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Abstract: Applications of wearable sensors for Hand Gesture Recognition 

(HGR) have been gaining popularity in recent years. Among the proposed 

methods, deep neural networks with many hidden layers are promising to 

address the requirements of this wearable activity recognition. They can 

directly uncover features tied to the dynamics of HGR, from simple motion 

encoding in lower layers to more complex motion dynamics in upper layers. 

However, these methods require many efforts of researches to build an 

efficient neural network architecture. This study proposes an integrated 

method that allows finding the best neural networks for HGR using wearable 

sensors. The proposed method consists of two parts: (i) A generic Multi-
Layer Perceptron (MLP) deep neural network and (ii) A genetic algorithm. 

We applied the genetic algorithm to find the best network architecture in 

terms of accuracy. At each generation of the algorithm, a new set of 

architecture was created with different Hyper parameters (the activation, 

optimizer, the number of layers, neurons and epochs). Extensive experiments 

were conducted on a dataset containing 18.000 gesture samples from 20 

subjects. Experimental results demonstrated the performance and efficiency 

of the proposed methods in finding deep neural network architectures for 

HGR. The obtained neural network achieves 89.21% of accuracy and 

outperforms the previous study on the same dataset. 

 
Keywords: Hand Gesture Recognition, MLP Deep Neural Networks, 

Genetic 

 

Introduction 

Hand gesture is considered to be a mental concept of a 

human idea associated with an action, response, or a 

requirement that users realize intending to achieve a result 

(Pavlovic et al., 1997). Hand gesture-based interaction 

has attracted huge attention from researchers in Human-

Computer Interaction (HCI). Previously, many works have 

focused on computer vision to recognize hand gestures. 

These approaches usually face challenges related to 

environmental settings. The recognition performance highly 

depends on constraints such as lighting conditions, cluttered 

backgrounds, occlusions and so on. Ultrasonic/optical 

sensors are also common devices that have been used to 

capture hand gestures. But, this approach might struggle with 

practical difficulties in detecting human gestures at any 

location (Zhang et al., 2019a). 

The recent development of microelectronic 

technologies has promoted the proliferation of mobile 
sensors such as Inertial Measurement Units (IMU), GPS, 

thermal, vision .... We can easily find IMU sensors in 

many popular wearable and mobile devices. Thus, they 

open up many chances for Hand Gesture Recognition 

(HGR) (Trong et al., 2019). Such sensor-based 

approaches collect sequential data from these sensors and 

dynamically analyze hand gestures by two main methods: 

(i) The traditional machine learning and (ii) deep learning. 

Many traditional methods can be found in the 

literature, such as dynamic time warping, k-means 

clustering, decision trees, support vector machines and so 

on. However, due to its high accuracy, deep learning 
gradually replaces the traditional techniques in human 

activity recognition. Numerous Deep Neural Networks 

(DNN) have been proposed for analyzing low-level 
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sensing signals to infer high-level human activities and 

gestures (Zhang et al., 2019b). Neural networks such as 

Multi-Layer Perceptron (MLP) with more than one 

hidden layer (Tamim et al., 2020), Convolution Neural 

Network (CNN) (V. and R., 2020) network, Recurrent 
Neuron Network (RNN) (Xing et al., 2020), have proven 

their ability to achieve excellent performance in the field 

(Pham et al., 2020a; Reissner et al., 2019; Kwon et al., 

2018; Leung et al., 2018; Lee et al., 2017; Hong et al., 

2016; Iyer et al., 2016; Kratz et al., 2013). 

In general, the sensor data are usually used as input to 

these networks, directly (without any transformation) or 

indirectly (transforming to other formats). Then, after 

being processed by some hidden layers, corresponding 

hand gestures are predicted at the output layer. In this 

context, architectural variants of networks highly 
influence prediction accuracy. However, designing an 

efficient DNN architecture is a challenging task, which 

requires much effort from researchers. Several factors should 

be considered to have an optimized DNN network, such as 

the number of hidden layers, neurons in each hidden layer, or 

functions that connecting the neurons. We necessitate a 

combinatorial search over architectures and their Hyper 

parameters (Turek et al., 2019). Brute force trial and error is 

a popular solution: Researchers try every combination of 

sensible parameters and compare the obtained accuracy. But, 

exploring all options is difficult and expensive, due to it takes 

a long time to find the most optimized solution. 

