross validation. For 

MobileNetV2 the best result for cross validation training 

and validation were 92 and 93% respectively. The results 

are presented below in Fig. 8. 

InceptionV3 

InceptionV3 obtained the lowest value in terms of 

accuracy for training and validation among all the models 

used. It reached 96 and 97% for training and validation 

during the standard method of training respectively. Even 

though it displayed very high accuracy, it was still 

outperformed by the other models. We show the accuracy 

for InceptionV3 base training and validation in Fig. 9. 
InceptionV3 also ranked at the bottom when it came 

to K-Fold cross validation. At merely 78 and 84% for 
training and validation, InceptionV3 is not the way to go 
when it comes to mask detection through transfer 
learning. It seems that the variation in data revealed that 
the model suffered from overfitting during the standard 
method of training and validation and the biases in its 
results were exposed during cross validation. Figure 10 
shows the graph of its performance. 

ResNet50V2 

For the standard training, ResNet50V2 obtained the 
second best results tied with DenseNet121. ResNet50V2 
showed 99% accuracy for both training and validation and 
showed consistent accuracy as seen in Fig. 11. 
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However, it performed rather poorly during cross 

validation. ResNet50V2 only performed slightly better than 

InceptionV3 and was exceeded by all the other models. 

Coming at only 79 and 88%, as seen in Fig. 12, for training 

and validation, cross validation exposes that the model might 

have been overfitted during just training and validation. 

VGG16 

VGG16 outperformed InceptionV3 during the 

standard training and validation. At 98 and 97% accuracy 

for training and validation, it ranked at the middle of the 

pack in terms of its accuracy. Figure 13 shows the 

performance of VGG16. 

 

 
 
Fig. 7: MobileNetV2 standard training and validation 

 

 
 
Fig. 8: MobileNetV2 training and validation accuracy 
 

 
 
Fig. 9: InceptionV3 standard training and validation 

 

 

Fig. 10: InceptionV3 training and validation accuracy 

 

 

 

Fig. 11: ResNet50V2 standard training and validation 

 

Surprisingly, however, VGG16 performed the best 

during cross validation. It achieved a staggering 98 and 

99% for training and validation respectively. Outstripping 

MobileNetV2 who attained 92 and 93% for training and 

validation respectively. It seems that the architecture of 

VGG16 is optimally suited for mask detection via transfer 

learning. The performance can be seen in in Fig. 14. 

DenseNet121 

Tying the score with ResNet50V2 for the standard 

method of training, the accuracy for training and validation 

was 99% for both categories represented in Fig. 15. 

However, it may too have been suffering from some 

overfitting as it finished with an accuracy of 88 and 91% 

for training and validation respectively. This may not 

have been as bad as it was for InceptionV3 and 

ResNet50V2, so DenseNet121 is in the middle of the pack 

for cross validation. Figure 16 shows the performance of 

DenseNet121 for K-Fold cross validation. 

Loss Comparison 

The values for Loss comparison can be seen in Fig. 17 

and 18. They are for the K-Fold cross validation for 

training and validation respectively. 
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Discussion 

For easier comparison, we can take a look at Table 1. 

Here, we can see that all 5 models performed excellently 

during standard training. With the results so close together 

it is rather difficult to choose just one to utilize. 

However, Table 2 shows a different set of results. 

From this table, for K-Fold cross validation, we can see 

that VGG16 is the best for mask detection via transfer 

learning. With a rather extreme departure from the 

standard training and testing method, both InceptionV3 

and ResNet50V2 show that they were suffering from 

overfitting or bias. While DenseNet121 did not suffer to 

such a severe degree, it is still a prominent departure from 

where it was during the standard training. The use of cross 

validation mitigated much of the issues of overfitting. An 

important thing to note is that many published results do 

not take this overfitting into account. 

For further evaluation we tested the time taken for 

detection. The results based on time can be seen in Table 3. 

The model time comparison was run for 3000 images. 

The tests were performed for all models on the same 

images and on the same system to ensure there was no 

hardware discrepancy. The pre-processing time was 

constant for all 5 models as expected. The time taken 

for the model to perform inference was the primary 

parameter. The tests were done only for the versions 

generated from K-Fold cross validation as they 

represent the truest form of output and accuracy. 

VGG16 again performs the best in terms of time taken 

for inference. MobileNetV 2 and Res Net 50V2 are 

rather close in time and are followed by InceptionV3 

and DenseNet121. Even considering the amount of 

time taken for inference, VGG16 clearly outperforms 

others and remains the most optimal choice for mask 

detection through transfer learning. 

Since VGG16 obtained the highest result in terms of 

accuracy during the cross validation as well as time of 

inference, it is safe to say that VGG16 is an optimal 

candidate for mask detection via transfer learning. A 

result of its detection among the example images of our 

dataset is provided in Fig. 19. Here, VGG16 

confidently detects all the masked individuals. 

Furthermore, the methods in this article, transfer 

learning and K-Fold cross validation, can be used for 

any object detection even if there is limited data. Transfer 

learning can be used for any object detection and object 

classification and K-Fold cross validation can prevent 

overfitting when working with a small dataset. 

