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Abstract: Convolutional Neural Network is a deep learning method that is used 

in many image-related applications, such as image recognition and classification, 

it has achieved great performance in these fields, but it still suffers from some 

shortcomings. One of these shortcomings is not being able to be invariant to the 

input data due to some image transformations like translation, rotation, scaling, 

and geometric distortions such as skewness, perspective distortion and 

pincushion distortion.  This study presents an optimized CNN which uses the 

Geometric Heat Flow (GHF) to improve the performance of the CNN regarding 

the invariant limitation and classification accuracy. GHF is a partial differential 

equation that expresses how the heat would diffuse on a surface concerning time 

in a specific location. GHF is invariant to image transformations and geometric 

distortions if it was taken concerning the object's arc length which will lead to an 

invariant CNN. The experiments show that GHF improves the performance of 

the CNN, and the proposed work achieves an accuracy of 98.09% on the MNIST 

handwritten dataset, 92.58% on the MNIST-Fashion dataset, and 86.09% on the 

CIFAR-10 dataset. 

 

Keywords: Convolutional Neural Network, Image Geometric Distortion, Image 

Transformations, Invariant 

 

Introduction 

CNN is one of the most used methodologies in image 

classification, it achieves good performance in classifying 

images, but it still has some drawbacks (Liu et al., 2017; 

McNeely-White et al., 2019; Alom et al., 2019). One of these 

drawbacks is not being able to be invariant because of some 

transformations and geometric distortions of the input 

images (Jaderberg et al., 2015). Some techniques typically 

use dataset augmentation to overcome this matter (Mallat, 

2013; McNeely-White et al., 2019; Anselmi, et al., 

2016), but this needs more training data and a larger 

number of model parameters, and might significantly 

increase the training time. (Jaderberg et al., 2015) and 

(McNeely-White et al., 2019). The result of such a 

problem is obvious when dealing with domain-specific 

problems. For example, in medical applications, the rotation 

of the image can be inessential due to the symmetrical nature 

of some biological assemblies. Nevertheless, the scale is 

constant throughout the imaging procedure and should not be 

thought of as a nuisance factor. Furthermore, scale 

invariance can reduce the performance if the size of the 

object is informative. For example, when distinguishing 

cancer cells from healthy cells (Su, et al., 2015) and 

(Laptev et al., 2016). 

Invariance and Equivariance are different from each 

other but sometimes they are used interchangeably. 

Equivariance means varying in a similar proportion while 

invariant means no variance at all (Lenc and Vedaldi, 

2015) and (Chidester et al., 2018). Formally, a function ƒ 

is considered to be equivariant with respect to a 

transformation Ƭ if ƒ(Ƭ(x)) = Ƭ (ƒ(x)). Therefore, applying 

a transformation to x is equivalent to applying the 

transformation to the result of the function ƒ(x). The 

Invariant is a special case of equivariant. A function ƒ is 

considered to be invariant concerning a transformation Ƭ 

if ƒ(Ƭ(x)) = ƒ(x), therefore, the result throughout the 

function ƒ does not change when the transformation is 

applied to the original image (Serfling, 2010).  

Convolutional Neural Network is translation 

equivariance by nature because of the convolution operations 

(Worrall et al., 2017) since it convolves on the input image 

to extract the features of that image. Therefore, if an object is 

translated, it will still be perceived with disregard for its 

position in the input image. Also, the pooling operations 

might make the CNN rotation equivariance but only if the 

image was slightly rotated, but as the rotation degree 

increases the CNN might fail to classify the image 

accurately. While CNN is a translation and slight rotation 
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equivariance, it is not a translation, scaling or rotation 

invariant (Cohen et al., 2017; Hinton et al., 2012; 

Worrall et al., 2017; Cheng et al., 2018; Aburass et al., 

2020). 