Genetic Algorithm (GA) is a directed heuristic search 

technique proposed by (Holland, 1992). Starting from an 

initial population, the algorithm bases on the processes 

of mating, breeding and activities such as selection, 

cross-exchange and mutation, to create new, more 

optimal individuals (Katoch et al., 2021). These processes 

use an objective function to produce genetic variability. This 

idea has significant similarities with the problem of DNN 

optimization. We can apply GA to perform parallel searches 

in a set of different DNN (population) and toward an optimal 

solution proceeds by maintaining a population of solutions 

from which new structures (a new number of hidden layers, 

of neurons or activations) are created using genetic operators. 

Therefore, in this study, we propose a GA to evolve and find 

optimal hyper parameters of neural network architectures 

for HGR. The remaining of the paper is structured as 

follows. Section ’Related work’ describes related works; 

Section ’Materials and Methods’ details our proposed 

networks. The experimental evaluation is present in 

Section ’Experimental Results’ and the paper ends up 

with the conclusion and discussion. 

Related Study 

In general, a HGR system consists of two main steps, as 

illustrated in Fig. 1: (i) Pre-processing comprised of 3        

sub-steps: Data Cleaning, Data Segmentation and Data 

Transformation; and (ii) Training/Recognition that contains 

Feature Extraction and Learning/Inference sub steps. 

The input signals of this process can come from different 

kinds of wrist-worn inertial sensors in certain time intervals. 

These data are time-dependent, highly fluctuating and 
oscillatory, which makes them difficult to recognize 

underlying patterns (Lara and Labrador, 2013; Zheng et al., 

2018). Therefore, they need to be clean by related techniques 

at the Data Cleaning step, for example, reducing noise, 

detecting N/A values, detecting gaps, outlier analysis, 

normalization (Naduvil-Vadukootu et al., 2017) and so on. 

For instance, (Haseeb and Parasuraman, 2019) presented an 

online machine learning solution for recognizing touch-less 

hand gestures on a smartphone (mobile device). The authors 

applied a noise detection model to filter only interested 

signals, mean subtraction, the re-sampling technique for 
normalization data raw. (Mezari and Maglogiannis, 2018) 

also introduced a heuristic algorithm to eliminate tap events 

that are considered as noise by using a threshold value. 

The input time-series data consists of multiple data 

points in chronological order, where a gesture is repeated 

across a short interval. Therefore, after data cleaning, we 

usually segment the continuous input streams in 

individual gestures with a fixed-length size (Liu et al., 

2018). Sliding windows is one of the most common 

techniques using for segmentation, as in the works of 

(Zhang et al., 2019a; Lee and Lee, 2018; Naduvil-

Vadukootu et al., 2017; Ordo´nez˜ and Roggen, 2016). 
Depending on the applied training/recognition method 

in the next step, the segmented data can be then 

transformed or not into other forms at the Data 

Transformation step. For example, (Zheng et al., 2018), 

transformed data into four types of images, including raw 

plots, multichannel plots, spectrogram and a combination 

of spectrogram and sallow features. (Zhang et al., 2018) 

also used spectrogram as input for the 

training/recognition. Therefore, the authors transform 

time-series data into corresponding forms. But, in many 

other works, the time series segmented data are then passed 
directly to the next step without transformation. It can be 

found in the works of (Trong et al., 2019; Pancholi and Joshi, 

2019; Ordonez and automatically performed by Deep neural 

network models Roggen, 2016; Haseeb and Parasuraman, 

2019; Zhang et al., 2019a; Liu et al., 2018). 

At the Training/Recognition step, in the literature, 

researchers typically perform two functions: Feature 

extraction and Learning/inference to produce the recognition 

model (Training purpose) or predict corresponding activities 

(Recognition purpose). Regarding the development of deep 

learning technologies in mining time-series data, we divide 

methods at this step into two categories: (i) The traditional 

machine learning, as presented in Fig. 1a; and (ii) the deep 

learning, as presented in Fig. 1b. 