The primary reason we performed cross validation 

was to account for the limitations of data. As we 

demonstrated above, models under such constraints 

suffer from bias or overfitting. Chowdary et al. (2020) 

showcases InceptionV3 and its rather high accuracy for 

mask detection. Upon repeating their process we also 

found a similar result. We used the same dataset and 

found the initial results promising. However, the high 

accuracy fails to take other issues into account. We 

showed that once steps are taken to account for bias or 

overfitting, there is a significant loss of accuracy. 

Chowdary et al. (2020) fails to account for these bias 

issues. However, our proposed model of VGG16 

clearly outperforms InceptionV3 by a large margin and 

is also capable of making predictions faster as well. 

Rather, out of the 5 tested models, InceptionV3 

performed the slowest. 

Cheng et al. (2020a) utilizes YOLOV3 tiny. Their 

training consisted of only the RMFD dataset and they 

reported really high accuracy. Their testing also relies 

solely on the RMFD dataset. With training and testing 

done on such a small dataset, it can be said that they also 

suffer from bias or overfitting. On the other hand, even 

though no accounts are provided for the time of 

inference, we can conclude that VGG16 would still be 

faster than YOLOV3 Tiny. The proposed system of 

Cheng et al. (2020a) runs inference on the entire image. 

However, our proposed method of using FaceNet 

(Schroff et al., 2015) to detect eyes or facial boundary 

features narrows down the search region and 

considerably speeds up the inference step. Even if there 

are false positives for eyes detected, the region-of-

interest would still be smaller than the entire input 

allowing our proposed model, VGG16, to perform 

inference faster than YOLOV3 Tiny. 

It is safe to say that many proposed methods of mask 

detection use similar datasets but don’t account for 

overfitting or bias. While methods like those of            

Loey et al. (2021) do include Support Vector Machine 

(SVM), decision tree and ensemble they ultimately 

reach the same accuracy as our proposed VGG16 

model trained through transfer learning. With bias 

accounted for and through the use of FaceNet, our 

VGG16 is probably more accurate and as fast as any 

other proposed method for mask detection. 

 

 

 

Fig. 12: ResNet50V2 training and validation accuracy 
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Fig. 13: VGG16 standard training and validation 
 

 
 

Fig. 14: VGG16 training and validation accuracy for 

 

 
 

Fig. 15: DenseNet121 standard training and validation 
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Fig. 16: DenseNet121 training and validation accuracy 

 

 
 

Fig. 17: Best training loss comparison 

 

 

 

Fig. 18: Best validation loss comparison 
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Fig. 19: Masked Image Output for VGG16 

 
Table 1: Standard training best results 

   Training Validation 

Model Name Training accuracy (%) Validation accuracy (%) loss (%) loss (%) 

MobileNetV2 100 100 0.0645 0.00739 

InceptionV3 96.5 97.4 10 7.89 

ResNet50 V2 99.7 99.6 0.923 1.03 

VGG16 98.1 97.8 7.34 6.16 

DenseNet121 99.7 99.7 1.15 1.05 

 

Table 2: K-Fold cross validation best results 

 Best Training  Validation Training Validation 

Model name KFold accuracy (%) accuracy (%)  loss (%) loss (%) 

MobileNetV2 4 92.5 93.1 20.4 18.3 

InceptionV3 3 78.2 84.0 45.4 37.3 

ResNet50V2 3 80.0 88.6 44.8 33.7 

VGG16 4 98.6 99.5 4.88 3.13 

DenseNet121 3 88.0 91.5 29.3 25.6 

 

Table 3: Model time comparison run on 3000 images 

Model name Best K-fold Inference time (seconds) 

MobileNetV2 4 500.0 

InceptionV3 3 665.4 

ResNet50V2 3 535.0 

VGG16 4 458.8 

DenseNet121 3 665.4 

 

Future Work 

We plan for even greater evaluation for the best and 
optimal model that could be used for mask detection. 
Furthermore, other methods aside from K-Fold Cross 
validation could be used on these models. Machine 
learning algorithms like SVM and decision tree could also 
be used for additional evaluation. Alongside this, more 
models could also be used to create a system that fulfills 
all the requirements for mask detection. 

Conclusion 

In this article, we explore the use of transfer learning 

to perform mask detection in the ongoing fight against 

Covid or other airborne diseases. The limited availability 

of usable masked images made transfer learning an 

optimum method for mask detection. We trained and 

tested 5 different models to test whether transfer learning 

is a viable solution to this issue. We found good results 

that showed potential. Furthermore, we used the K-Fold 

cross validation that to ensure that no model suffered from 

bias from the limited dataset. We discovered that certain 

models were indeed suffering from overfitting where 

others remained consistent across both methods. We 

conclude that transfer learning is indeed a capable 

solution and recommend the use of VGG16 for mask 

detection as it performed most optimally across both the 

standard training and K-Fold cross validation. 
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