The main objective of this study is to enhance the CNN 

performance concerning the invariant limitation to 

accomplish higher performance in image classification, 

this is done by applying GHF to the CNN. GHF is a 

mathematical model that uses partial differential 

equations to describe how the heat would distribute within 

the boundaries of an object. It is proven that the geometric 

heat flow is invariant to affine transformations and 

geometric distortions (Cao, 2003; Sapiro, 2006). After 

computing the geometric heat flow of the image, it can be 

concatenated with the flattened vector of the CNN to 

make it more informative and descriptive since the 

geometric heat flow is invariant to image transformations 

and geometric distortions which should lead to better 

performance and better classification accuracy. 

Literature Review 

Jaderberg et al. (2015), have presented a self-contained 

module for neural networks and implemented spatial 

transformations of features by using a localization network, 

parametrized sampling grid, and spatial transformer 

networks. While they have accomplished decent results this 

study is considered data augmentation, and it is not a solid 

solution to the invariant problem of the CNN. 

Laptev et al. (2016), presented a framework to combine 

previous knowledge on nuisance variations with data when 

training the network. They have formulated a set of 

transformations and produced several images based on these 

transformations. Afterward, these transformed images are 

delivered through the initial layers of the network and using 

the TI-POOLING operator to form transformation-invariant 

features. While they have accomplished transformation 

invariance by pooling transformed feature maps, it added 

enormous computational complexity to the network because 

of the forward and backward passes for each element. 

Shen et al. (2016), proposed an approach to solve the 

invariance problem of the CNN, the authors transformed 

the feature maps that are produced after each 

convolutional layer with random transformations, such as 

translation, rotation, and scaling, then fed the transformed 

feature map to the next layer. They have achieved good 

accuracy, but this approach is considered to be data 

augmentation which is not a solid approach to solving the 

invariant problem in the CNN. 

Worrall et al. (2017), have proposed a network that is 

equivariant to patch-wise shifting and continuous 360° 

rotation. They reconstructed the convolutional filters 

using derivations from complex harmonics, returning a 

maximal response and orientation for every receptive 

field patch. Using these new filters CNN could become 

invariant to rotation and translation but not scaling. 

Moreover, their work has a disadvantage of the higher 

per-filter computational cost as they need to originate and 

reconstruct all the filters in the CNN.  

Raj (2017), presented an approach that uses Zernike 

moments in CNN to evaluate the discrimination between 

the face and non-face patterns, and gender classification 

using facial expression recognition. They used Zernike 

moments as initial filters, to show some unique structures 

of the image that might be helpful to distinguish faces 

from non-faces images and gender classifications. In 

facial expression recognition, they have accomplished an 

accuracy of 87.22%. The main drawback of their work is 

feature loss. The use of a filter based on Zernike moments 

might lead to feature loss in some cases. 

Hinton et al. (2012; 2011), presented a new 

architecture that contains capsules. These capsules 

comprise a group of neurons that are responsible for the 

instantiation parameters of an entity such as pose velocity 

and albedo; these capsules will then represent information 

in a hierarchal form. 

Although this study is impressive it has some defects. 

The authors have not specified how the weights “W” are 

learned. Also, the algorithm yields an additional 

hyperparameter “r” which means more computational 

complexity. While the algorithm has achieved state-of-

the-art accuracy on the MNIST dataset it fails to perform 

well in the CIFAR10 dataset.  

Cheng et al. (2018), presented a technique that makes 

CNN invariant to rotation. They added a rotation invariant 

layer and Fisher discriminative layer to the network to 

make it invariant to rotation. These layers will try to learn 

the rotations of the object based on the class, so they could 

predict the rotation of an object when it distinguishes it. 

They have implemented their approach to some famous 

CNN like VGG and AlexNet and accomplished high 

accuracy, but the work is only focused on the rotation 

invariant, and they did not solve translation or scaling 

invariant problems in CNN. 

McNeely-White et al. (2019), considered the CNN 

representations invariance and equivariance to input 

image transformations. They have estimated the linear 

relationships among representations of the original and 

transformed images. Jaderberg et al. (2015) used the 

data augmentation technique which, as it has 

previously mentioned, is not a robust solution for the 

invariant problem. 