The traditional approach uses hand-crafted features 
related to the user’s movement (e.g., hand gestures), 
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environmental variables (e.g., temperature and 

humidity), or physiological signals (e.g., heart rate or 

electrocardiogram). There are three methods to extract 

these features from time-series data: Statistical, 

structural and hybrid (Olszewski et al., 2001). The first 
methods extract features from quantitative attributes of 

data by using, for example, the Fourier or the Wavelet 

transform. The second one’s base on the 

interrelationship among data. The last ones combine 

both of them to extract features. These features are 

passed then to the Learning/Inference step, where a 

various range of machine learning techniques are used 

to lean (Training purpose) or to classify (Recognition 

purpose) the features. They usually base on similarity 

(e.g., Template matching, k-Nearest neighbor), 

probability (e.g., Bayes rule), boundaries (e.g., 
decision trees, neural networks) and clustering (e.g., k-

means, hierarchical) methods. 

Regarding the second approach, these steps are 

automatically performed by Deep Neural Networks 

(DNN), as illustrated in Fig. 1(b). These networks 

consist of numerous hierarchical layers of non-linear 

processing units, in which each layer processes the 

outputs of the previous layer (Trong et al., 2019). This 

architecture allows us to automatically extract features 

and classify them so that there is no need for manual 

works. Because of sequential and temporal 

characteristics of collected data, HGR using wearable 
sensors is suitable with deep learning methods that 

have memory structure, such as Recurrent Neural 

Network (RNN) (Jian et al., 2019; Ameur et al., 2020). 

For instance, (Ordo´nez and Roggen, 2016) 

proposed a deep learning framework composed of 

Convolutional Neural Networks (CNNs) and LSTM 

recurrent layers, that is capable of automatically 

learning feature representations of hand gestures and 

modeling the temporal dependencies between their 

activation. In this study, the authors proposed a 

network, namely DeepConvLSTM, that contains 8 
layers in which the first 5 layers are the input (Layer 1) 

and the Convolutional ones (layer 2 to 5); the layers 6 

and 7 are LSTMs and the last one is a Softmax layer. 

Similarly, (Koch et al., 2019) presented a stacked 

recurrent neural network that combined the feature extraction 

ability of CNNs with LSTM to classify hand gestures. The 

data of this study come from magnetometer sensors. Unlike 

to the work of (Ordo´nez˜ and Roggen, 2016), the authors 

applied the convolutional LSTM (ConvLSTM) (Shi et al., 

2015) with the standard LSTM in their network. 

However, creating efficient deep neural network 

architectures is a challenging task, which requires much 

effort from researchers. The exhaustive trial and error 

approaches are usually conducted to find good architectures, 

which is time-consuming. In this study, we propose a genetic 

algorithm to evolve and find such architectures for HGR. 

Materials and Methods 

Dataset 

This study used the GesHome dataset presented in the 

work of (Nguyen-Trong et al., 2021). The dataset contains 

18 hand gestures and 6 ongoing gestures (Start to do a gesture 

and Unknown) from 20 volunteer participants, as illustrated 

in Fig. 3. We conducted a 5 days’ collection period for each 

participant, in which he/she realized 50 times for each 

gesture. Thus, we obtained a total of 18000 gesture samples. 
GesHome contains two groups: The first group consisting of 

8 simple gestures and the second group including ten gesture 

numbers from 0 to 9. It was observed that users were able to 

remember gestures after only several tries. 

Pre-Processing 

We used signal collected from an accelerometer and a 

gyroscope sensor to recognize hand gestures. The raw 

data is a continuous stream of one-time values. This later 

contains six-axis values that refer to combinations of 
three-dimensional data (x, y, z) of the two sensors, as 

shown in Fig. 2. Therefore, we applied two techniques to 

normalize and segment the raw data into sequence of 

separated windows. These windows were then used as the 

input of the proposed DNN. We used the sliding window 

technique with 2 sec of the time window and 50% s of 

overlapping. For each window, the label will be named by 

the most frequent in 50 raw data respectively. 