Guo et al. (2020) proposed an adaptive filters 

approach using a recurrent gated network to select the 

most efficient filters to be used based on previous 

knowledge from the previous layers. Although the use of 

adaptive filters boosted the accuracy of the CNN, it is not 

fully adaptive since they have used the same predefined 

filters of the CNN.
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Table 1: Summary of previous works based on the problem’s aspects 

Previous Translation Rotation Scaling Used Data Solved Geometric 

works invariance invariance invariance augmentation distortion problem 

McNeely-White et al. (2019) ✓ ✓ ✓ ✓ ✘ 

Jaderberg et al. (2015) ✓ ✓ ✘ ✓ ✘ 

Hinton et al. (2012) ✓ ✓ ✓ ✘ ✘ 

Cheng et al. (2018) ✘ ✓ ✘ ✘ ✘ 

Laptev et al. (2016) ✓ ✓ ✓ ✓ ✘ 

Worrall et al. (2017) ✓ ✓ ✘ ✓ ✘ 

Henriques and Vedaldi (2017) ✓ ✘ ✘ ✘ ✘ 

Dai et al. (2017) ✓ ✘ ✘ ✘ ✘ 

Dieleman et al. (2016) ✓ ✘ ✘ ✘ ✘ 

Marcos et al. (2017) ✓ ✘ ✘ ✘ ✘ 

 

There are many methods to encode rotation 

equivariance for general image classification. One 

straightforward technique is to transform the domain of 

the image to a substitute domain, like the log-polar 

domain (Henriques and Vedaldi, 2017; Schmidt and Roth, 

2012) where rotation can become some other 

transformation that is simpler to manage, but this can be 

volatile to translations and this warping might present 

distortion, as pixels near the image center are sampled 

more heavily than pixels near the boundary. The spatial 

transform layer (Jaderberg et al., 2015) and deformable 

convolutional layer (Dai et al., 2017) allow the network 

to learn some sampling patterns that are non-regular 

and can help to learn rotation invariance, however, 

invariance is not enforced, which would be a challenge 

for tasks with small training sets. 

Dieleman et al. (2016) proposed an approach in 

which feature maps of the standard network are made 

equivariant or invariant to rotation by combinations of 

cyclic slicing, stacking, rolling, and pooling. RotEqNet 

(Marcos et al., 2017), has enhanced this idea by storing, 

for every feature map for a corresponding filter, only 

the maximal response across rotations and the value of 

the equivalent rotation, to keep pose information, 

which led to improved results and significant storage 

savings.  

We have summarized the studied research based on 

the invariant problem aspects, Table 1 shows that in detail. 

The problem aspects are: 

 

1) Solving the translation invariance problem 

2) Solving the rotation invariance problem 

3) Solving the scaling invariance problem 

4) The use of data augmentation 

5) Solving the image geometric distortion problem 

 

In this study, we have proposed an approach to make the 

CNN invariant to image transformations such as Translation, 

Rotation, and Scaling, which also makes the CNN invariant 

to geometric distortions that might affect the image. 

Materials and Methods 

This section presents the proposed approach to 

enhance the CNN using the geometric heat flow, by 

adding a new layer to the CNN called The Heat Layer. 

Figure 1 illustrates the used mechanism. The Heat Layer 

contains the following phases as shown in Fig. 2. 

The Heat Equation 

The heat equation is a partial differential equation that 

describes how heat or temperature would distribute on a 

surface or in a body concerning time in a specific location. 

According to the second law of Thermodynamics, if two 

homogeneous bodies were in direct contact and one is hotter 

than the other, then the temperature will flow from the hotter 

object to the colder one at a rate proportional to the heat 

difference (Bennett and Myers, 1982; Mikula, 2002;            

Aubert et al., 2006).  

 The heat equation can be expressed as: 
 

2u
u

t



= 


 (1) 

 
Where, u is the heat that we want to know, t is for time 

and α is the diffusivity constant. 

If we have one dentitional space the heat equation can 

be rewritten as: 
 

2

2

u u

t x


 
=

 
 (2) 

 
Where, x is a location in one-dimensional space. 

But in two-dimensional space as an image, the heat 

equation would be rewritten as: 
 

2 2

2 2

u u u

t x y

   

= + 
   

 (3) 

 
Where, x is a location on the x-axis and y is a location 

on the y-axis. 
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In other words, the heat equation is used to predict the 
temperature at a specific point using the second derivative 
of that point concerning time, and after some time, we will 
have a heat flow. 

One-Dimensional Heat Flow   

In the one-dimensional case, the heat equation will 

predict the temperature of a point based on the 

temperatures of the points exactly near that point. As 

shown in Fig. 3. 

To predict the temperature of point T2 over time, we 

must compute its second derivative based on the 

temperatures of T1 and T3. Based on equation 2 above the 

temperature of T2 over time would be as follows: 
 

1 3
2

2

u T T
T

t


 + 
= − 

  
 (4) 

 
So, based on the diffusivity constant and the average 

temperature between T1 and T3, T2 will heat up or cool 

down producing a heat flow. 

Two-Dimensional Heat Flow  

In two-dimensional space, the heat equation will 

work in the same way as in one-dimensional space, but 

it will consider the second derivative on the x-axis and 

the second derivative on the y-axis at the same time 

(Aubert et al., 2006).   

In this study, we assume that the values of the pixels 

in the image are values of temperature to produce the heat 

flow over time, as shown in Fig. 4.  

To travel with a 2D image through time, we need to 

calculate the steps for each difference for x, y, and t as 

follows: 
 

i

j

k

x i x

y j y

t k t

= 

= 

= 

 

 
Where, i, j, and k are steps for each difference for x, y, 

and t respectively. 

Therefore, the temperature of a point (x, y) at a specific 

time can be written as: 
 

,( , , ) k

i ju x y t u=  (5) 

 
And the heat equation can be rewritten using finite 

differencing as: 
 

1

, , 1, . 1, , 1 , , 1

2 2

2 2k k k k k k k k

i j i j i j i j i j i j i j i ju u u u u u u u

t x y


+

+ − + −
 − − + − +

= +     
 (6) 

 
We can rearrange the equation to be as follows: 

 

( )1

, 1, , 1 , 1 , ,4k k k k k k

i j i j i j i j i j i ju u u u u u+

+ + −= + + − +  (7) 

Where: 

 

2

t

x
 


=


 

 

In other words, the heat equation can predict the 

temperature in a specified point on a 2D space in the next 

time step based on the second derivative of that point in 

the x-axis and the second derivative of the y-axis, as 

shown in Fig. 5. 

To solve the heat equation, two constraints must be 

resolved first, which are the boundary condition and the 

initial condition. The boundary condition is the initial 

boundaries of the heat at time =0 and the initial condition is 

the initial temperature of the boundaries at time = 0. 

As mentioned above we assume that the pixels’ values 

are temperature values and at time =0 are the initial 

conditions, and we consider the surrounding contours of 

the objects in the image as the boundary conditions. 

Geometric Heat Flow 

The problem that we are trying to solve in this study is 

the invariant problem in CNN.  CNN still suffers from the 

issue of being not invariant to large image transformations 

such that translation, rotation, and scaling, also it is not 

invariant to image geometrical distortions such as skewness, 

projection distortion, and barrel distortion. The heat equation 

explained above is not invariant to image transformations 

and geometric distortions, which means if the object was 

transformed or was geometrically distorted the heat flow will 

be changed. This problem arises because the heat equation 

takes the second derivative spatially depending on the x and 

y location of the boundary condition. In other words, if the 

boundaries of the object were transformed into another 

location, rotated, scaled, or were geometrically distorted the 

heat equation will be changed. So, we need a heat flow that 

is geometrically invariant to affine transformations and 

geomatic distortions, and that is exactly what (Sapiro, 2006) 

has proven mathematically in his book “Geometric partial 

differential equations and image analysis”. 

Instead of being dependent on the Euclidean space, we 

need to find a property of the boundary condition to derive 

concerning it to achieve invariant heat flow, and this 

property would be the arc length of the curvature. 

As proven in the book (Sapiro, 2006), we can achieve 

an invariant geometric heat flow using the following 

equation: 

 
2

2

u u

t s

 
=

 
 (8) 

 

The derivative is now being taken concerning the 

affine arc length of the object's contours. The arc length is 
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the distance between two points along a curved line. This 

curved line is not necessarily a regular line it could be 

irregular, as shown in Fig. 6. 