MLP Deep Neural Network Architecture 

In this study, we explored MLP deep neural networks 

(Severin, 2020) for hand gesture recognition with the input 

data coming from accelerometer and gyroscope sensors. In 

general, a Multilayer Perceptron (MLP) is a feed-forward 

Artificial Neural Network (ANN), which consists of an input 

layer, a hidden layer and an output layer. A MLP with more 

than one hidden layer can be considered as DNN (Dey et al., 

2017; Chinnathambi et al., 2018; Bernardi et al., 2019; 

Fallucchi and Cabroni, 2021). In this architecture, every 

layer contains a bias neuron, except the output layer. They 

are fully connected to the next layers. 
The architecture of such networks depends on the choice 

of the number of layers, the number of neurons in the hidden 

layer, the used objective and optimized functions. In this 

study, we propose a genetic algorithm to find the best MLP 

deep neural network in term of the accuracy. We tried 

different architectures and hyper parameters, as follows: 
 
 Number of hidden layers (nl): We changed the number 

of layers, after each generation of the genetic algorithm 

 Neurons per hidden layer (nr): Two scenarios were 

applied. First, we randomly generated a number of 

neurons at each layer. Second, we calculated this 

number based on Eq 1. It gradually reduced the 

numbers of neurons from the first layer to the last one 
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 Activation function: At each generation, we 

randomly selected an activation for all networks from 

four functions, including Relu, Elu, Tanh, Sigmoid 

 Network optimizer: Similarly, the optimizer is 
randomly chosen from seven optimizers, including 

Rmsprop, Adam, Sgd, Adagrad, Adadelta, 

Adamax, Nadam 

 

Figure 2 details the architecture of networks. As 

mentioned, we applied the sliding window technique to 

generate multiple fixed length samples. The window size 

was set to 2 sec, with an overlap of 1 sec Each window 

contains 50 samples in X-axis, Y-axis and Z-axis. Thus, 

the input of networks is a (50x6) matrix. 

The output layer contains 24 neurons that are 

corresponding to 24 gestures. Therefore, we specified the 
neuron number at each hidden layer to gradually reduce 

toward to 24. Let nl the number of hidden layers, the number 

of neurons nr at each hidden layer i is determined as follows: 

 

 1 16 ,  2,  2, 1, ,nl i

inr w w nl i nl     
 (1) 

 

where, w is a random number that is greater or equal to 2. 
For example, with w = 2 and nl = 4 (four hidden layers), 

the number of neurons at each layer is (from input to 

output layer) 300, 256, 128, 64, 32 and 24. 

Genetic Algorithm 

We applied Genetic Algorithms (GAs) (Katoch et al., 

2021) to find the most optimized neural networks (and the 

corresponding hyper parameters) for our hand gesture 

dataset. The algorithms, which are based on the theory of 

evolution, are widely applied in complex optimization 

problems. Through genetic operators, GAs explore 

potential search solutions and escape local optima. 

The algorithm is presented as in Algorithm 1. 

Firstly, we initiate a population that contains nb 

population networks. Each network has a specific 

architecture and hyper parameters, which are presented 

in the previous section. 

At each generation, we applied the early stop 

technique for training and then used accuracy as the 

fitness function. After each generation, we sort all 

networks by the accuracy and keep χ percents of the top 

networks for the next generation and breed children. 

Lastly, we mutated µ percents of bad networks in terms 

of accuracy and let the other networks die. 

 

 
 
Fig. 1: Method flow for wearable-based hand gesture recognition: (a) General Flow with traditional machine learning approaches; (b) 

DNN Flow with deep learning approaches where Feature Extraction and Learning and Inference are automatically performed 
by Deep neural network models 
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Fig. 2: General architecture of networks 
 

 
 

Fig. 3: GesHome dataset (Trong et al., 2019) 

 

Experiments 

Experiment Setup 

We conducted three experiment scenarios, in which 

each one contains 20 generations, 25 individual networks 

(populations). Each network has several layers that range 

from 2 to 10. The maximum epochs of training were set 

to 5000. We also applied the early stopping technique, 

with a patience of 1250 epochs. With each experiment, we 

performed three scenarios with different numbers of 

neurons, as detailed in Table 1: 

 

 Experiment #1 (Exp1): Each layer had a random 

number of neurons that ranges from 2 to 4000 

 Experiment #2 (Exp2): The layer i has 16∗wnl−i+1 

neurons, where w ∈ [2,3,4] 

 Experiment #3 (Exp3): We added a dropout layer just 

after each hidden layer of the two previous 

experiments 

 

All networks were trained using Keras on top of 

Tensor flow 2.6.0 (Shazeer et al., 2018) and Python 3.7, 

on an NVIDIA Tesla K80 GPU with a 12 GB memory and 

an Intel (R) 2.3Ghz Xeon(R) microprocessor. 

Furthermore, the following techniques and parameters 

were used to train all networks: 
 
 A categorical cross-entropy function was utilized as 

the loss function 

 An early stop technique was employed to increase 

the training speed and reduce overfitting. This 

makes the model stop learning if it has reached its 

maximum accuracy 

 The dataset was imbalanced, in which 80% of data was 

the ’Start’ and ’Unknown’ gesture. Therefore, we 

applied a class weight to make the model pay more 

attention to samples from an under-represented class. 

Table 2 details the weight of each class in experiments 

 We divided the dataset into three subsets: Training 

(60%), validation (15% and testing sets (25%). The 

training and validation set was used to train and valid 

models, while the last set was used for testing models 
 
Table 1: Experiment parameters 

Params Values 

Generation (g) 20 
Population (Networks) 25 
Number of epochs Early stopping 

or 5000 epochs 

Number of Layers (nl) nlg ∈ [2-10] 
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Table 2: Class weight 

Gesture Weight Total 

0 15 539 
1 20 392 
2 16 502 
3 15 532 
4 18 455 
5 16 507 
6 17 461 

7 20 400 
8 13 606 
9 15 527 
CCWCircle 15 579 
CWCircle 15 564 
Clap 22 382 
Move Down 14 591 
Move Left 14 578 
Move Right 15 539 
Move Up 15 547 
Select 20 447 
Start Gesture 1 7082 
Start Move Down 28 316 
Start Move Left 30 309 
Start Move Right 28 319 
Start Move Up 31 265 
Unknown 1 7885 

 

Results 

After 20 generations, which spent about 24 h for training, 

we obtained the highest accuracy of 89.21% on the test set. 

The network belonged to the second experiment, Table 3. 

Figure 4 details the progress of loss and accuracy on the 

training and validation set. Owing to the early stop technique, 

the training was stopped after 1514 epochs. The gap between 

training loss and validation loss is extremely small, which 

means that the model operated accurately, without any over-

fitting. Table 4 details the F1 score, precision and recall of 

this network. The network can accurately recognize eight 

gestures, including ”0” ”1” ”8” ”9” ”CCW Circle”, 
”CWCircle”, ”Move Up”, ”Start Gesture”, which have F1-

scores of higher than 90%. But, due to the diversity and 

similarity, the performance is still low for the ”Select” and 

especially ”Move Down” gesture (69% for ”Move Down” 

and 77% for ”Select”). 
 

Algorithm 1 Genetic algorithm to find the best MLP deep 

neural network for hand gesture recognition 

Input: nb generation, nb population, χ, µ 

 Params: nb layers, nb neurons, nb epochs, 

activations, optimizers 

Output: loss, accuracy, network (activation, optimizer, 

epochs, layers) 

 Initialization 

1: get dataset () 

 Population creation 

2: for i = 0 to nb population do 

3: net = random create network (params) 

4: nets. append(net) 

5: end for  

 Generation: 

6: for i = 0 to nb generation do 

7: train (nets) 
 Get scores for each network and save best model 

8: graded = fitness (nets) 

 Crossover and breed 

9: babies = breed (male, female) 

 Mutate 

10: parents. ext end (babies) 

11: end for 

 Sort the final population, based on the accuracy nets 

= sorted(nets) 

12: return nets [0] 
 

Table 5 presents the top five best networks among 

the three experiment scenarios. On average of all 

obtained networks, the second scenario achieved the 

highest accuracy (76.62%), while the first one produces 

the lowest accuracy (45.5%). It can be explained by the 

fact that networks in the second experiment can learn 

features in a hierarchical manner. Therefore, the 

networks predict data better than the others. 
Regarding the third experiment, adding a dropout 

layer after hidden layers didn’t improve the network. 
With the same network architecture using in the first 
and second experiments, the accuracy on the test set 
decreased about 4-5%. 

For the activation function and optimizer, Elu and 

Rmrsprop seems to produce the best performance. There 

were 50% networks that used the Elu activation function, 

in the top 10 best networks of the second experiment. The 

same percentage was observed for the Rmrsprop 

optimizer. The Sigmoid activation function produces the 

worst performance. All networks that used Sigmoid 

function achieved an accuracy of less than 10%. 