To find the arc length, the curve must be divided into 

small straight segments and then add up the length of these 

lines based on the Pythagorean Theorem (Stewart et al., 

2020), as shown in the equation below: 

 

2 2( ) ( )
b

a
s dx dy= +  (9) 

 

Now we need to derive the curves we have concerning 

the arc length, the first derivative of s would be as follows: 

 

2 2

'
dx dy

s
ds ds

   
= +   

   
 (10) 

 

According to the equation above, we need to calculate 

the second derivative of the arc length to achieve an 

invariant heat flow. The second derivative of s is shown 

below (Stewart et al., 2020): 

 
2 2

2 2

2 2

2 * 2 *

"

2

dx d x dy d y

ds ds ds ds
s

dx dy

ds ds

   
+   

   =

   
+   

   

 (11) 

 

u

t


=



2 2

2 2

2 2

* *
dx d x dy d y

ds ds ds ds

dx dy

ds ds

   
+   

   

   
+   

   

 (12) 

 

Alvarez et al. (1993) and Cao (2003), have proven that 

this is the unique affine geometric flow that holds all the 

key characteristics of a scale space for planar curves. 

Also, (Sapiro, 2006), stated that the heat flow over time 

will lead to a deformation of the curve, but all these 

deformations are smooth without creating self-

intersections or any singularities. In this way, we can have 

an invariant heat flow that describes the surrounding 

boundaries of the object regardless of any transformations 

or geometric distortions. 

The Heat Layer 

The main idea behind this study is to enhance CNN so 
it can classify transformed and geometrically distorted 
images more accurately, by adding a new layer after each 
convolution layer, we are going to call it The Heat Layer. 
The heating layer will take the feature map, that was 
produced from the convolution layer, as input and then 

calculate GHF for each feature in that feature map. After 
that, it will accumulate all the GHF that were produced 
from all the convolutions so they can be concatenated with 
the flattened vector. Figure 1 shows an illustration of 
CNN after adding the heating layer, then it is followed by 
the phases of the proposed approach in detail. 

In the conventional CNN, the convolution layers give 

their feature maps either to a pooling layer or to another 

convolution layer. But in this study, we have added a new 

layer that will take the feature map from the convolution 

layers, to compute the GHF of each feature in that feature 

map. The following are the phases of the inside of the Heat 

Layer after getting a feature map. 

Phase 1: Contours Drawing 

In this phase, the heating layer will look up the 

features of the feature map by drawing contour 

boundaries of the adjacent regions that have the same 

color or intensity. We have used the algorithm of 

(Suzuki, 1985) to draw the contours of the features, and 

used median thresholding to have individual features 

with not overlapping. Figure 7 below shows an 

example of an image after drawing the contours. 

Phase 2: Features Separation 

In this phase, the features will be separated to compute 

the GHF for each feature aside. Separating the features will 

help to produce accurate GHF which will lead to a more 

generalized view of the image. For example, if we took the 

face image above after drawing the contours, the separated 

features would be as shown in Fig. 8. 

Phase 3: Geometric Heat Flow Generation  

After separating the features, the GHF will be 

generated for each feature, as explained in the previous 

section.  For the face image that we used above, the 

GHF for each feature would be as shown in Fig. 9. 

Phase 4: Heat Flow Flattening 

The heat flows are 2-Dimensional matrices, so they 

must be converted to a 1-dimensional vector so they 

can be concatenated with the flattened vector of the 

CNN before giving it to the fully connected layer for 

classification. Fig. 10 below shows an example of the 

flattening operation.   

Phase 5: Concatenation 

Finally, after accumulating all the flattened GHF 

from all the convolution layers in one vector, this 

vector will be concatenated with the flattened vector of 

the CNN so it can be given to the fully connected layer. 

This should make the classification more invariant to 

image transformations and geometric distortion.             

Figure 11 below shows an example of the 

concatenation operation.  
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Fig. 1: CNN with the heat layer 

 

 
 
Fig. 2: Phases of the heat layer 

 

 
 
Fig. 3: Neighbor points in one-dimensional space 

 

 
 
Fig. 4: 2D image over time 

 
 
Fig. 5: Point Neighbors in a 2D image 
 

 
 

(1) 
 

 
 

(2) 
 
Fig. 6: Regular curve line and irregular curve line 
 

 
 
Fig. 7: (a) the original image of a face, (b) the gray image, and 

(c) the contours of the image 
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Fig. 8: The separated feature of a face image. (a) the original 

image, (b) the left ear, (c) the left eye, (d) the boundaries 

of the face, (e) the right eye, (f) the right ear, (g) the nose, 

(h) the mouth, and (i) the selected regions 

 

 
 

Fig. 9: The separated feature of a face image. (a) the original 

image, (b) the left ear, (c) the left eye, (d) the boundaries 

of the face, (e) the right eye, (f) the right ear, (g) the nose, 

(h) the mouth, and (i) the selected regions 

 

 
 
Fig. 10: Flattening 

 

 

Fig. 11: Concatenation 

 

Experimental Results 

This approach was executed using the Python 

TensorFlow platform by Google collab. The approach 

was tested on three benchmark datasets which are the 

MNIST handwritten digits dataset, MNIST fashion 

dataset, and CIFAR10 dataset. To make sure that the 

presented approach improves the CNN and makes it 

more invariant to image transformations and geometric 

distortions, we automatically make random image 

transformations and random geometric distortions on 

90% of the testing image batches, which led to a 

degradation in the performance of the conventional 

CNN as shown in the results below, which confirms 

that conventional CNN is not invariant to 

transformation and geometric distortions.  

We implement and test concatenating the geometric 

heat flow, then compare the results with the 

conventional CNN and with the results of (Shen et al., 

2016). To solve the invariance problem of the CNN, 

(Shen et al., 2016) transformed the feature maps that 

are produced after each convolutional layer with 

random transformations, such as translation, rotation, 

and scaling, then fed the transformed feature map to the 

next layer. Table 2 shows the results of concatenating 

the geometric heat flow compared to the results of 

(Shen et al., 2016) approach on the MNIST hand 

written digits dataset. 

Table 3 shows the results of the proposed approach 

implemented on the MNIST fashion dataset we 

compare our work with (Shen et al., 2016) approach 

and we achieve better results compared to                   

their work.   
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We test the proposed approach and (Shen et al., 

2016) approach on the CIFAR10 dataset and we 

achieve better performance than their approach as 

shown below in Table 4. 

Also, we compare our approach with the work of 

(Raj, 2017) which uses Zernike Moments (ZM) as 

initial filters to extract invariant structures of the 

image, by implementing their method on the three 

datasets. ZM are projections of an image onto the 

complex Zernike polynomials that are orthogonal over 

the unit circle. So, a radius must be provided to 

calculate the ZM of the image. So, we use the degrees 

45° and 90° to extract ZMs of the images.  

Table 5 shows the results of our approach compared 

to the results of (Raj, 2017) approach to the MNIST 

handwritten digits dataset. 

Table 6 shows the results of our approach 

implemented on the MNIST fashion dataset compared 

with the (Raj, 2017) approach, and we achieve better 

results compared to their work. Also, this stage tests 

(Raj, 2017) approach alongside our approach on the 

CIFAR10 dataset, and we achieve better performance 

than their approach as shown below in Table 7. 

Figures 12, 13, and 14 show examples of real 

predictions of our approach on the MNIST handwritten 

digits dataset, MNIST fashion dataset, and CIFAR10 

dataset, respectively, after transforming and 

geometrically distorting the testing data. Figure 15 

shows the architecture of the CNN that was used to test 

the proposed approach. It comprises five Convolutional 

layers, two MaxPooling layers one Flatten layer, and 

two Dense Networks. Each one of the Convolutional is 

connected to the Heat Layer to provide it with the 

features that are needed to calculate the GHF of each 

feature. Then, the Heat Layer is connected with the 

Flatten vector before it is fed to the Dense networks. 