Discussion 

Experimental results show that the obtained network 

outperforms the previous study on the same dataset 

(Trong et al., 2019) that applied BaselineCNN and 

DeepConvLSTM, in terms of accuracy (89.21% 

compared with 73.7and 75.8%). Furthermore, in the 

previous approach, the authors must use two separated 

networks: One for detecting starting gestures and another for 

recognizing the following gestures. In this study, we only 

need a network to perform both tasks. The results are almost 

equal with another previous study (Nguyen-Trong et al., 

2021) that used 1DCNN-BiLSTM (89.21% compared 
with 90%). But, the obtained network has fewer 

parameters and layers (249.864 compared with 641.112 

parameters, six layers compared with ten layers). 

Therefore, it results in models with a smaller size and 

faster inference time. It makes them suitable for running 
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on low-resource devices, such as embed devices, 

smartphones and so on. However, similarly with the two 

previous studies, the proposed method did perform well 

on” Select” and” Move Down” gestures. Besides, due to 

fully connected architectures of MLP, the training time of 
our method is longer than the others. 

The effectiveness of the proposed solution can also be 

found in several similar works, such as using GA to design 

DNN architecture for estimation of pile bearing capacity 

(Pham et al., 2020b), or applying MLP to predict risk 

of diabetes (Fallucchi and Cabroni, 2021).

 

 
 (a) (b) 

 
Fig. 4: Progress of loss and accuracy on the training and validation set 

 
Table 3: Optimal network hyper parameter 

Parameter Value 

Number of hidden layers 6 
Number of Neurons [300, 288, 240, 192, 144, 96, 48, 24] 
Activation Elu 
Optimizer Rmsprop 
Epochs 1514 (Early stopping) 
Total parameters 249,864 

 
Table 4: Precision, Recall and F1-Score 

Gesture precision recall f1-score 

0 0.88 0.92 0.90 
1 0.91 0.88 0.90 
2 0.91 0.86 0.88 

3 0.90 0.86 0.88 
4 0.88 0.89 0.89 
5 0.89 0.83 0.86 
6 0.89 0.88 0.88 
7 0.87 0.85 0.86 
8 0.90 0.91 0.91 
9 0.91 0.88 0.90 
CCWCircle 0.95 0.92 0.94 

CWCircle 0.94 0.94 0.94 
Clap 0.86 0.88 0.87 
Move Down 0.61 0.80 0.69 
Move Left 0.88 0.86 0.87 
Move Right 0.82 0.94 0.88 
Move Up 0.93 0.95 0.94 
Select 0.94 0.65 0.77 
Start Gesture 0.91 0.93 0.92 

Start Move Down 0.78 0.82 0.80 
Start Move Left 0.90 0.86 0.88 
Start Move Right 0.89 0.90 0.89 
Start Move Up 0.87 0.89 0.88 
Unknown 0.90 0.88 0.89 
Average 0.89 0.89 0.89 
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Table 5: The top five best networks among three experiment scenarios 

Order Scenario Acc Layers and Neurons Activation Optimizer Epochs 

1 Exp2 89.21% [288, 240, 192, 144, 96, 48] Elu Rmsprop 1514 (Early Stopping) 

2 Exp1 88.31% [2408, 3724, 1175, 1182,2543, Tanh Adamax 1892 

   325, 3605, 3795, 1445]   (Early Stopping) 

3 Exp2 88.18% [288, 240, 192, 144, 96, 48] Elu Adam 1552 (Early Stopping) 

4 Exp1 88.12% [1229, 132, 2230, 2431] Relu Adam 1317 

   325, 3605, 3795, 1445]   (Early Stopping) 

5 Exp2 87.70% [288, 240, 192, 144, 96, 48] Relu Rmsprop 1775 (Early Stopping) 

 

Conclusion 

A method for recognizing hand gestures has been 

proposed in this study, in which we employed data 

coming from popular sensors embedded inside 

wearable devices. We proposed a general MLP deep 

neural network for analyzing, learning features from 

sensing signals. Then, a genetic algorithm was applied 

to find the most efficient network architecture. At each 

generation of the algorithm, several hyper parameters 

were tried for better network architecture, including the 

activation function, optimizer, the number of layers, of 

neurons. After 20 generations, we obtained the best 

MLP deep neural network with an accuracy of 89.21% 

on the testing set, which outperforms previous studies 

on the same dataset. In the future, we will extend the 

dataset to add more gesture, as well as to balance 

different classes. Moreover, the genetic architecture 

will be applied to find optimal architecture of other 

DNNs, such as CNN, LSTM and so on. 
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