 

 

 

Fig. 12: Results of MNIST handwritten digits classification 
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Fig. 13: Results of MNIST fashion dataset classification 

 

 
 

Fig. 14: Results of CIFAR10 dataset classification 
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Table 2: CNN-GHF MNIST handwritten digits results comparisons with (Shen et al., 2016) 

Approach # Of Epochs Loss Acc. Precision Recall F1 Score 

Conventional CNN 30 0.5850 94.78 96.90 97.10 96.99 

 50 0.5450 95.89 97.40 97.24 97.31 

 100 0.5410 95.98 97.49 97.46 97.47 

(Shen et al., 2016) 30 0.0700 96.74 98.04 98.27 98.15 

 50 0.0660 97.24 97.41 98.01 97.71 

 100 0.0500 97.47 98.58 98.25 98.41 

Geometric heat flow 30 0.0330 97.89 98.64 98.61 98.62 

 50 0.0225 98.01 98.50 98.22 98.36 

 100 0.0215 98.09 98.66 98.76 98.71 

 
Table 3: CNN-GHF MNIST fashion results comparisons with (Shen et al., 2016) 

Approach # Of Epochs Loss Acc. Precision Recall F1 Score 

Conventional CNN 30 0.773 81.56 94.90 95.56 95.23 

 50 0.658 82.46 95.35 95.70 95.52 

 100 0.672 83.86 95.54 95.85 95.69 

(Shen et al., 2016) 30 0.315 87.13 96.87 96.81 96.84 

 50 0.225 88.67 97.30 97.21 97.25 

 100 0.220 88.83 97.67 97.50 97.58 

Geometric heat flow 30 0.245 89.58 97.88 97.38 97.63 

 50 0.185 92.31 98.06 97.78 97.92 

 100 0.145 92.58 98.13 97.91 98.02 

 

Table 4: CNN-GHF CIFAR10 results comparisons with (Shen et al., 2016) 

Approach # of Epochs Loss Acc. Precision Recall F1 Score 

Conventional CNN 300 1.257 54.79 93.85 91.60 92.71 

 500 1.050 58.38 94.46 92.54 93.49 

 1000 0.915 62.52 94.71 93.50 94.10 

(Shen et al., 2016) 300 0.635 64.24 95.01 92.97 93.98 

 500 0.444 74.46 95.34 93.41 94.37 

 1000 0.416 83.26 95.70 94.26 94.97 

Geometric heat flow 300 0.398 73.67 95.49 94.17 94.83 

 500 0.235 80.80 95.82 95.34 95.58 

 1000 0.206 86.09 96.18 96.10 96.14 

 

Table 5: CNN-GHF MNIST handwritten digits results comparisons with (Raj, 2017) 

Approach # Of Epochs Loss Acc. Precision Recall F1 Score 

Conventional CNN 30 0.5850 94.78 96.90 97.10 96.99 

 50 0.5450 95.89 97.40 97.24 97.31 

 100 0.5410 95.98 97.49 97.46 97.47 

(Raj, 2017) 45 Degrees 30 0.5650 97.51 97.40 97.45    95.38

 50 0.5450 96.19 97.56 97.50 97.45

 100 0.5370 96.28 97.61 97.55 97.50 

(Raj, 2017) 90 Degrees 30 0.5630 95.48 97.53 97.43 97.47

 50 0.5540 95.78 97.58 97.49 97.53

 100 0.5470 96.08 97.60 97.53 97.56 

Geometric heat flow 30 0.0330 97.89 98.64 98.61 98.62

 50 0.0225 98.01 98.50 98.22 98.36

 100 0.0215 98.09 98.66 98.76 98.71 

 

Table 6: CNN- GHF MNIST fashion results comparisons with (Raj, 2017) 

Approach # Of Epochs Loss Acc. Precision Recall F1 Score 

Conventional CNN 30 0.773 81.56 94.90 95.56 95.23 

 50 0.658 82.46 95.35 95.70 95.52 

 100 0.672 83.86 95.54 95.85 95.69 

(Raj, 2017) 45 Degrees 30 0.673 82.26 95.40 95.69 95.54 

 50 0.639 83.56 95.56 95.80 95.68 

 100 0.651 84.76 95.65 95.96 95.80 
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Table 6: Continuous 

(Raj, 2017) 90 Degrees 30 0.691 82.06 95.48 95.51 95.49 

 50 0.647 83.36 95.60 95.67 95.63 

 100 0.599 84.46 95.67 95.87 95.77 

Geometric heat flow 30 0.245 89.58 97.88 97.38 97.63 

 50 0.185 92.31 98.06 97.78 97.92 

 100 0.145 92.58 98.13 97.91 98.02 

 
Table 7: CNN- GHF CIFAR10 results in comparisons with (Raj. 2017) 

Approach # Of Epochs Loss Acc. Precision Recall F1 Score 

Conventional CNN 300 1.2570 54.790 93.85 91.600 92.71 

 500 1.0500 58.380 94.46 92.540 93.49 

 1000 0.9150 62.520 94.71 93.500 94.10 

(Raj, 2017) 45 Degrees 300 1.1170 55.390 94.65 91.890 93.25 

 500 0.9670 59.590 94.66 93.130 93.89 

 1000 0.7620 62.990 94.89 93.740 94.31 

(Raj, 2017) 90 Degrees 300 1.1420 54.790 94.90 92.590 93.73 

 500 1.0210 58.810 95.11 93.560 94.33 

 1000 0.8530 62.490 95.55 93.790 94.66 

Geometric heat flow 300 0.3980 73.670 95.49 94.170 94.83 

 500 0.2350 80.800 95.82 95.340 95.58 

 1000 0.2060 86.090 96.18 96.100 96.14 

 

 

 

Fig. 15: The used CNN architecture 

 

Discussion 

The use of the Geometric Heat Flow of each feature in 

the image has led to an improvement in the performance 

of the conventional CNN, and since the GHF is invariant 

to geometric transformations and geometric distortions, it 

has made the CNN invariant as well. 

Shen et al. (2016) in their approach, used random feature 

maps transformation to solve the invariant problem in the 

CNN, but this approach is more like data augmentation 

which is an inefficient approach to solve this problem. The 

use of Zenick moments as initial filters led to feature loss 

which led to an increase in loss and a decrease in accuracy. 

On the other hand, concatenating the Geometric Heat Flow 

achieves better loss, accuracy, precision, recall, and F1 score 

on the three datasets MNIST handwritten digits, MNIST 

fashion dataset, and CIFAR 10 dataset. 

Conclusion 

This study presents an approach to enhance CNN 

regarding the invariant problem by using geometric heat 

flow. The mechanism behind this approach is to add the Heat 

Layer to the CNN, which draws the contours of the objects 

in the image then computes the values of the geometric heat 

flow of the contours separately, then, concatenates the 

computed values of the geometric heat flow with the 

flattening vector before feeding it to the fully connected layer 

to make the vector more discriminative and more 

informative. In this study, we randomly transform and 

geometrically distort 90% of the testing data to test that our 

approach makes the CNN invariant to image transformations 

and geometrical distortions. Then we compare our work with 

the conventional CNN and the work of (Shen et al., 2016) 

and (Raj, 2017) on the three datasets, the MNIST 

handwritten digits, MNIST fashion dataset, and CIFAR 10 

dataset, and we show that the proposed approaches classify 

transformed and geometrically distorted images 



Sanad Aburass et al./ Journal of Computer Science 2022, 18 (8): 757.769 

DOI: 10.3844/jcssp.2022.757.769 

 

768 

successfully. The results show that our method gives 

the best results in all cases namely loss, accuracy, 

precision, recall, and F1 score. The proposed approach 

achieves an accuracy of 98.09% on the MNIST dataset, 

92.58% on the MNIST Fashion dataset, and 86.09% on 

CIFAR10. 

Although this approach makes the CNN invariant it 

adds a huge burden on the CNN, as the GHF should be 

calculated for each feature in the Convolutional Layers, 

therefore the training time and the testing time are 

increased significantly. In the future, we will 

investigate the use of the GHF in other fields of image 

processing such as Shadow Detection. 
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